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3. DATA MINING  
 

Data mining process helps to automatically understand 
process and summarize high dimensional data. This extract 
novel, valid, useful knowledge patterns from large data sets 
[11]. In fact, data mining is one step in the process of 
Knowledge Discovery from Database (KDD). KDD process 
is given in figure 1. 

 

 
Figure 1.  KDD  Process 

 

Following steps are required for KDD process.  
 Data selection: In this step, relevant information 

from database is selected.  
 Data pre-processing: This is the process of 

identification and elimination of missing, 
inaccurate, noisy and duplicate data value from the 
data set. 

 Data transformation: In this process, data are 
transformed into correct form to perform different 
operations like summary, aggregation, 
generalization and normalized operation.  

 Data mining: It is a technique through which 
various descriptive and predictive operations 
perform on the data to extract the hidden 
knowledge. 

 Evaluation: In this step, extracted knowledge is 
evaluated.   
 

There are two types of goals for in data mining process. 

A. Descriptive Mining 
Descriptive mining recognize the relationship or 

dependencies among the data objects.  
B. Predictive Mining 

Predictive mining creates a model of future behavior 
based on the current available data.  
 
4. DATA CLUSTERING 

 
 Data clustering discover semantically meaningful group 

of data objects. Given a dataset, clustering divide data objects 
based on similarity measures which follow two important 
criterions that the similarity between any two data objects 
within a group is maximized and the similarity between any 
two data objects within any two groups is minimized. 
Clustering is used by the researchers of any domain who 
wish to process data. Domain varies from social studies, 
engineering, computing, medical and so on. Data clustering 
is also called as Q-analysis, clumping and taxonomy 
depending on the domain where it is used [12]. Clustering 
roughly categorized into two groups viz. partition clustering 
and hierarchical clustering. Partition clustering algorithm 
partitioned data into appropriate clusters whereas hierarchical 
clustering is recursively finds nested clusters. Hierarchical 

clustering either works in bottom-up or in top-down manner 
which is called as agglomerative or divisive algorithm 
respectively. The most popular and the simplest partition 
algorithm is k-mean clustering. It is a simple, scalable, easily 
understandable and can be adopted to deal with high 
dimensional data. It is unsupervised learning, used when data 
is unlabeled. 
C. K-means clustering 

It is a partition based clustering method. Basic intension 
of this is to categorize given data set into k clusters. Given 
algorithm shows the process of k-means clustering. It follows 
iterative refinement method.  The process starts with 
randomly generated initial k centroids from the data set then 
iterates between two steps: ‘Data assignment’ and ‘Centroids 
update ’. 

 
 Data assignment: Each centroid defines one of the 

clusters. Based on the distance function data objects are 
assigned to its nearest centroid. 

 Centroid update: Centroids are recalculated by taking the 
mean of all data objects assigned to the respective 
centroid's cluster. 
 

The algorithm iterates between these two steps until 
convergence criteria is met. Convergence criteria may be one 
of the following.  

 No data object change clusters. 
 Sum of the distances is minimized. 
 Maximum number of iterations is reached. 

Algorithm 
  1. Initialization of number of clusters. 
  2. Initialization of cluster centers. 
  3. Repeat 

                               Assign each item to the cluster which has  
                the closest centroid;  
                Calculate new mean for each cluster;  

                 Until convergence criteria is met. 
 

D. Fuzzy  c-means clustering  
In machine learning, blending of fuzzy logic and data 

mining is extensively used. Non-unique partitioning of the 
data objects in cluster formation is the key in fuzzy 
clustering. Data objects are assigned with a membership 
value for each of the clusters. It designates the proximity of 
the data object to a particular cluster. It is the most popular 
classical fuzzy clustering technique. Major domains such as 
image analysis, medical diagnosis, astronomy, chemistry 
and agricultural where fuzzy c-means clustering are widely 
used [13]. Fuzzy c-means clustering has two phases. In the 
first phase, cluster centers are calculated and in the second 
phase data objects are assigned to these clusters using a 
membership value as distance measure. This process repeats 
until the cluster centers become stable. For each data object, 
there is a coefficient that specifies the membership degree 
(µij) of being in the kth cluster as follows. 

