
��������	�
����	��������������

��� ����!��"�����#�������

�$#$��!%�&�&$��

������'���(���������)))��*���������

© 2010, IJARCS All Rights Reserved 474

ISSN No. 0976-5697

Multimedia Streaming in Multicast Environment

Mayank Sharma
Associate Professor (IT),

Aurora’s Engineering College

Bhongir, Andhra Pradesh, India

Mayank_sharma04@yahoo.com

Pragati.G

Aurora’s Engineering College

Andhra Pradesh, India

Pragati_g@yahoo.com

O.Nagamani*
Aurora’s Engineering College

Bhongir, Andhra Pradesh, India

nagmani53@gmail.com

Abstract: Streaming media is multimedia that is constantly received by and presented to an end-user while being delivered by a streaming

provider. The name refers to the delivery method of the medium rather than to the medium itself. The distinction is usually applied to media that

are distributed over telecommunications networks, as most other delivery systems are either inherently streaming or inherently non-

streaming.[3] The verb 'to stream' is also derived from this term, meaning to deliver media in this manner. Internet television is a commonly

streamed medium. TCP is widely used in commercial multimedia streaming systems, with recent measurement studies indicating that a

significant fraction of Internet streaming media is currently delivered over HTTP/TCP. These observations motivate us to develop analytic

performance models to systematically investigate the performance of TCP for both live and stored-media streaming.

Keywords :Media Streaming, Multimedia, TCP, Multicast.

I. INTRODUCTION

In recent years, there have been an explosive growth of

multimedia applications over the Internet. All major news

networks such as ABC and NBC now provide news with

accompanying video clips. Several companies, such as

MovieFlix [1], also offer video on demand to broadband

subscribers. However the quality of videos being streamed

over the Internet is often of low quality due to insufficient

bandwidth, packet loss, and delay. To view a DVD quality

video from an on demand video service, a customer must

down- load either the entire video or a large portion of the

video before playback time in order to avoid pauses caused

by insufficient bandwidth during a streaming session. Thus,

many techniques have been proposed to enable efficient

multimedia streaming over the Internet. The source coding

community has proposed scalable video [2][3], error-

resilient coding, and multiple description [4] for efficient

video streaming over the best-effort networks such as the

Internet. A scalable video bit stream is coded in such a way

to enable the server to easily and efficiently adapt the video

bit rate to the current available bandwidth. Error-resilient

coding and multiple description are aimed at improving the

quality of the video in the presence of packet loss and long

delay caused by retransmission. Channel coding techniques

are also used to mitigate long delay for real-time

applications such as video conferencing or IP-telephony [5].

The main disadvantages of these approaches are first,

specialized codecs are required and second, their

performances are highly affected by the network traffic

conditions.

From a network infrastructure perspective,

Differentiated Services [6][7] and Integrated Services [8][7]

have been proposed to improve the quality of multimedia

applications by providing preferential treatments to various

applications based on their bandwidth, loss, and delay

requirements. More recently, path diversity architectures

that combine multiple paths and either source or channel

coding have been proposed to provide larger bandwidth,

and to combat efficiently against packet loss [9][10][11].

Nonetheless, these approaches cannot be easily deployed as

they require significant changes in the network

infrastructure.

The most straightforward approach is to transmit

standard-based multimedia via existing IP protocols. The

two most popular choices are TCP and UDP. A single TCP

connection is not suitable for multimedia transmission

because its congestion control may cause a large fluctuation

in the sending rate. Unlike TCP, an UDP-based application

is able to set the desired sending rate. If the network is not

too much congested, the UDP throughput at the receiver

would approximately equal to the sending rate. Since the

ability to control the sending rate is essential to interactive

and live streaming applications, majority of multimedia

streaming systems use UDP as the basic building block for

sending packets over the Internet.

However, UDP is not a congestion aware protocol

since it does not reduce its sending rate in presence of

network congestion, and therefore potentially results in a

congestion collapse. Congestion collapse occurs when a

router drops a large number of packets due to its inability to

handle a large amount of traffic from many senders at the

same time. TCP-Friendly Rate Control Protocol (TFRC) has

been proposed for multimedia streaming with UDP in order

to incorporate TCP-like congestion control mechanism [12].

Another drawback of using UDP is its lack of reliable

transmission and hence the application must deal with the

packet loss.

