
��������	�
����	��������������

��� ����!��"�����#�������

�$#$��!%�&�&$��

������'���(���������)))��*���������

© 2010, IJARCS All Rights Reserved 243

ISSN No. 0976-5697

Information Hiding in Higher LSB Layer in an Audio Image

Prof. Samir Kumar Bandyopadhyay*
Dept. of Computer Sc. & Engineering,

University of Calcutta 92 A.P.C. Road,

Kolkata , India

skb1@vsnl.com

Biswajita Datta

Lecturer,

Department of Computer Science & Engineering.

St. Thomas College of Engineering & Technology

Kolkata , India

biswa.jita@gmail.com

Koushik Dutta

Student,

Department of Information Technology.

Murshidabad College of Engineering & Technology

Kolkata , India

 koushik.it.22@gmail.com

Abstract: With the rapid advancement of Communication Technology information transformation through internet become very much popular as

well as easy and less time consuming. But this type advancement in the field of data communication in other sense has hiked the fear of getting

the data snooped at the time of sending it from the sender to the receiver. Information protection is an issue in rapidly evolving contemporary

information technologies. Steganography plays an important role in the field of information security by hiding messages in such a way that no

one apart from the sender and intended recipient realizes the existence. Here in this paper we propose a novel audio steganographic method for

embedding information. For embedding here we use higher LSB layers for increasing robustness. The selected amplitudes are modified in such a

way that they can contain two bits without affecting the perceptual quality. In this paper we propose a new compression technique for sending

compressed information.

Keywords: Steganography, Human Auditory System (HAS), ASCII, Cover audio, Target data, Stego - audio, Encoding, Decoding

I. INTRODUCTION

Information protection is a topical issue in rapidly

evolving contemporary information technologies. The need to

ensure that only the right people have authorization to high-

security accesses, has led to the development of information

hiding. So it is desired that the communication to be done in

secrete. Such secrete communication ranges from the obvious

cases of bank transfers, corporate communications and credit

card purchases, on down to a large percentage of everyday

email. Steganography can be an effective means that enables

concealed data to be transferred inside of seemingly

innocuous carrier files. Generally speaking, steganography

brings science to the art of hiding information. The purpose of

steganography is to convey a message inside of a conduit of

misrepresentation such that the existence of the message is

both hidden and difficult to recover when discovered.

Steganography is the art and science of writing hidden

messages in such a way that no one, apart from the sender and

intended recipient, suspects the existence of the message, a

form of security through obscurity. The word steganography

is derived from the Greek words “stegos” meaning “cover”

and “grafia” meaning “writing” defining it as “covered

writing”. The term “steganography” came into use in 1500’s

after the appearance of Trithemius’ book on the subject

“Steganographia”. Its ancient origins can be traced back to

440 BC. Although the term steganography was only coined at

the end of the 15th century, the use of steganography dates

back several millennia. In ancient times, messages were

hidden on the back of wax writing tables, written on the

stomachs of rabbits, or tattooed on the scalp of slaves - all

these incidents were the earliest known examples of what

we now a days known as Steganography.

Modern steganography is generally understood to deal

with electronic media rather than physical objects. What

Steganography essentially does is exploit human

perception; human senses are not trained to look for files

that have information hidden inside of them. Generally, in

steganography, the actual information is not maintained in

its original format. Information can be hidden inside a

multimedia object using many suitable techniques. As a

cover object, we can select image, audio or video file even

typeset text. Depending on the type of the cover object,

definite and appropriate technique is followed in order to

obtain security. The most popular data formats are .bmp,

.doc, .jpeg, .mp3, .txt and .wav.

In a pure steganography framework, the technique for

embedding the message is unknown to anyone other than

the sender and the receiver. An effective steganographic

scheme should posses the following desired characteristics

[1-2].

Secrecy: a person should not be able to extract the covert

data from the host medium without the knowledge of the

proper secret key used in the extracting procedure.

Imperceptibility: the medium after being embedded with

the covert data should be indiscernible from the original

medium. One should not become suspicious of the

existence of the covert data within the medium.

Samir Kumar Bandyopadhyay et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,243-254

© 2010, IJARCS All Rights Reserved 244

High capacity: the maximum length of the covert message

that can be embedded should be as long as possible.

Resistance: the covert data should be able to survive when the

host medium has been manipulated, for example by some

lossy compression scheme [3].

Accurate extraction: the extraction of the covert data from the

medium should be accurate and reliable.

Audio Steganography is basically a process of hiding a

data, image or an audio clip within an audio file in such a way

so that the audio will sound unchanged to Human Auditory

System(HAS) and no one, apart from the sender and intended

recipient can make out the existence of data, image or audio

within the audio file. The human auditory system (HAS)

perceives sounds over a range of power greater than 109:1 and

a range of frequencies greater than 103:1. The sensitivity of

the HAS to the Additive White Gaussian Noise (AWGN) is

high as well; this noise in a sound file can be detected as low

as 70 dB below ambient level. On the other hand, opposite to

its large dynamic range, HAS contains a fairly small

differential range, i.e. loud sounds generally tend to mask out

weaker sounds [4]. Additionally, HAS is insensitive to a

constant relative phase shift in a stationary audio signal and

some spectral distortions interprets as natural, perceptually

non-annoying ones.