௜௝ߤ ൌ ∑ ൮
݀௜௝

݀௜௞
൘ ൲

൫ଶ ௠ൗ ି ଵ൯

  ௡
௞ୀଵ 

Where,  
dij : distance of ith item from jth cluster 
dik : distance of ith item from kth cluster 
m : fuzzification factor 
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The presence of a data object in multiple cluster depends 

on the fuzzification value say ‘m’ which is defined by the 
user in the range of [0,1]. It decides the fuzzy membership 
degree in the cluster. Data object which is on the boundary of 
cluster might be in that cluster with lesser membership 
degree than other data object in the center of the cluster 
[14][15]. Whenever ‘m’ reaches the value of 1 the algorithm 
works like a crisp partitioning algorithm. The principle goal 
of fuzzy clustering algorithm is to segment the data objects 
into clusters so that the intra-cluster similarity of data objects 
is boosted and the inter-cluster similarity of data objects is 
minimized. 
 Algorithm 
                   1. Initialize number of clusters. 
                   2. Initialize fuzzification parameter. 
                   3. Initialize cluster centers. 
                   4. Repeat 
                          Update membership of data point, 
                          Update center of the cluster with current       
                          membership of data point, 

                Until cluster centers estimate stabilize. 
 
5. NEED OF  DISTANCE METRICS IN CLUSTERING 

 
Clustering is based on a similarity measure to group data 
objects together [16]. Similarity is a standard unit to express 
closeness of two data objects. Distance metric is a most 
widely used technique to quantify the similarity among the 
data objects. Distance metric specifies how the distance 
between two data objects is measured.  In many of the 
applications, Euclidean distance, Manhattan distance, 
Minkowski distance are used.  K-means clustering and fuzzy 
c-means clustering are unsupervised learning. Clustering 
results of these algorithms may be affected by several 
parameters such as algorithm initialization, distance metric, 
data size and so on. So, it is worth to evaluate the impact of 
distance metrics on k-means and fuzzy c-means algorithms 
in clustering data. This paper is aimed to analyze the impact 
distance metrics such as Euclidean distance, Manhattan 
distance and Pearson correlation coefficient in k-means and 
fuzzy c-means clustering algorithms. Various distance 
metrics are reviewed below.  

 
 Euclidean distance: In clustering task, Euclidean distance 

is commonly used. Basically, it is geometrical distance 
between two points. The Euclidean distance calculates the 
root of square differences between the coordinates of 
objects pair [9]. It is shown in equation 2. 

 
௑௒ݐݏ݅ܦ ൌ ඥ∑ ሺ ௜ܺ௞ െ ௝ܺ௞ሻଶ௠

௞ୀଵ  
 
 
 Manhattan distance: Manhattan distance calculates the 

absolute differences between coordinates of objects pair 
[10]. It is shown in equation 3. 

 
௑௒ݐݏ݅ܦ ൌ ห ௜ܺ௞ െ ௝ܺ௞ห


 Chebyshev distance: Chebyshev distance is maximum 

value distance. This compute the absolute magnitude of 
the differences between coordinate of objects pair [10] as 
given in equation 4. 

 
௑௒ݐݏ݅ܦ ൌ ௞หݔܽ݉ ௜ܺ௞ െ ௝ܺ௞ห

 
 Minkowski distance: Minkowski distance is generalized 

distance metric [10]. It is given in equation 5. 

௑௒ݐݏ݅ܦ ൌ ൬∑ ห ௜ܺ௞ െ ௝ܺ௞ห
భ
ುௗ

௞ୀଵ ൰
௉



 
When p=2, the distance becomes the Euclidean distance. 

When p=1 it becomes Manhattan distance.  
 
 Pearson correlation coefficient: This distance depends on 

the Pearson correlation coefficient. This is calculated 
from the sample values and their standard deviations. It 
shows the closeness between two continuous variables 
[17]. The correlation coefficient 'r' takes values from +1 
to -1. It is given in equation 6. A value of 0 indicates that 
there is no association between the two variables. A value 
greater than 0 indicates a positive association. Effectively, 
Pearson distance  ‘dp’ is computed as dp = 1 - r as shown 
in equation 7. It lies between 0 and 2. 0 when correlation 
coefficient is +1, i.e. the two samples are most similar and 
2 when correlation coefficient is -1[7]. 