Based on these drawbacks of UDP, we propose a new

receiver-driven, TCP-based system for multimedia

streaming over the Internet. In particular, our proposed

system, called MultiTCP, is aimed at providing resilience

against short-term insufficient bandwidth by using Multicast

O.Nagamani et al, International Journal of Advanced Research in Computer Science, 2 (2), May-June, 2011,474-478

© 2010, IJARCS All Rights Reserved 475

for the same application. Furthermore, our system enables

the application to achieve and control the sending rate

during congested period, which in many cases, cannot be

achieved using a single TCP connection. Finally, our

proposed system is implemented at the application layer,

and hence, no kernel modification to TCP is necessary.

The rest of the paper is organized as follows. In Section

2, we describe the two major drawbacks of using TCP for

multimedia streaming: short-term in- sufficient bandwidth

and lack of precise rate con- trol. These drawbacks motivate

the use of multiple TCP connections in our proposed

system, which is described in Section 3. In Section 4, we

demonstrate the performance of our system based on

simulations results using NS[13]. We then describe other

related works that utilize multiple network connections in

Section 5. Finally, we summarize our contributions in

Section 6.

II. DRAWBACKS OF TCP FOR MULTIMEDIA

STREAMING

As discussed briefly in Section 1, TCP is unsuitable for

multimedia streaming due partly to its fluctuating

throughput and its lack of precise rate control. TCP is

designed for end-to-end reliability and fast congestion

avoidance. To provide end-to-end reliability, a TCP sender

retransmits the lost packets based on the packet

acknowledgment from a TCP receiver. In order to have fast

response to network congestion, TCP controls the sending

rate based on a window-based congestion control which

works as follows. The sender keeps track of a window of

maximum number of unacknowledged packets, i.e., packets

that have not been acknowledged by the receiver. In the

steady state, the sender increases the window size W by

1/W upon successfully receiving an acknowledged packet,

or equivalently, it increases the sending rate by one packet

per round trip time. Upon encountering a loss, the window

size is reduced by half, or equivalently, the sending rate is

cut in half. In TCP, the receiver has the ability to set a

maximum window size for the unacknowledged packets,

hence imposing a maximum sending rate. Thus, in a non-

congestion scenario, the application at the receiver can

control the sending rate by setting the window size

appropriately. On the other hand, during congestion, the

actual throughput can be substantially low as the maximum

window size may never be reached.

Based on the above discussion, we observe that a single

packet loss can drop the TCP throughput abruptly and the

low throughput lingers due to the slow increase of the

window size. If there is a way to reduce this throughput

reduction effect without modifying TCP, we can effectively

provide higher throughput with proper congestion control

and reliable transmission. In addition, if there is a way to

control the TCP sending rate during congestion, then TCP

can be made suitable for multimedia streaming. Unlike non

real-time applications such as file transfer and email, precise

control of sending rate is essential for interactive and live

streaming applications due to several reasons. First, sending

at too high a rate can cause buffer overflow in certain

receivers with limited buffer such as mobile phones and

PDAs. Second, sending at a rate lower than the coded bit

rate results in pauses during a streaming session, unless a

large buffer is accumulated before playback. In the

following section, we propose a system that can

dynamically distribute streaming data over Multicast using

Multiple TCPs per application to achieve higher throughput

and precise rate control. The control is performed entirely at

the receiver side and thus, suitable for streaming

applications where a single server may serve up to

thousands of receivers simultaneously.

III. MULTICASTING USING TCP

As mentioned in Section 2, the throughput reduc- tion

of TCP is attributed to the combination of (a) reduction of

the sending rate by half upon detection of a loss event and

(b) the slow increase of sending rate afterward or

congestion avoidance. To alleviate this throughput

reduction, one can modify TCP to (a) reduce the sending

rate by a small factor other than half upon detection of a

loss, or (b) speed up the congestion avoidance process, or

(c) combine both (a) and (b). There are certain

disadvantages associated with these approaches. First, these

changes affect all TCP connections and must be performed

by recompiling the OS kernel of the sender machine.

Second, changing the decreasing multiplicative factor and

the additive term in isolated machines may potentially lead

to instability of TCP in a larger scale of the network.

Third, it is not clear how these factors can be changed

to dynamically control the sending rate. As such, we

propose a different approach: instead of using a traditional,

single TCP connection, we use multiple TCP connections

for a multimedia streaming application. Our approach does

not require any modification to the existing TCP stack or

kernel. Figure 1 shows a diagram of our proposed Multicast

using TCP system.