II. RELATED STUDY

One of the more common approaches to substitution is to

replace the least significant bits (LSBs) in the cover file

(Katzenbeisser, 2000). This method is probably the easiest

way of hiding information in an image and yet it is

surprisingly effective and it also good for audio and video

steganography. It works by replacing the least significant bits

of amplitude of cover audio with the bits of target data. On

average, LSB requires that only half the bits in an audio be

changed. We can hide data in the least and third least

significant bits which makes the process perceptually

transparent.

The main advantage of the LSB coding method is a very

high watermark channel bit rate and a low computational

complexity of the algorithm, while the main disadvantage is

considerably low robustness against signal processing

modifications. The perceptual quality of watermarked audio is

higher in the case of the proposed method than in the standard

LSB method is implementing in the Electronic Copyright

Management System.

As the number of used LSBs during LSB coding

increases or, equivalently, depth of the modified LSB layer

becomes larger, probability of making the embedded message

statistically detectable increases and perceptual transparency

of stego objects is decreased. Therefore, there is a limit for the

depth of the used LSB layer in each sample of host audio that

can be used for data hiding. Robustness of the steganography

using the LSB coding method increases with increase of the

LSB depth used for data hiding.[8] Therefore, improvement of

steganographic robustness obtained by increase of depth of

the used LSB layer is limited by perceptual transparency

bound, which is the fourth LSB layer for the standard LSB

coding algorithm.[9]

We developed a novel method that is able to shift the

limit for transparent data hiding in audio using a three step

approach. In the first step, a hidden bit is embedded into the ith

LSB layer of the host audio using a novel LSB coding

method. In the second step, the impulse noise caused by

watermark embedding is shaped in order to change its

white noise properties. Then in the third step the 1st LSB

layer is replaced by next hidden bit.

The standard LSB coding method simply replaces the

original host audio bit in the ith layer (here i is 3) with the

bit from the hidden bit stream. In the case when the

original and hidden bit are different and ith LSB layer is

used for embedding the error caused by embedding is 2i-1

quantization steps (QS) (amplitude range is [-256 to 255]).

The embedding error is positive if the original bit was 0

and watermark bit is 1 and vice versa. Our proposed LSB

algorithm causes minimal embedding distortion of the host

audio. For example, if the original sample value was

000001002=410, and the watermark bit is zero is to be

embedded into 4th LSB layer, instead of value

000000002=010, that would the standard algorithm

produce, the proposed algorithm produces sample that has

value 000000112=310, which is far more closer to the

original one. After that if we place 0 at 1st LSB layer the

value become 000000102=210 or if we place 1 at 1st LSB

layer then there is no change (i.e. 000000112=310), which

is also closer to the original one. So our proposed

technique has a high steganographic capacity (i.e. how

many bits can we hide in an image using LSB techniques

without causing statistically significant modifications).

However, the extraction algorithm remains the same; it

simply retrieves the watermark bit by reading the bit value

from the predefined LSB layer in the watermarked audio

sample.

Some of the most used audio steganographic

techniques are Lossless Adaptive Digital Audio

Steganography [5], LSB based Audio Steganography [6],

Audio Steganography using bit modification [7] etc.

III. PROPOSED METHOD

As the number of used LSBs during LSB coding increases

or, equivalently, depth of the modified LSB layer becomes

larger, probability of making the embedded message

statistically detectable increases and perceptual

transparency of stego objects is decreased. Therefore,

there is a limit for the depth of the used LSB layer in each

sample of host audio that can be used for data hiding. But

robustness of the embedding using the LSB coding

method increases with increase of the LSB depth used for

data hiding. Therefore, improvement of watermark

robustness obtained by increase of depth of the used LSB

layer is limited by perceptual transparency bound, which is

the third LSB layer for the standard LSB coding

algorithm.

Our objective here is to hide some information (text)

within an audio clip. We call the text to be hidden as target

text and the audio under which they are to be hidden as

cover audio. We have to hide information using a new

proposed method in such a manner so that the audio will

sound unchanged to HAS. The entire method can be sub-

divided into two individual methods- first, hiding the data

into the audio signal (Encoding) and the sago audio is send

to the receiver end. Second receive the stego audio and

extracting the hidden data out of it (Decoding). Now we

are going to explain them in parts.

Samir Kumar Bandyopadhyay et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,243-254

© 2010, IJARCS All Rights Reserved 245

IV. ENCODING TECHNIQUE

An audio clip consists of a number of amplitude values in

the range -1 to +1 such that the values are like 0.8134,0.0313,-

0.0078,-0.0002,0 etc. It is tough to work with this value. So to

normalize these values we multiply the amplitude values of

the audio file with multiple of 10 so that the amplitude values

are lies between -255 to 254 and we can represent them in 8

bits.

Hiding String Length

We then find the length of the target string (store it in the

variable ‘strlen’) that we are going to hide. Then convert it

into its 8 bit equivalent. We store this length within the first 8

amplitudes by modifying only the LSB. We can represent

this whole process with the help of a simple diagram as

shown below.

Suppose the target string is “this is a secret code”. Length

of the string (strlen) is 21. We represent 21 in 8 bits as

follows-

Strlen in 8 bits =

21

Now the 8 bits are placed according to the following

Table I.