 
 

௑௒ݎ ൌ
∑ ሺ௑೔ି ௑തሻሺ௒೔ି ௒തሻ೙

೟సభ

ඨ∑ ሺ௑೔ି ௑ሻమ೙
೔సభ  ට∑ ሺ௒೔ି ௒ሻమ೙

೔సభ



 
 

݀௣ሺܺ, ܻሻ ൌ 1 െ ௑௒ ݎ 
 

 
6. EXPERIMENTAL DESIGN  

 
Proposed work involved application of data mining 

technique specifically K-Means (KM) and Fuzzy C-Means 
(FCM) clustering and to study the impact of distance metrics 
on the performance of these algorithms. Experimentation is 
carried out which include following steps. 
E. Data Gathering 

In this experiment, data set consists of review questions 
for illustration purpose. There were 28 questions in the data 
set which were attempted by 54 students. Questions were set 
to finds the student’s interest in the various activities such as 
social networking, use of programming tools, internet surfing 
for casual usage and referring e-learning resources for course 
study. Questions were of multiple choice and text formatted. 
If student response to question is positive, then it was graded 
by 1. It is 0 otherwise. If student didn’t answer the question 
then it was graded by 0. All required data for this research 
work is collected from Moodle log file through Moodle 
server. Collected log data was used for preprocessing. 
Basically, intension of the preprocessing is to cleanse the 
data and to transform it into a suitable form so that it will be 
used in later stages. Preprocessed data set consist of 
questions and student’s response. 

 
F. Methodology  

Experiment follows the methodology as mentioned in 
figure 2. The pre-processing phase is an important phase in 
any system that uses a data mining framework. All questions 
in the system were undergone through pre-processing phase 
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before clustering,  Later it must be transformed into a simpler 
form which acts as an input to the clustering algorithm 
[18][19]. Clustering algorithm have tendency to discover 
natural grouping of data objects based on some similarity. It 
also finds the centroid of a group of data objects. Data 
clustering has been used mainly for three purposes: 
underlying structure, natural classification and compression. 
Later, clustering result is validated by identifying correctness 
of the clusters. 

 
Figure 2.  Proposed Methodology  

 

7. EXPERIMENTAL RESULTS  
 

The purpose of the experiment was to test the 
performance of the KM and FCM clustering algorithms by 
applying three different metrics. Euclidean distance, 
Manhattan distance and Pearson correlation coefficient have 
been selected as metrics. Preprocessed data set was grouped 
into four clusters by applying KM and FCM clustering with 
three different distance metrics. Basically, in this research, 
student’s interest in social networking, programming tools, 
internet surfing for casual usage and referring e-learning 
resources for course study have been considered. Clustering 
result and group of students in each cluster with k-means are 
shown in tables 1, 2, 3 and with fuzzy c-means shown in 
table 4, 5, 6. 

 
 

Table I.  K-means  Clustering with Euclidian Distance 
Cluster Dimension’s Centroid No. of 

students 

Programming 
tools 

Social 
networkin

g 

Internet 
surffing 

for 
casual 
usage 

E-
learning 
activities 

for 
course 
study 

C1 0.669 0.80 0.60 0.286 14 

C2 0.642 0.64 1.00 0.453 20 

C3 0.902 0.94 0.98 0.649 10 

C4 0.646 0.91 0.82 0.771 10 

 
 

Table II.  K-Means  Clustering with Manhatton Distance   
Cluster Dimension’s centroid No. of 

 Programming 
tools 

 

Social 
networkin

g 

Internet 
surffing 

for 
casual 
usage 

E-
learning 
activities 

for 
course 
study 

students 

C1 0.818 0.952 1.00 0.704 14 

C2 0.643 0.636 1.00 0.428 22 

C3 0.569 0.733 0.45 0.285 05 

C4 0.723 0.846 0.75 0.571 13 

 
 
 

Table III.  K-means  Clustering with Pearson Correlation Coefficient  
Cluster 

 
Dimension’s centroid No. of 

students 

Programmin
g tools 

 

Social 
networkin

g 

Internet 
surffing 

for 
casual 
usage 

E-
learnin

g 
activitie

s for 
course 
study 

C1 0.825 0.889 0.82 0.457 15 

C2 0.678 0.575 0.97 0.467 22 

C3 0.607 1.00 0.82 0.449 10 

C4 0.637 0.857 0.89 0.857 07 

 
 