Figure 1: Multicast using TCP system

The MultiTCP control unit is implemented immediately

below the application layer and above the transport layer at

both the sender and the receiver. The MultiTCP control unit

at the receiver receives the input specifications from

streaming application which include the streaming rate and

the throughput resilience. The throughput resilience can be

thought of as the amount of throughput reduction an

application can tolerate in presence of sudden burst traffic.

A higher throughout resilience leads to a lower short-term

throughput reduction.

TheMultiTCP control unit at the receiver measures the

actual throughput and uses this information to control the

rate and the throughput reduction by using multiple TCP

connections and dynamically changing receiver’s window

size for each connection. In the next two sections, we show

how multiple TCP connections can mitigate the throughput

reduction problem in a lightly loaded network and describe

our mechanism to maintain the desired throughput in a

congested network.

O.Nagamani et al, International Journal of Advanced Research in Computer Science, 2 (2), May-June, 2011,474-478

© 2010, IJARCS All Rights Reserved 476

A. Alleviating Throughput Reduction In Lightly

Loaded Network

In this section, we analyze the throughput reduction

problem in a lightly loaded network and show how it can be

alleviated by using multiple TCP connections. When there

is no congestion, the receiver can control the streaming rate

in a single TCP connection quite accurately by setting the

maximum the receiver’s window size Wmax. The effective

throughput during this period is approximately equal to

where RTT denotes the round trip time, including both

propagation and queuing delay, between the sender and the

receiver. MTU denotes the TCP maximum transfer unit,

typically set at 1000 bytes. If a loss event occurs, the TCP

sender instantly reduces its rate by half as shown in Figure

2(a). As a result, the area of the inverted triangular region in

Figure 2(a) indicates the amount of data that would have

been transmitted if there were no loss event. Thus, the

amount of data reduction D equals to

Note that the time it takes for the TCP window to

increase from Wmax/2 to Wmax equals to WmaxRTT/2

since the TCP window increases by one every round trip

time. Clearly, if there are a burst of loss events during a

streaming session, the total throughput reduction can

potentially be large enough to deplete the start up buffer,

causing pauses in the playback.

Now let us consider the case where two TCP

connections are used for the same application. Since we

want to keep the same total streaming rate Wmax/RTT as in

the case of one TCP connection, we set Wmax = Wmax/2

for each of the two connections as illustrated in Figure 2(b).

Assuming that only a single loss event happens in one of the

connection, the total throughput reduction would be equal to

Equation (3) shows that, for a single loss event, the

throughput reduction of using two TCP connections is four

times less than that of using a single TCP connection. Even

in the case when there are simultaneously losses on both

connections as indicated in Figure 2(c), the throughput

reduction is half of that of the single TCP. In general, let N

denote the number of TCP connections for the same

application and n be the number of TCP connections that

suffer simultaneous losses during short congestion period,

the amount of throughput reduction equals to

Figure 2: Throughput reduction for a) one TCP connection with singe loss

b) Two TCP connections with single loss c) Two TCP connections with

Double Losses.

B. Control Streaming Rate in a Congested Network

In the previous section, we discuss the throughput

reduction problem in a lightly loaded network and show that

using multiple TCP connections can alleviate the problem.

In a lightly loaded network condition, one can set the

desired throughput Td by simply setting the receiver

window Wmax = TdRTT/MTU.

However, in a moderately or heavily congested

network, the throughput of a TCP does not depend on

Wmax, instead, it is determined by the degree of

congestion. This is due to the fact that in a non-congested

network, i.e. without packet loss, TCP rate would increase

additively until maxMTU/RTT is reached, after that the rate

would remain approximately constant at WmaxMTU/RTT.

However, in a congested network, a loss event would most

likely occur before the sending rate reaches its limit and cut

the rate by half, resulting in a throughput lower than

WmaxMTU/RTT.

A straightforward method for achieving a higher

throughput than the available TCP throughput would be to

use multiple TCP connections for the same application.

Using multiple TCP connections results in a larger share of

the fair bandwidth. Hence, one may argue that this is unfair

to other TCP connections.