Table I
Amplitude

Position

Amp. Value

in Decimal

Amp. Value

in Binary

Modified

Amp. Value

in Decimal

Modified

Amp. Value

in Binary

1 10 0 0 0 0 1 0 1 0 11 0 0 0 0 1 0 1 1

2 99 0 1 1 0 0 0 1 1 98 0 1 1 0 0 0 1 0

3 21 0 0 0 1 0 1 0 1 20 0 0 0 1 0 1 0 1

4 52 0 0 1 1 0 1 0 0 52 0 0 1 1 0 1 0 0

5 20 0 0 0 1 0 1 0 0 21 0 0 0 1 0 1 0 1

6 22 0 0 0 1 0 1 1 0 22 0 0 0 1 0 1 1 0

7 20 0 0 0 1 0 1 0 0 20 0 0 0 1 0 1 0 0

8 29 0 0 0 1 1 1 0 1 28 0 0 0 1 1 1 0 0

Amplitude Selection

As we can see the change thus obtained in the

amplitude value is negligible. But if all the adjacent

amplitudes are changed at the same time it may bring about

a large change. For this reason instead of changing all the

adjacent amplitudes, we change a certain number of selected

amplitude. The amplitudes are selected according to the

following order. Suppose the starting point is 1, then after

the 1st amplitude, the next amplitudes changed will be the

following order: -

 1 6 15 28 45

[(1+0)*1] [(2+1)*2] [(3+2)*3] [(4+3)*4] [(5+4)*5]

 (13
th

) (19
th

) (28
th

) (41
st
) (58

th
)

But if the length of the string be 21, we start it from 21.

Then the affected amplitudes are selected according to

following order:

21 861

 [(21+20)*21] [(22+21)*22]

 946 . . . 3321

[(23+22)*23] . . . [(41+40)*41]

Data Hiding Mechanism

In case of data hiding we replace two LSBs – 3rd and 1st

of the amplitude values of audio signal with the binary value

of ASCII of the character to be hidden. Now we demonstrate

our proposed method.

For hiding individual character first we convert them in 7 bit

ASCII and then cut the MSB to get 6bits of them. Suppose

we want to hide ‘A’. The ASCII value of ‘A’ is 65, in binary

which is represented in 7 bit as ‘1000001’. Before hiding

them we discard the MSB ‘1’ of ‘1000001’and get 6 bit as

‘000001’. Then cut these bits in 2- 2- 2 order as follows:

Then each of these two bits is placed in 3rd and 1st LSB. So

for hiding a character we require 3 amplitude values. First

bit of two bits is hidden in the 3rd LSB of amplitude

represented in 8 bits by some modification of the original

amplitudes. Then 2nd bit is replaced at 1st LSB position.

Now we discuss how the modification of the original

amplitude value is done after the replacing of 3rd LSB of the

amplitude of audio signal with the bit of the character.

The adjustment algorithm has three cases-

I. The 3rd bit (ai) of the sample amplitude is modified from

0 to 1

II. The 3rd bit (ai) of the sample amplitude is modified from

1 to 0.

III. The 3rd remains the same as the original i.e. we place 1 in

place of 1or 0 in place of 0.

Case I:

� First we replace 3rd LSB (ai) of original amplitude

which is originally 0 with 1 and then adjust the original�

amplitude value with any one of the following 4 cases. For

Case I there are another 4 cases-

Case A:

ai-1(2
nd LSB) = 1 and ai+1(4

th LSB) = 1.

Then we put 0 to ai-1,ai-2,……,a0.

0 0 0 1 0 1 0 1

Samir Kumar Bandyopadhyay et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,243-254

© 2010, IJARCS All Rights Reserved 246

We can explain this with the help of an example. Suppose

the original 8 bit amplitude is-

 154

�������������������������a7 a6 a5 a4 a3 a2 a1 a0

After changing 3rd LSB from 0 to 1.

 a7 a6 a5 a4 a3 a2 a1 a0

After adjustment the changed amplitude becomes

 156

 a7 a6 a5 a4 a3 a2 a1 a0
Case B:

ai-1(2
nd SB) = 1 and ai+1(4

th LSB) = 0.

Then we put 0 to ai-1,ai-2,……,a0.

We can explain this with the help of an example. Suppose

the original 8 bit amplitude is-

��

130

 a7 a6 a5 a4 a3 a2 a1 a0

After changing 3rd LSB from 0 to 1

 a7 a6 a5 a4 a3 a2 a1 a0

After adjustment the changed amplitude becomes

132

 a7 a6 a5 a4 a3 a2 a1 a0

Case C:

ai-1(2
nd LSB) = 0 and ai+1(4

th LSB) = 1.

Then we put 1 to ai-1,ai-2,……,a0 and ai+1 = 0

We can explain this with the help of an example. Suppose

the original 8 bit amplitude is-

169

 a7 a6 a5 a4 a3 a2 a1 a0

After changing 3rd LSB from 0 to 1

 a7 a6 a5 a4 a3 a2 a1 a0

After adjustment the changed amplitude becomes

 167

 a7 a6 a5 a4 a3 a2 a1 a0

Case D:

ai-1(2
nd LSB) = 0 and ai+1(4

th LSB) = 0.

Then we put 1 to ai-1,ai-2,……,a0 and then we replace all the

bits with value 0 towards the MSB by 1 until we encounter

1, when we get a bit towards the MSB with value 1, we

simply replace that bit with 0 and stop the process.

We can explain this with the help of an example. Suppose

the original 8 bit amplitude is-

161���

 a7 a6 a5 a4 a3 a2 a1 a0

 After changing 3rd LSB from 0 to 1

 a7 a6 a5 a4 a3 a2 a1 a0

After adjustment the changed amplitude becomes

159

 a7 a6 a5 a4 a3 a2 a1 a0

Case II:

� First we replace 3rd LSB (ai) of original amplitude

which is originally 1 with 0 and then adjust the original

amplitude value with any one of the following four cases.

