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publishing. The attacker deduce the information by linkage  
method on the bases  of various attributes belonging to 
various categories .A variety of attributes in a relation are 
classified as key attributes, quasi-attributes, sensitive 
attributes and insensitive attributes. 
Different  anonymization  models exist such as k-
anonymity[6], l-diversity[7], t-closeness[8] etc. But the 
focus of this paper is only on k-anonymity model and its 
algorithms as it this model has been widely discussed in the 
literature and bases for the other. 
This was the first model for data anonymization and base for 
the others. The formal definition of k-anonymity for relation 
is as[1,6]. “A table T is k-anonymous with respect to Quasi-
Identifiers  Qi(Q1,……., Qd) if every unique tuple (q1,….qd) 
in the projection of T on Q1,….Qd occurs at least k times”. 
For example Table1 represents the original table containing 
data about school employees  where as Table 2 represents 
the anonymized data with k=3.    

 
Table 1 Records for School Employees[9] 

Sno ID                         QID Sensitive 

Attribute 
Name Designation Age Pin 

Code 
Salary 

1 Ana TGT 49 132042 42000 

2 Ali PGT 40 132021 58000 
3 Joe PPRT 44 132024 35000 

4 Karim TGT 48 132046 43000 
5 Durga PPRT 45 132045 34000 

6 Raghav PGT 43 132027 55000 

 
Table 2  Anonymized table (k=3) for School Employees[9] 

 
There are a variety of methods which are suggested in 
literature for the implementation of k-anonymity using  the 
method of generalization and suppression. Samarati and 
Sweeney[1] acquainted with  the concept of k-
anonymization. In [10] Xuyun Zhang et al. have given the 
concept of providing security and privacy to the 
intermediate data sets. Whereas an amended model of k-
anonymity was proposed by J.Li et al. [11] for protecting the 
relationship and identification of sensitive information. 
Bayardo et al.[12] has given another k-anonymity based 
optimal algorithm also based on full generalization of table. 
Mohammad Reza Zare [13] aims on providing privacy over 
data publishing under the concept of privacy data utilization 
and prevention of disclosure  of individual identity. 
 However in literature a variety of anonymization methods 
have been given but k-anonymity is the base for all. In this 
paper three algorithms have been taken  namely: Datafly, 
Mondrian and Incognito these are based on the concept of k-
anonymity. 

Moreover for determining the 
performance of different algorithms, various  metrics are 

available in the literature such as generalized information 
loss , value of discernibility and average equivalence class 
size. Work has been already performed to calculate and 
compare the performance of various algorithms to calculate 
generalized information loss[14] and value of 
discernibilty[9] by the researcher.    In this work the value of 
average equivalence class size   has been calculated based 
on the characteristics of attributes. Further a systematic 
comparison has been given to select the  most appropriate 
algorithm for anonymization and to verify whether the 
average equivalence class size value depends on number of 
quasi attributes or not .  

 
  
III. AVERAGE EQUIVALENCE CLASS SIZE 

METRICS FOR k-ANONYMITY ALGORITHMS 
To select the most appropriate anonymization algorithm 
from the set of available algorithms a systematic assessment 
is needed. Moreover, a concise elucidation   about average 
equivalence class size metric has been given and for 
evaluation purpose these have been implemented in Python . 
 
3.1 AVERAGE EQUIVALENCE CLASS SIZE 

METRIC This metric describes how well the formation  
of equivalence class size approaches to the best case, 
where each record is generalized in an EQ of k record 
[2][15]. The total CAVG score is calculated as  

CAVG(T*)=
|܂|

ܓכ|ܛۿ۳|
 

 
Where T* is anonymized table, T is original table, |T| is 
cardinality of table T.|EQs| represents the total no of 
equivalence classes created and k is privacy requirement. 
To calculate the value of this metric Table 2 will be 
considered which shows two equivalence classes, the CAVG 

value will be 
଺

ଶכଷ
ൌ 1 

 
IV. PROBLEM FORMULATION 

The aim of this paper is to deduce the performance of 
different algorithms under different circumstances that 
include different characteristics of quasi attributes. 
Moreover, publically available different datasets are taken 
as source of input and output is the value of average 
equivalence class size. 
 

V. VARIOUS DATA SETS USED FOR 
EVALUATION 

This section contains information about different datasets 

used for evaluation.  

5.1. Adult Data Set[16] 

Firstly the process of anonymization is applied on adult data 
set and then the  value of average equivalence class size is 
determined. For  analyzing the value of average equivalence 
class size total no of tuples taken are 5411  with 9 attributes. 
The list of attributes considered  are: 
Adult = {Age, Sex, Race, Marital Status, Education, State, 
Qualification, Designation, Salary} 
5.2. American Time Use Survey (ATUS) Data Set[16] 

The process of anonymization is applied on ATUS data set 
further the value of average equivalence class size is 

Sno EQ QID Sensitive 
Attribute 

Designatio Age Pin Salary 

1 A Teaching [45-50) 13204$ 42000 
4 Teaching [45-50) 13204$ 43000 
5 Teaching [45-50) 13204$ 34000 
2 B Teaching [40-45) 13202$ 58000 
3 Teaching [40-45) 13202$ 35000 
6 Teaching [40-45) 13202$ 55000 
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determined. Moreover, for  analyzing the value of average 
equivalence class size total no of tuples taken are 56663 
with five attributes. The attributes considered in this data set 
are: 
ATUS = {Age, Region, Race, Marital Status, Qualification} 
5.3 CUPS Data Set [16] 