On the other hand, one can view this approach as a way

of providing higher priority for streaming applications over

other non time-sensitive applications under resource

constraints. We also note that one can use UDP to achieve

the desired throughput. However unlike UDP, using

multiple TCP connections can provide (a) congestion

O.Nagamani et al, International Journal of Advanced Research in Computer Science, 2 (2), May-June, 2011,474-478

© 2010, IJARCS All Rights Reserved 477

control mechanism to avoid congestion collapse, and (b)

automatic retransmission of lost packets. Assuming multiple

TCP connections are used, there are still issues associated

with providing the desired throughput in a congested

network.

In order to maintain a constant throughput during a

congested period, one possible approach is to increase the

number of TCP connections until the measured throughput

exceeds the desired one. This approach suffers from a few

drawbacks. First, the total resulting throughput may still

exceed the desired throughput by a large amount since the

sending rate of each additional TCP connection may be too

high. Second, if only a small number of TCP connections

are required to exceed the desired throughput, this technique

may not be resilient to the sudden increase in traffic as

analyzed in Section 3.1. A better approach is to use a larger

number of TCP connections but adjust the receiver window

size of each connection to precisely control the sending rate.

It is undesirable to use too many TCP connections as they

use up system resources and may further aggravate an

already congested network. In practice, our algorithm

maintains a relatively stable number of TCP connections

while varies the size of the receiver windows to achieve the

desired throughput.

IV. RESULTS

 In this section, we show simulation results using NS to

demonstrate the effectiveness of our MultiTCP system in

achieving the required throughput as compared to the

traditional single TCP approach. Our simulation setup

consists of a sender, a receiver, and a traffic generator

connected together through a router to form a dumb bell

topology as shown in Figure 3. The bandwidth and

propagation delay of each link in the topology are identical,

and are set to 6 Mbps and 20 milliseconds, respectively. The

sender streams 800 kbps video to the receiver continuously

for a duration of 1000s, while the traffic generator generates

cross traffic at different times by sending packets to the

receiver using either long term TCPs or short bursts of

UDPs. In particular, from time t = 0 to t = 200s, there is no

cross traffic. From t = 200s to t = 220s and t = 300s to t =

340s, bursts of UDPs with rate of 5.5 Mbps are generated

from the traffic generator node to the receiver. At t = 500s

the traffic generator opens 15 TCPs connections to the

receiver, and 5 additional TCP connections at t = 750s. We

now consider this setup under three different scenarios: (a)

the sender uses only one TCP connection to stream the

video, while the receiver sets the receiver window size to 8,

targeting at 800 kbps throughput, (b) the sender and the

receiver use our MultiTCP system to stream the video with

the number TCP connections limited to two, and (c) the

sender and the receiver also use our proposed MultiTCP

system, except the number of TCP connections are now set

to five.

V. RELATED WORK

There has been previous work on using multiple

network connections to transfer data. For example, path

diversity multimedia streaming framework [10][11][9]

provide multiple connections on different path for the same

application. These work focus on either efficient source or

channel coding techniques in conjunction with sending

packets over multiple approximately independent paths. On

the other hand, our work aims to increase and maintain the

available throughput using multiple TCP connections on a

single path. There is also a related work using multiple

connections on a single path to improve throughput of a

wired-to-wireless streaming video session [15]. This work

focuses on obtaining maximum possible throughput and is

based TFRC rather than TCP. On the other hand, our work

focuses on eliminating short term throughput reduction of

TCP due to burst traffic and providing precise rate control

for the application. As such, the analysis and rate control

mechanism in our paper are different from those of [15].

Another related work is Streaming Control Transmission

Protocol (SCTP)[16], designed to transport PSTN signaling

messages over IP networks. SCTP allows user’s messages

to be delivered within multiple streams, but it is not clear

how it can achieve the desired throughput in a congestion

scenario. In addition, SCTP is a completely new protocol, as

such the kernel of the end systems need to be modified.

There is also other work related to controlling TCP

bandwidth. For example, the work in [17] focuses on

allocating bandwidth among flows with different priorities.

This work assumes that the bottleneck is at the last-mile and

that the required throughput for the desired application is

achievable using a single TCP connection. On the other

hand, our work does not assume the last-mile bottleneck,

and the proposed MultiTCP system can achieve the desired

throughput in variety of scenarios.

Also, the authors in [18], use weighted proportional fair

sharing web flows to provide end-to-end differentiated

services. The work in [19] uses the receiver advertised

window to limit the TCP video bandwidth in VPN link

between video and proxy servers. Finally, the authors in

[20] propose a technique for automatic tuning of receiver

window size in order to increase the throughput of TCP.