For Case II there are another four cases-

Case A:

ai-1(2
nd LSB) = 0 and ai+1(4

th LSB) = 0.

Then we put 1 to ai-1,ai-2,……,a0.

We can explain this with the help of an example. Suppose

the original 8 bit amplitude is-

132

 a7 a6 a5 a4 a3 a2 a1 a0

After changing 3rd LSB from 1 to 0

 a7 a6 a5 a4 a3 a2 a1 a0

After adjustment the changed amplitude becomes

131

 a7 a6 a5 a4 a3 a2 a1 a0

Case B:

ai-1(2
nd LSB) = 0 and ai+1(4

th LSB) = 1.

Then we put 1 to ai-1,ai-2,……,a0.

We can explain this with the help of an example. Suppose

the original 8 bit amplitude is-

156

 a7 a6 a5 a4 a3 a2 a1 a0

After changing 3rd LSB from 1 to 0

1 0 0 1 1 0 1 0

1 0 0 1 1 1 1 0

1 0 0 1 1 1 0 0

1 0 0 0 0 0 1 0

1 0 0 0 0 1 1 0

1 0 0 0 0 1 0 0

1 0 1 0 1 1 0 1

1 0 1 0 0 1 1 1

1 0 1 0 1 0 0 1

1 0 1 0 0 0 0 1

1 0 1 0 0 1 0 1

1 0 0 1 1 1 1 1

1 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1

1 0 0 1 1 1 0 0

Samir Kumar Bandyopadhyay et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,243-254

© 2010, IJARCS All Rights Reserved 247

�������������������������������

 a7 a6 a5 a4 a3 a2 a1 a0

After adjustment the changed amplitude becomes

155

 a7 a6 a5 a4 a3 a2 a1 a0

Case C:

ai-1(2
nd LSB) = 1 and ai+1(4

th LSB) = 0.

Then we put 0 to ai-1,ai-2,……,a0 and ai+1 = 1

We can explain this with the help of an example. Suppose

the original 8 bit amplitude is-

���

134

 a7 a6 a5 a4 a3 a2 a1 a0

After changing 3rd LSB from 1 to 0

 a7 a6 a5 a4 a3 a2 a1 a0

After adjustment the changed amplitude becomes

136

 a7 a6 a5 a4 a3 a2 a1 a0

Case D:

ai-1(2
nd LSB) = 1 and ai+1(4

th LSB) = 1.

Then we put 0 to ai-1,ai-2,……,a0 and then we replace all the

bits with value 1 towards the MSB by 0 until we encounter

0, when we get a bit towards the MSB with value 0, we

simply replace that bit with 1 and stop the process.

We can explain this with the help of an example. Suppose

the original 8 bit amplitude is-

191

 a7 a6 a5 a4 a3 a2 a1 a0

After changing 3rd LSB from 1 to 0

 a7 a6 a5 a4 a3 a2 a1 a0

After adjustment the changed amplitude becomes

 192

 a7 a6 a5 a4 a3 a2 a1 a0

Case III:

If the bit which we want to place at the 3rd LSB position

of the amplitude is same with the 3rd LSB of the original

amplitude then the original amplitude value become

unchanged. Here we also may think of two cases:

Case A:

ai(3
rd LSB) = 0 and replace with 0.

128���������������

 a7 a6 a5 a4 a3 a2 a1 a0

After changing 3rd LSB from 0 to 0

128

 a7 a6 a5 a4 a3 a2 a1 a0

Case B:

ai(3
rd LSB) = 1 and replace with 1.

132

�������������������������������

������a7 a6 a5 a4 a3 a2 a1 a0

After changing 3rd LSB from 1 to 1

132

��������������������

������a7 a6 a5 a4 a3 a2 a1 a0

 At first we are mainly concerned about the 3rd LSB.

After all the modification of the amplitude we insert the 2nd

bit of two bit pair at the 1st LSB position. For Example, if

the original value of the amplitude be 132 after LSB

replacement with 1 it becomes 133 or with 0 it remain same

with 132.

132

 a7 a6 a5 a4 a3 a2 a1 a0

1st LSB changes with 1.

133

 a7 a6 a5 a4 a3 a2 a1 a0

1st LSB changes with 0.

132

 a7 a6 a5 a4 a3 a2 a1 a0

132

 a7 a6 a5 a4 a3 a2 a1 a0

V. DECODING TECHNIQUE

In this case the decoding method is very simple. The

receiver when receives the stego-audio file, his target is to

extract the data hidden in it. First the receiver extracts length

of the targeted string by concatenating the LSB bit of first 8

amplitudes. Now according to the above discussed series the

amplitudes of the audio signal is selected. Then from each of

the selected amplitude value we pick the 3rd LSB and the 1st

LSB. To get each character of the targeted string 6

bits(3rd LSB and 1st LSB) from every 3 consecutive

amplitudes (2 from each amplitude) that fall in the sequence

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0

1 0 0 0 0 1 0 0

1 0 0 0 0 1 0 0

1 0 0 0 0 1 0 1

1 0 0 0 0 1 0 0

1 0 0 0 0 1 0 0

1 0 0 1 1 0 0 0

1 0 0 1 1 0 1 1

1 0 0 0 0 1 1 0

1 0 0 0 0 0 1 0

1 0 0 0 1 0 0 0

1 0 1 1 1 1 1 1

1 0 1 1 1 0 1 1

1 1 0 0 0 0 0 0

Samir Kumar Bandyopadhyay et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,243-254

© 2010, IJARCS All Rights Reserved 248

are picked up. By concatenating them we get 6 bit

equivalent of a character of the string. If two MSB of 6bit

string be 0,0 or 0,1, then concatenate 1 else if 1,0 or 1,1 then

concatenate 0 as MSB with the 6 bit string to make it as 7

bit. Then covert this 7 bit to its decimal equivalent which is

the ASCII value of the character.