The third data set used for analysis is CUPS for its 
processing first the process of anonymization is applied then 
the  value of average equivalence class size is determined. 
For  analyzing the value of average equivalence class size 
total no of tuples taken are 62414 with five attributes. The 
attributes considered in this data set are: 
CUPS = {Zip Code, Age, Sex, Salary, Qualification} 
 

VI. EXPERIMENTAL ANALYSIS 

The objective of experiment is to produce a comparison 
between three different anonymization algorithms based on 
the concept of  k-anonymity and determining  the value of 
equivalence class size by anonymizing the data using UTD 
software[17] and further data utility metric has been applied 
to determine the value of equivalence class size. The data 
utility metric to calculate the value of average equivalence 
class size was implemented in Python language.  
 
6.1 Average Equivalence Class Size  for Adult data set : To 
deduce the value of average equivalence class size process 
of anonymization and evaluation have been performed on 
adult data set containing 5411 records after the process of 
data sanitization where the value of k is taken as 300. Table 
3 shows the evaluation upshot considering different 
characteristics of quasi attributes such as Age (numeric), 
Marital Status (Non numeric), Qualification(Non numeric). 
 
Table 3    Upshot values of average equivalence class size 
for Adult data set 
 
Algorithm/ 
No of QI 

Age Marital 
Status 

Age, 
Marital 
Status 

Age, Marital 
Status, 
Qualification 

Data Fly 4.508333 9.018333 4.509167 9.018333333 
Mondrian 2.004074 4.509167 1.387436 1.503055556 
Incognito 9.018333 9.018333 4.509167 4.509166667 
     

 

 

 
Figure 1: Comparative analysis of the three algorithms for 

Adult data set 

It has been observed from Fig. 1 that the performance of 
Mondrian is consistent among all the cases under varying 
characteristics of quasi attributes .Moreover, best case with 
all anonymization algorithms will occur when 
anonymization have been performed with the combination 
of numeric and non numeric attribute.   
 
6.2 Average Equivalence class size for ATUS data set :  
For deducing  the value of average equivalence class size 
process of anonymization and evaluation have been 
performed on ATUS  data set containing 56663 records after 
the process of data sanitization where the value of k is taken 
as 300. Table 4 shows the evaluation upshot considering 
different characterstics of quasi attributes such as  
Age(numeric), Race (Non numeric),Marital Status(Non 
numeric). 

 
Table 4    Upshot values of average equivalence class size 
for ATUS data set 
 

Algorithm/ 
No of QI 

Age Race Age, 
Race 

Age, Race 
,Marital 
Status 

Data Fly 47.21917 62.95889 31.47944 31.47944444 

Mondrian 2.951198 37.77533 2.303374 2.122209738 

Incognito 47.21917 62.95889 31.47944 20.9862963 

 

 

Figure 2: Comparative analysis of the three algorithms for 

ATUS data set 

From the Fig. 2 it has been observed that performance of 
Mondrian is outstanding among all three algorithms where 
as the number of quasi attributes carrying different 
characteristics. Moreover while increase in the number of 
quasi attributes for anonymization the value of average 
equivalence class size reduces and the best case occurs when 
anonymization have been performed with the combination 
of numeric and non-numeric attribute.  
6.3  Average equivalence class size for CUPS data set : In 
third case for calculating the value of average equivalence 
class size process of anonymization and evaluation have 
been performed on cups  data set containing 62414 records 
after the process of data sanitization where the value of k is 
taken as 300. Table 5 shows the evaluation upshot 
considering different characteristics of quasi attributes such 
as  Age(numeric),Qualification (Non numeric),Sex(Non 
numeric). 
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Table 5    Upshot values of average equivalence  class size 

for CUPS data set 
Algorithm/ 
No of QI 

Age Qualification Age, Sex Age, 
Qualification 

Age,Sex, 
Qualification 

Data Fly 52.011667 13.002917 26.005833 13.00291667 52.011667 

Mondrian 3.715119 41.60933 3.302328 1.926358025 3.715119 

Incognito 52.01167 52.01167 26.00583 13.00291667 52.01167 

 

 

 

Figure 3: Comparative analysis of the three algorithms for  

CUPS data set 

From Fig. 3 it has been deduced that the performance of 
Mondrian is outstanding in all the cases except when 
anonymization has been made on single character quasi 
attribute. In such case performance of datafly is good 
.Moreover, the value of average equivalence class size 
decreases and going to produce best case when 
anonymization have been performed on the bases of 
numeric and non-numeric attribute and domain set of non 
numeric have multiple values.   

 
VII. CONCLUSIONS 

In current period of time various techniques have been 
proposed for publishing the data while keeping the  privacy 
of data .This paper provides a detailed analysis of different 
data sets with varying size and characteristics and it  has 
been deduced that none of algorithm produces consistent 
results. Moreover, keeping in view the general performance 
Mondrian outperforms among all three algorithms and it has 
been concluded that the formation of equivalence class size 
approaches  the best case when anonymization have been 
performed with the combination of quasi attributes 
.Moreover, It has been also concluded that Mondrian 
outperforms when domain set of an attribute contains 
multiple different values. So, there is a scope of 
enhancement of methods that formalizes equivalence classes 
of the best case. 
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