VI. CONCLUSION

We conclude our paper with a summary of

contributions. First, we propose and implement a receiver-

driven, TCP-based system MultiTCP for multimedia

streaming over the Internet using multiple TCP connections

for the same applications. Second, our proposed system is

able to provide resilience against short-term insufficient

bandwidth due to traffic bursts.

Third, our proposed system enables the application to

control the sending rate in a congested scenario, which

cannot be achieved using traditional TCP. Finally, our

proposed system is implemented at the application layer,

and hence, no kernel modification to TCP is necessary. The

simulation results demonstrate that using our proposed

system, the application can achieve the desired throughput

in many scenarios, which cannot be achieved by traditional

single TCP approach.

VII. REFERENCES

[1] MovieFlix, http://www.movieflix.com

[2] W. Tan and A. Zakhor, “Real-time internet video using

error resilient scalable compression and tcpfriendly

transport protocol,” IEEE Transactions on Multimedia,

vol. 1, pp. 172–186, june 1999.

[3] G. De Los Reyes, A. Reibman, S. Chang, and J.

Chuang, “Error-resilient transcoding for video over

wireless channels,” IEEE Transactions on Multimedia,

vol. 18, pp. 1063–1074, june 2000.

O.Nagamani et al, International Journal of Advanced Research in Computer Science, 2 (2), May-June, 2011,474-478

© 2010, IJARCS All Rights Reserved 478

[4] A. Reibman, “Optimizing multiple description video

coders in a packet loss environment,” in Packet Video

Workshop, April 2002.

[5] H. Ma and M. El Zarki, “Broadcast/multicast mpeg-2

video over wireless channels using header redundancy

fec strategies,” in Proceedings of The International

Society for Optical Engineering (SPIE), November

1998, vol. 3528, pp. 69–80.

[6] S. Blake, D. Black, M. Carson, E. Davis, Z.Wang, and

W. Weiss, “An architecture for differentiated services,”

in RFC2475, December 1998.

[7] Z. Wang, Internet QoS, Architecture and Mech- anism

for Quality of Service, Morgan Kaufmann Publishers,

2001.

[8] P.White, “Rsvp and integrated services in the internet:

A tutorial,” IEEE Communication Mag- azine, pp. 100–

106, May 1997.

[9] T. Nguyen and A. Zakhor, “Multiple sender dis-

tributed video streaming,” IEEE Transactions on

Multimedia and Networking, vol. 6, no. 2, pp. 315–

326, April 2004.

[10] J. Apostolopoulos, “Reliable video communication

over lossy packet networks using multiple state

encoding and path diversity,” in Proceeding of The

International Society for Optical Engineering (SPIE),

January 2001, vol. 4310, pp. 392–409.

[11] J. Apostolopoulos, “On multiple description streaming

with content delivery networks,” in InfoComm, June

2002, vol. 4310.

[12] S. Floyd, M. Handley, J. Padhye, and J. Wid- mer,

“Equation-based congestion control for uni- cast

application,” in Architectures and Protocols for

Computer Communication, October 2000, pp. 43–56.

[13] Information Sciences Institute,

http://www.isi.edu/nsnam/ns, Network simula- tor.

[14] J. Leigh, O. Yu andD. Schonfeld, and R. Ansari,

“Adaptive networking for tele-immersion,” in

Immersive Projection echonology/Eurographics

Virtual Environments Workshop(IPT/EGVE), May

2001.

[15] M. Chen and A. Zakhor, “Rate control for streaming

over wireless,” in INFOCOM, July 2004.

[16] Internet Engineering Task Force, RFC 1771, Stream

Control Transmission Protocol, October 2000.

[17] P. Mehra and A. Zakhor, “Receiver-driven bandwidth

sharing for tcp,” in INFOCOM, San Francisco, April

2003.

[18] J. Crowcroft and P.Oeschlin, “Differentiated end-to-

end internet services using weighted propor- tional fair

sharing tcp,” 1998.

[19] Y. Dong, R. Rohit, and Z. Zhang, “A practical

technique for supporting controlled quality assur- ance

in video streaming across the internet,” in Packet

Video, 2002.

[20] J. Semke, J. Mahdavi, and M. Mathis, “Auto- matic tcp

buffer tuning,” in SIGCOMM, 1998.