We can explain this with the help of a diagram-

Suppose the values of the 13th, 19th and 28th amplitudes in 8

bit representation are-

13th amplitude

19th amplitude

28th amplitude

From these 3 consecutive amplitudes that fall in the

sequence, we can obtain the 6 bit representation of the

character hidden in the 3rd LSB and the 1st LSB of three

consecutive amplitudes according to the sequence.

The 6 bit string comes to be-

 c5 c4 c3 c2 c1 c0

here ince the two MSB (c5) and (c4) are (1,1). So, we

concatenate 0 as MSB with the 6 bit representation to obtain

the 7 bit equivalent of the character.

The 7 bit string comes to be-

The ASCII value of the character is 49.

 c6 c5 c4 c3 c2 c1 c0

Therefore, the decoder obtains 1st character as 1.

 If we follow the above steps for the number of

amplitude values that falls in the sequence equal to thrice

the length of the string we get the target string at the

receiver site from the stego audio.

ENCODING ALGORITHM OF HIDING DATA IN AN

AUDIO FILE

Step 1: Start

Step 2: Read the Cover Audio file and the target Text

 massage.

Step 3: Normalize the cover audio so that we can represent

 the amplitudes in 8 bit Binary.

Step 4: Convert the target massage into upper Case.

Step 5: Calculate the length of the target String and store it

 in a variable – STRLEN

Step 6: if STRLEN>8 then

 Set Len = STRLEN

 else

 Set Len = 8+STRLEN

 L=Len

Step 7: Store the value of STRLEN in the first eight

 amplitudes of the Cover Audio using the function

 STOR_LEN (STRLEN, Cover Audio).

Step 8: For 1 to STRLEN repeat the steps 9 to 11.

Step 9: Convert the ASCII value of the individual

 character of the target String into its 7 bit binary

 equivalent.

Step 10: Cut the MSB to convert the 7 bit binary into 6 bit

 binary.

Step 11: To store this 6 bit we use three consecutive

 amplitudes according to the series we consider

 here. To do this repeats the step 12 to 16 for 1 to

 6 incremented by 2 for each character. Here each

 time we consider pair of two consecutive bits.

Step 12: Use the function M (L) to find out the amplitude

 location of the cover audio for embedding the

 target message.

Step 13: Replace 3rd LSB (ai) of target amplitude of the

 cover audio by a bit of 6 bit binary equivalent of

 a character and then adjust the amplitude value of

 the targeted cover audio using the function

 ADJUST(modified cover amplitude)

Step 14: Then replace the 1st LSB of the adjusted

 amplitude.

Step 15: Restore the bits of the target amplitude with

 modified values in the cover Audio.

Step 16: L=L+1.

Step 17: Send the stego- audio to the receiver.

Step 18: End

Algorithm for Function ADJUST (a)
/* Adjust the value of amplitude ‘a’ after replacing 3rd LSB.

*/

Step 1: If the 3rd bit of the amplitude value (ai) is modified

 from 0 to 1 then

Step 1.1: If ai-1 =1 & ai+1=1 then

Step 1.1.1: Assign ai-1, ai-2,….., a0= 0.

Step 1.1.2: Go to Step 4.

Step 1.2: If ai-1 =1 & ai+1=0 then

Step 1.2.1: Assign ai-1, ai-2,….., a0 = 0.

Step 1.2.2: Go to Step 4.

Step 1.3: If ai-1 =0 then

Step 1.3.1: Assign ai-1, ai-2,….., a0= 1.

Step 1.3.2: If ai+1=1 then

 Assign ai+1= 0.

 Go to Step 4.

 Else Go to Step 1.3.3.

Step 1.3.3: Assign j=i+1.

 Repeat for aj!=1

assign aj =1

j=j+1.

 Assign aj=0.

 Go to Step 4.

Step 2: If the 3rd bit of the amplitude value (ai) is modified

 from 1 to 0 then

Step 2.1: If ai-1 =0 & ai+1=0 then

1 0 0 1 1 1 1 1

1 1 0 0 0 0 0 0

1 0 0 0 0 0 1 1

1 1 0 0 0 1

 0 1 1 0 0 0 1

Samir Kumar Bandyopadhyay et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,243-254

© 2010, IJARCS All Rights Reserved 249

Step 2.1.1: Assign ai-1, ai-2, …, a0= 1.

Step 2.1.2: Go to Step 4.

Step 2.2: If ai-1 =0 & ai+1=1 then

Step 2.2.1: Assign ai-1, ai-2,….., a0 = 1.

Step 2.2.2: Go to Step 4.

Step 2.3: If ai-1 =1 then

Step 2.3.1: Assign ai-1, ai-2,….., a0= 0.

Step 2.3.2: If ai+1=0 then

 Assign ai+1= 1.

 Go to Step 4.

 Else goto step 2.3.3.

Step 2.3.3: Assign j=i+1.

