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Abstract: Streaming media is multimedia that is constantly received by and presented to an end-user while being delivered by a streaming 

provider. The name refers to the delivery method of the medium rather than to the medium itself. The distinction is usually applied to media that 

are distributed over telecommunications networks, as most other delivery systems are either inherently streaming or inherently non-

streaming.[3] The verb 'to stream' is also derived from this term, meaning to deliver media in this manner. Internet television is a commonly 

streamed medium. TCP is widely used in commercial multimedia streaming systems, with recent measurement studies indicating that a 

significant fraction of Internet streaming media is currently delivered over HTTP/TCP. These observations motivate us to develop analytic 

performance models to systematically investigate the performance of TCP for both live and stored-media streaming. 
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I. INTRODUCTION 

In recent years, there have been an explosive growth of 

multimedia applications over the Internet. All major news 

networks such as ABC and NBC now provide news with 

accompanying video clips. Several companies, such as 

MovieFlix [1], also offer video on demand to broadband 

subscribers. However the quality of videos being streamed 

over the Internet is often of low quality due to insufficient 

bandwidth, packet loss, and delay. To view a DVD quality 

video from an on demand video service, a customer must 

down- load either the entire video or a large portion of the 

video before playback time in order to avoid pauses caused 

by insufficient bandwidth during a streaming session. Thus, 

many techniques have been proposed to enable efficient 

multimedia streaming over the Internet. The source coding 

community has proposed scalable video [2][3], error-

resilient coding, and multiple description [4] for efficient 

video streaming over the best-effort networks such as the 

Internet. A scalable video bit stream is coded in such a way 

to enable the server to easily and efficiently adapt the video 

bit rate to the current available bandwidth. Error-resilient 

coding and multiple description are aimed at improving the 

quality of the video in the presence of packet loss and long 

delay caused by retransmission. Channel coding techniques 

are also used to mitigate long delay for real-time 

applications such as video conferencing or IP-telephony [5]. 

The main disadvantages of these approaches are first, 

specialized codecs are required and second, their 

performances are highly affected by the network traffic 

conditions. 

From a network infrastructure perspective, 

Differentiated Services [6][7] and Integrated Services [8][7] 

have been proposed to improve the quality of multimedia 

applications by providing preferential treatments to various 

applications based on their bandwidth, loss, and delay 

requirements. More recently, path diversity architectures 

that combine multiple paths and either source or channel 

coding have been proposed to provide larger bandwidth, 

and to combat efficiently against packet loss [9][10][11]. 

Nonetheless, these approaches cannot be easily deployed as 

they require significant changes in the network 

infrastructure.  

The most straightforward approach is to transmit 

standard-based multimedia via existing IP protocols. The 

two most popular choices are TCP and UDP. A single TCP 

connection is not suitable for multimedia transmission 

because its congestion control may cause a large fluctuation 

in the sending rate. Unlike TCP, an UDP-based application 

is able to set the desired sending rate. If the network is not 

too much congested, the UDP throughput at the receiver 

would approximately equal to the sending rate. Since the 

ability to control the sending rate is essential to interactive 

and live streaming applications, majority of multimedia 

streaming systems use UDP as the basic building block for 

sending packets over the Internet. 

However, UDP is not a congestion aware protocol 

since it does not reduce its sending rate in presence of 

network congestion, and therefore potentially results in a 

congestion collapse. Congestion collapse occurs when a 

router drops a large number of packets due to its inability to 

handle a large amount of traffic from many senders at the 

same time. TCP-Friendly Rate Control Protocol (TFRC) has 

been proposed for multimedia streaming with UDP in order 

to incorporate TCP-like congestion control mechanism [12]. 

Another drawback of using UDP is its lack of reliable 

transmission and hence the application must deal with the 

packet loss. 

Based on these drawbacks of UDP, we propose a new 

receiver-driven, TCP-based system for multimedia 

streaming over the Internet. In particular, our proposed 

system, called MultiTCP, is aimed at providing resilience 

against short-term insufficient bandwidth by using Multicast 
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for the same application. Furthermore, our system enables 

the application to achieve and control the sending rate 

during congested period, which in many cases, cannot be 

achieved using a single TCP connection. Finally, our 

proposed system is implemented at the application layer, 

and hence, no kernel modification to TCP is necessary.  

The rest of the paper is organized as follows. In Section 

2, we describe the two major drawbacks of using TCP for 

multimedia streaming: short-term in- sufficient bandwidth 

and lack of precise rate con- trol. These drawbacks motivate 

the use of multiple TCP connections in our proposed 

system, which is described in Section 3. In Section 4, we 

demonstrate the performance of our system based on 

simulations results using NS[13]. We then describe other 

related works that utilize multiple network connections in 

Section 5. Finally, we summarize our contributions in 

Section 6. 