 

Table IV.  FCM Clustering with Euclidian Distance 
Cluster 

 
Dimension’s centroid No. of 

student
s 

Programming 
tools 

Social 
networkin

g 

Internet 
surffing 

for 
casual 
usage 

E-
learning 
activities 

for 
course 
study 

C1 0.669 0.80 0.60 0.286 10 

C2 0.642 0.64 1.00 0.453 23 

C3 0.902 0.94 0.98 0.649 11 

C4 0.646 0.91 0.82 0.771 10 

 
 

Table V.  FCM Clustering with Manhatton Distance  
Cluster 

 
Dimension’s centroid No. of 

students Programming 
tools 

 

Social 
networkin

g 

Internet 
surffin
g for 

casual 
usage 

E-
learning 
activities 

for 
course 
study 

C1 0.572 0.67 1.00 0.412 16 

C2 0.603 0.73 0.50 0.286 06 

C3 0.838 0.80 0.94 0.514 20 

C4 0.692 0.92 0.85 0.798 12 

 
 

Table VI.  FCM Clustering with Pearson Correlation Coefficient  
Cluster 

 
Dimension’s centroid No. of 

students 
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Programming 
tools 

 

Social 
networking 

Internet 
surffin
g for 

casual 
usage 

E-
learning 
activities 

for 
course 
study 

C1 0.604 0.976 0.91 0.612 14 

C2 0.636 0.515 0.89 0.662 11 

C3 0.722 0.641 1.00 0.385 13 

C4 0.813 0.896 0.78 0.455 16 

 
Result shows that grouping of students varies with 

different distance metric in both K-means and FCM 
clustering. In the presented work, to see the impact of 
metrics, correctness of four clusters has been analyzed. 
Cluster correctness using K-means algorithm is shown in 
table 7 and depicted in figure 3. Result shows that data set 
are correctly classified in four clusters using Manhattan and 
Pearson correlation coefficient distance metric. Whereas with 
Euclidian distance, cluster 3 and cluster 4 are correctly 
classified but correctness of cluster 1 and cluster 2 using 
Euclidian distance is 85.71% and 95% respectively. Further, 
cluster correctness using Fuzzy c-means clustering algorithm 
is shown in table 8 and depicted in figure 4. It shows that in 
FCM, data set is correctly classified in four clusters using 
Pearson correlation coefficient distance metric. Whereas with 
Euclidian distance cluster 1, cluster 2, cluster 4 are correctly 
classified and correctness of cluster 3 is 90.9 %.With 
Manhattan distance, cluster 1, cluster 2, cluster 4 are 
correctly classified and correctness of cluster 3 is 90 %. 
From this, it is concluded that Pearson correlation coefficient 
distance metric performs best in both K-means and Fuzzy c-
means clustering algorithms compared to other two distance 

metrics. Traditionally Euclidian metric is being used but 
choice of the Pearson correlation coefficient distance metric 
proved to be better.  

 
 

 
Figure 3.  Cluster accuracy using K-means clustering 

 

 
Figure 4.  Cluster accuracy using Fuzzy c-means clustering

 
Table VII.  Potentiality of Distance Metric in K-Means Clustering 

   Euclidean  Manhattan   
Pearson correlation 

coefficient  

Cluster 1  
Contains  

Records from cluster 1 =12  
Records from cluster 2=1  
Records from cluster 3=0  
Records from cluster 4=1  

Records from cluster 1=14  
Records from cluster 2=0  
Records from cluster 3=0  
Records from cluster 4=0  

Records from cluster 1=15  
Records from cluster 2=0  
Records from cluster 3=0  
Records from cluster 4=0  

Cluster 2  
Contains  

Records from cluster 1=1  
Records from cluster 2=19  
Records from cluster 3=0  
Records from cluster 4=0  

Records from cluster 1=0  
Records from cluster 2=22  
Records from cluster 3=0  
Records from cluster 4=0  

Records from cluster 1=0  
Records from cluster 2=22  
Records from cluster 3=0  
Records from cluster 4=0  

Cluster 3  
Contains  

Records from cluster 1=0  
Records from cluster 2=0  
Records from cluster 3=10  
Records from cluster 4=0  

Records from cluster 1= 0  
Records from cluster 2= 0  
Records from cluster 3= 5  
Records from cluster 4= 0  