 Repeat for aj!=0

assign aj=0

j=j+1.

 Assign aj=1.

 Go to Step 4.

Step 3: if the 3rd LSB is same with the replaced bit then

 the amplitude value remain unchanged

 and Go to Step 4.

Step 4: return a.

Algorithm for Function STOR_LEN (STRLEN, Cover

Audio)

/* Storing of the length of the message */

Step 1: Start

Step 2: Convert the value STRLEN into its 8 bit binary

 equivalent.

Step 3: Replace LSB of first 8 consecutive amplitudes

 with the 8 bits of STRLEN.

Step 4: End

Algorithm for Function M (L)

/* Finding the affected amplitude location */

Step 1: Start

Step 2: If L is equal to Len,

 Put P=L

 else

 Put P= (L+(L-1))*L

Step 3: Return P

Step 4: End

DECODING ALGORITHM OF HIDING DATA IN AN

AUDIO FILE

Step 1: Start

Step 2: Take the Stego-audio file

Step 3: To obtain the length of the target text message call

 function RET_LEN (Stego Audio) and store

 the length in STRLEN.

Step 4: if STRLEN>8 then

 Set Len = STRLEN

 else

 Set Len = 8+STRLEN

 L=Len

Step 5: For 1 to STRLEN repeat the steps 6 to 14.

Step 6: Call the function M (L) to find out the amplitude

 location of the stego audio where the target text

 Massage is embedded.

Step 7: Convert the amplitude values into 8 bit binary.

Step 8: Cut the 3rd LSB and the 1st LSB of consecutive 3

 amplitude values according to the series.

Step 9: Concatenate the bits to obtain the 6 bit

 (c0c1c2c3c4c5c6) equivalent of each character of

 string.

Step 10: If the values of (c0, c1) are (0, 0) or (0, 1),

 put the 7th bit (MSB) as 1

 else if the values of (c0,c1) is (1,0) or (1,1)

 put 0 (refer table II).

Step 11: Obtain the final 7 bit equivalent of each character

 of the string.

Step 12: Convert the 7 bit equivalent in the ASCII code of

 the individual characters.

Step 13: L=L+1.

Step 14: Concatenating them the target message is obtain.

Step 15: End

Algorithm for Function M (L)

/* Finding the affected amplitude location */

Step 1: Start

Step 2: If L is equal to Len,

 Put P=L

 else

 Put P= (L+(L-1))*L

Step 3: Return P

Step 4: End

Algorithm for Function RET_LEN (Stego Audio)

/* Recover the length on receiver side */

Step 1: Start

Step 2: Read first 8 amplitude value of the stego audio.

Step 3: Convert them in binary.

Step 4: Cut the LSB from each 8 bit binary equivalent of

 the amplitudes.

Step 5: Concatenate them to get the 8 bit binary equivalent

 of the length of the target string.

Step 6: convert this 8 bit binary into its corresponding

 decimal.

Step 7: Return

Step 8: End

VI. RESULT AND DISCUSSION

An English message text is written by using the

alphabetic characters of the English language ((which are 26

letters (‘A’ … ‘Z’)) as well as numeric digits (which are 0 to

9). Some other special characters are also used to give the

reader a proper understanding of the message. Here we

consider only the uppercase alphabetic characters; numeric

digits and some most commonly used special character for

the better understanding of secret target message. The

characters consider in this study are given in the following

Table II.

Samir Kumar Bandyopadhyay et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,243-254

© 2010, IJARCS All Rights Reserved 250

Table II

Character
ASCII

Code

Binary

Character
ASCII

Code

Binary

Character
ASCII

Code

Binary

MSB R G B MSB R G B MSB R G B

A 65 1 00 00 01 O 79 1 00 11 11 2 50 0 11 00 10

B 66 1 00 00 10 P 80 1 01 00 00 3 51 0 11 00 11

C 67 1 00 00 11 Q 81 1 01 00 01 4 52 0 11 01 00

D 68 1 00 01 00 R 82 1 01 00 10 5 53 0 11 01 01

E 69 1 00 01 01 S 83 1 01 00 11 6 54 0 11 01 10

F 70 1 00 01 10 T 84 1 01 01 00 7 55 0 11 01 11

G 71 1 00 01 11 U 85 1 01 01 01 8 56 0 11 10 00

H 72 1 00 10 00 V 86 1 01 01 10 9 57 0 11 10 01

I 73 1 00 10 01 W 87 1 01 01 11 . 46 0 10 11 10

J 74 1 00 10 10 X 88 1 01 10 00 , 44 0 10 11 00

K 75 1 00 10 11 Y 89 1 01 10 01 ? 63 0 11 11 11

L 76 1 00 11 00 Z 90 1 01 10 10 ! 33 0 10 00 01

M 77 1 00 11 01 0 48 0 11 00 00 blank 32 0 10 00 00

N 78 1 00 11 10 1 49 0 11 00 01 - 45 0 10 11 01

Before going into detailed discussion, at the sender side we choose the information of the target message and a cover audio file

under which the target message is to be hidden.

Test Case 1:

 Cover Audio: Glass.wav

Target message: AUDIO

Stego Audio: GA.wav

Retrieved message: AUDIO

Samir Kumar Bandyopadhyay et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,243-254

© 2010, IJARCS All Rights Reserved 251

Test Case 2:

 Cover Audio: Glass.wav

Target message: STEGANOGRAPHY

Stego Audio: GS.wav

Retrieved message: STEGANOGRAPHY

Test Case 3:

Cover Audio: LoopyMusic.Wav

Target Message: THIS IS A STEGO AUDIO

Stego Audio: Gloopy.wav

Extracted Message: THIS IS A STEGO AUDIO

Samir Kumar Bandyopadhyay et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,243-254

© 2010, IJARCS All Rights Reserved 252

For detailed discussion we consider the test case 1. In test

case 1

Target message: audio

Cover audio: Glass.wav

Before embedding process we need to convert the target

message into upper case. Then we store the length of the

message in the first 8 amplitudes by replacing the LSB of

each it. Then we start hiding data using our proposed

method.

Now, we start our work with the target string “AUDIO”. We

encode this string according to the proposed method as

shown in Table III.

TABLE III

Charact-

er of

Target

String

ASCII value

of correspon-

ding

characters

MSB of

the 7 bit

ASCII

Binary 6 bit

equivalent of

the character

Affected

amplitude

number

Original

amplitude

value in

decimal

Original

amplitude

value in 8 bit

binary

Modified

amplitude

value in 8 bit

binary

Modified

amplitude

value in

decimal

A 65 1 000001

13

325

378

0

0

26

00000000

00000000

00011010

00000000

00000000

00011011

0

0

27

U 85 1 010101

435

496

561

0

23

(-)23

00000000

00010111

00010111

00000001

00011001

00011001

1

25

(-)25

D 68 1 000100

630

703

780

31

(-)15

(-)16

00011111

00001111

00010000

00100000

00010001

00010000

32

(-)17

(-)16

I 73 1 001001

861

946

1035

(-)23

(-)14

(-)1

00010111

00001110

00000001

00011000

00001110

00000001

(-)24

(-)14

(-)1

O 79 1 001111

1128

1225

1326

15

(-)15

(-)9

00001111

00001111

00001001

00010000

00001111

00000111

16

(-)15

(-)7

In the case when the original and hidden bit are different and

ith LSB layer is used for embedding the error caused by

embedding is 2i-1 quantization steps (QS). The embedding

error is positive if the original bit was 0 and watermark bit is

1 and vice versa. Our proposed LSB algorithm causes

minimal embedding distortion of the host audio. We can see

from column 6 & 7 that even after changing the 3rd LSB, the

value is not changed significantly. In fact the changes are so

minimal that they cannot affect the HAS. This is because of

the fact that we have manipulated the binary string in such a

way that the change in the 3rd LSB is compensated to a great

extent by some other bits. We have used a unique method to

hide data bits in the 3rd LSB and in the 1st LSB as explained

above. A change in the 3rd bit means that there can be a

maximum change of 4. But we can clearly see from Table

VI that the maximum change in the amplitude values is 2

and after adjustment when we replace 1st LSB the

maximum change becomes 3 for some cases. But here we

can hide two bits rather than one in single amplitude. So,

this method is quite efficient. Also, the security as well as

robustness has increased a lot because the intruders will

never have any idea that data can be hidden in the 3rd LSB

just because any change in the 3rd bit makes a great change.
Generally, bits are hidden either in the 1st position or

sometimes in both the 1st LSB and the 2nd LSB. But our

method is very unique and advantageous in this aspect.

During the extraction of secret target message at receiver

site first the length of the hidden message is retrieved from

the LSB of first 8 amplitudes. Now According to the defined

series we find out the amplitude position where the data bits

are embedded. The whole extraction process of data at the

receiver side is depicted in Table IV.

TABLE IV

Affected

amplitude

number

Amplit-

ude value

in

decimal

Amplitud-e

value in 8

bit binary

Extract

3rd LSB

and 1st

LSB

Concat-

enated 6

bit

7th bit(MSB) of

the character

Concate

-nated

7 bit

Correspon

-ding ASCII

Correspon

-ding

character of

target string

13

325

378

0

0

27

00000000

00000000

00011011

00

00

01

00 00 01

1

1 00 00 01

65

A

435

496

561

1

25

(-)25

00000001

00011001

00011001

01

01

01

01 01 01

1

1 01 01 01

85

U

630

703

780

32

(-)17

(-)16

00100000

00010001

00010000

00

01

00

00 01 00

1

1 00 01 00

68

D

861

946

1035

(-)24

(-)14

(-)1

00011000

00001110

00000001

00

10

01

00 10 01

1

1 00 10 01

73

I

Samir Kumar Bandyopadhyay et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,243-254

© 2010, IJARCS All Rights Reserved 253

1128

1225

1326

16

(-)15

(-)7

00010000

00001111

00000111

00

11

11

00 11 11

1

1 00 11 11

79

O

From TABLE VII, we can see that after obtaining the 6 bit

equivalent of each and every character of the target string

we concatenate the 7th bit (MSB) based on the 6th and the 5th

bit of 6 bit equivalent (from the LSB side), 0 if they are 11

or 10, 1 if they are 00 or 01. Convert the 7 bit to ASCII from

which the target text can be retrieved.

From table VI we can see that the changes in amplitude

values are so minimal that it cannot affect in human eyes. If

we follow the column “Affected amplitude number” from

table VI & VII we can send a large message through a 3 to 4

minute audio clip. Here to store target message of size 21

we require an audio clip with minimum 2000 samples. So

when we send this type of stego image through internet it

takes lesser bandwidth.