Records from cluster 1=0  
Records from cluster 2=0  
Records from cluster 3=10  
Records from cluster 4=0  

Cluster 4  
Contains  

Records from cluster 1=0  
Records from cluster 2=0  
Records from cluster 3=0  
Records from cluster 2=10  

Records from cluster 1=0  
Records from cluster 2=0  
Records from cluster 3=0  
Records from cluster 4=13  

Records from cluster 1=0  
Records from cluster 2=0  
Records from cluster 3=0  
Records from cluster 4=7  

Correctness  

Cluster 1 = 85.71%  
Cluster 2 = 95%  
Cluster 3 = 100%  
Cluster 4 = 100%  

Cluster 1 = 100%  
Cluster 2 = 100%  
Cluster 3 = 100%  
Cluster 4 = 100%  

Cluster 1 =100%  
Cluster 2 =100%  
Cluster 3 =100%  
Cluster 4 =100%  

 
Table VIII.   Potentiality of Distance Metric in Fuzzy C-means Clustering 

   Euclidean Manhattan 
Pearson correlation 

coefficient  

Cluster 1  
Contains  

Records from cluster 1 =10 
Records from cluster 2=0 
Records from cluster 3=0 
Records from cluster 4=0 

Records from cluster 1=16  
Records from cluster 2=0  
Records from cluster 3=0  
Records from cluster 4=0  

Records from cluster 1=14  
Records from cluster 2=0  
Records from cluster 3=0  
Records from cluster 4=0  

Cluster 2  
Contains  

Records from cluster 1=0 
Records from cluster 2=23 
Records from cluster 3=0 
Records from cluster 4=0 

Records from cluster 1=0  
Records from cluster 2=6  
Records from cluster 3=0  
Records from cluster 4=0  

Records from cluster 1=0  
Records from cluster 2=11  
Records from cluster 3=0  
Records from cluster 4=0  
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Cluster 3  
Contains  

Records from cluster 1=0 
Records from cluster 2=1 
Records from cluster 3=10 
Records from cluster 4=0 

Records from cluster 1= 2  
Records from cluster 2= 0  
Records from cluster 3= 18  
Records from cluster 4= 0  

Records from cluster 1=0  
Records from cluster 2=0  
Records from cluster 3=13  
Records from cluster 4=0  

Cluster 4  
Contains  

Records from cluster 1=0 
Records from cluster 2=0 
Records from cluster 3=0 
Records from cluster 2=10 

Records from cluster 1=0  
Records from cluster 2=0  
Records from cluster 3=0  
Records from cluster 4=12  

Records from cluster 1=0  
Records from cluster 2=0  
Records from cluster 3=0  
Records from cluster 4=16  

Correctness  

Cluster 1 = 100% 
Cluster 2 = 100% 
Cluster 3 = 90.9% 
Cluster 4 = 100% 

Cluster 1 = 100%  
Cluster 2 = 100%  
Cluster 3 = 90%  
Cluster 4 = 100%  

Cluster 1 =100%  
Cluster 2 =100%  
Cluster 3 =100%  
Cluster 4 =100%  

 
 
8. CONCLUSION 

 
In clustering algorithms, distance metric plays significant 

role. For a given dataset, choice of correct distance metric is 
an exigent task. In this research, study is carried out to analyze 
the student’s interest in use of programming tools, social 
networking, internet surfing for casual usage and e-learning 
activities for course studies. In this paper, the impact of three 
distance metrics viz. Euclidean, Manhattan and Pearson 
correlation coefficient on two different clustering algorithms 
namely K-means and Fuzzy c-means clustering were 
investigated. Distance based similarity measures are generally 
used in clustering and Euclidean distance in particular. K-
means clustering with Euclidian distance is popularly used 
combination. Distance metrics are not always proving as a 
good option. It does not perform well to capture correlations 
among the data objects. Through this experiment, the impact 
of distance metrics on clustering algorithms is analyzed. It is 
observed that Pearson correlation coefficient metric forms 
more coherent clusters. With this study, it is concluded that the 
Pearson correlation coefficient works better than Euclidean 
distance and Manhattan distance metrics. This study helps the 
researchers to analyze the impact of distance metrics on 
clustering algorithms and to take decision about preference of 
metric for clustering. 
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