Here we consider only the uppercase alphabetic character

for interpretation of characters from the stego message at the

receiver side. Otherwise according to our hidden process

some of the lower case letters in 6 bit match with 6 bits of

some mostly used special characters that we consider in this

study. But in this manner (i.e. only send 6 bits) we are able

to send lesser bits i.e. compressed target message to the

receiver thus increasing the efficiency of the method. The

receiver finally obtains the target string by merging all the

characters.

CONCLUSION

Steganography can be an effective means that enables

concealed data to be transferred inside of seemingly

innocuous carrier files. Generally speaking, steganography

brings science to the art of hiding information. The purpose

of steganography is to convey a message inside of a conduit

of misrepresentation such that the existence of the message

is both hidden and difficult to recover when discovered.

Many different techniques exist and continue to be

developed for hiding information for secure transaction. But

we can not find out a technique which gives ultimate

security. As well as detection can never give a guarantee of

finding all hidden information. Even then, perfect

steganography, where the secret key will merely point out

parts of a cover source which form the message, will pass

undetected, because the cover source contains no

information about the secret message at all.

The main goal of our research work was embedding of text

into audio as a case of steganography. The two primary

criteria for successful steganography are that the stego

signal resulting from embedding is perceptually

indistinguishable from the host audio signal, and the

embedded message is recovered correctly at the receiver

using some easiest technique are successfully followed by

our method according to test.

In this paper we only work with .wav file. In future we try to

apply it on other audio file format. Here we have hide a

string in an audio file. We wished if we could hide an audio

inside another audio. In other words rather than having a

target string we could have a target audio clip. In this paper

we follow a series for selecting amplitudes for hiding

information but our aim is to place the target message within

a particular threshold. We could also have applied the

concept of encryption and decryption rather than encoding

and decoding. Steganography and cryptography can be used

together to make it more secure and reliable. However

future scope appears end less.

REFERENCES

[1] Chang C. C., Chen T. S. and Hsia H. S.:“An

Effective Image Steganographic Scheme Based on

Wavelet Transform and Pattern- Based

Modification”, IEEE Proceedings of the 2003

International Conference on Computer Networks

and Mobile Computing, 2003.

[2] Chen and Womell G.W.: “Quantization index

modulation: a class of provably good methods for

digital watermarking and information embedding”,

IEEE Transactions on Information Theory, Vol. 47,

No. 4, pp. 1423-1443, May 2001.

[3] Chen B.: “Design and analysis of digital

watermarking, information embedding, and data

hiding systems,” Ph.D. dissertation, MIT,

Cambridge, MA, June 2000.

[4] Matsuoka H.: “Spread Spectrum Audio

Steganography using Sub – band Phase Shifting”,

Proceedings of the 2006 International Conference

on Intelligent Information Hiding and Multimedia

Signal Processing (IIHMSP' 06), IEEE, 2006

[5] Agaian S.S., Akopian D., Caglayan O., D’Souza S.

A., “Lossless Adaptive Digital Audio

Steganography,” In Proc. IEEE Int. Conf. Signals,

Systems and Computers, pp. 903-906, November

2005.

[6] Gopalan K., “Audio steganography using bit

modification”, Proc. IEEE Int. Conf. Acoustics,

Speech, and Signal Processing, Vol. 2, pp. 421-

424, April 2003.

[7] Mohammad P., Ahmed D., “LSB-based Audio

Steganography Method Based on Lifting Wavelet

Transform”, International Symposium on Signal

Processing and Information Technology, IEEE,

2007.

[8] Basu P. N., Bhowmik T.: “On Embedding of Text

in Audio – A case of Steganography”, International

Conference on Recent Trends in Information,

Telecommunication and Computing, 2010

[9] Parthasarathy C., Srivatsa S.K.: “Increased

Robustness of LSB Audio Steganography by

Reduced Distortion LSB Coding” Journal of

Theoretical and Applied Information Technology.

Vol 7. No 1. (pp 080 - 086), 2005 - 2009

[10] Sridevi R, Dr. Damodaram A, Dr. Narasimham

Svl.: “Efficient Method of Audio Steganography by

Modified LSB Algorithm and Strong Encryption Key

with Enhanced Security” Journal of Theoretical and

Applied Information Technology, 2005 – 2009.

Samir Kumar Bandyopadhyay et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,243-254

© 2010, IJARCS All Rights Reserved 254

[11] Cvejic N., Seppaanen T.: “Seppaanen Increasing

Robustness of LSB Audio Steganography by

Reduced Distortion LSB Coding”. Journal of

Universal Computer Science, vol. 11, no. 1 (2005),

56-65.

[12] Audio Engineering Society E-Library -

Steganographic Approach to Copyright Protection

of Audio; Preprint Number: 7067 Convention:

122 (May 2007).

[13] [14] Johnson N.F and Katzenbeisser S: “A

survey of steganographic techniques”. Information

Hiding, Artech House,pp.43-78,2000.

[15] J. Foote, A Similarity Measure for Automatic

Audio Classification, Proc. AAAI 1997 Spring

Symp. on Intelligent Integration and Use of Text,

Image, Video, and Audio Corpora, Stanford, CA,

1997.

[16] J. J. Burred and A. Lerch, Hierarchical Automatic

Audio Signal Classification, J. Audio Eng. Soc,

Vol. 52, pp. 724-739, July/August 2004.

[17] K. Gopalan, “Audio steganography using bit

modification”, Proc. IEEE Int. Conf. Acoustics,

Speech, and Signal Processing, Vol. 2, pp. 421-

424, April 2003.