 

II. DRAWBACKS OF TCP FOR MULTIMEDIA  

STREAMING 

As discussed briefly in Section 1, TCP is unsuitable for 

multimedia streaming due partly to its fluctuating 

throughput and its lack of precise rate control. TCP is 

designed for end-to-end reliability and fast congestion 

avoidance. To provide end-to-end reliability, a TCP sender 

retransmits the lost packets based on the packet 

acknowledgment from a TCP receiver. In order to have fast 

response to network congestion, TCP controls the sending 

rate based on a window-based congestion control which 

works as follows. The sender keeps track of a window of 

maximum number of unacknowledged packets, i.e., packets 

that have not been acknowledged by the receiver. In the 

steady state, the sender increases the window size W by 

1/W upon successfully receiving an acknowledged packet, 

or equivalently, it increases the sending rate by one packet 

per round trip time. Upon encountering a loss, the window 

size is reduced by half, or equivalently, the sending rate is 

cut in half. In TCP, the receiver has the ability to set a 

maximum window size for the unacknowledged packets, 

hence imposing a maximum sending rate. Thus, in a non-

congestion scenario, the application at the receiver can 

control the sending rate by setting the window size 

appropriately. On the other hand, during congestion, the 

actual throughput can be substantially low as the maximum 

window size may never be reached.  

Based on the above discussion, we observe that a single 

packet loss can drop the TCP throughput abruptly and the 

low throughput lingers due to the slow increase of the 

window size. If there is a way to reduce this throughput 

reduction effect without modifying TCP, we can effectively 

provide higher throughput with proper congestion control 

and reliable transmission. In addition, if there is a way to 

control the TCP sending rate during congestion, then TCP 

can be made suitable for multimedia streaming. Unlike non 

real-time applications such as file transfer and email, precise 

control of sending rate is essential for interactive and live 

streaming applications due to several reasons. First, sending 

at too high a rate can cause buffer overflow in certain 

receivers with limited buffer such as mobile phones and 

PDAs. Second, sending at a rate lower than the coded bit 

rate results in pauses during a streaming session, unless a 

large buffer is accumulated before playback. In the 

following section, we propose a system that can 

dynamically distribute streaming data over Multicast using 

Multiple TCPs per application to achieve higher throughput 

and precise rate control. The control is performed entirely at 

the receiver side and thus, suitable for streaming 

applications where a single server may serve up to 

thousands of receivers simultaneously. 

III. MULTICASTING USING TCP 

As mentioned in Section 2, the throughput reduc- tion 

of TCP is attributed to the combination of (a) reduction of 

the sending rate by half upon detection of a loss event and 

(b) the slow increase of sending rate afterward or 

congestion avoidance. To alleviate this throughput 

reduction, one can modify TCP to (a) reduce the sending 

rate by a small factor other than half upon detection of a 

loss, or (b) speed up the congestion avoidance process, or 

(c) combine both (a) and (b). There are certain 

disadvantages associated with these approaches. First, these 

changes affect all TCP connections and must be performed 

by recompiling the OS kernel of the sender machine. 

Second, changing the decreasing multiplicative factor and 

the additive term in isolated machines may potentially lead 

to instability of TCP in a larger scale of the network.  

Third, it is not clear how these factors can be changed 

to dynamically control the sending rate. As such, we 

propose a different approach: instead of using a traditional, 

single TCP connection, we use multiple TCP connections 

for a multimedia streaming application. Our approach does 

not require any modification to the existing TCP stack or 

kernel. Figure 1 shows a diagram of our proposed Multicast 

using TCP system. 

 
Figure 1: Multicast using TCP system 

 

The MultiTCP control unit is implemented immediately 

below the application layer and above the transport layer at 

both the sender and the receiver. The MultiTCP control unit 

at the receiver receives the input specifications from 

streaming application which include the streaming rate and 

the throughput resilience. The throughput resilience can be 

thought of as the amount of throughput reduction an 

application can tolerate in presence of sudden burst traffic. 

A higher throughout resilience leads to a lower short-term 

throughput reduction.  

TheMultiTCP control unit at the receiver measures the 

actual throughput and uses this information to control the 

rate and the throughput reduction by using multiple TCP 

connections and dynamically changing receiver’s window 

size for each connection. In the next two sections, we show 

how multiple TCP connections can mitigate the throughput 

reduction problem in a lightly loaded network and describe 

our mechanism to maintain the desired throughput in a 

congested network. 
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A. Alleviating Throughput Reduction In Lightly 

Loaded Network 

In this section, we analyze the throughput reduction 

problem in a lightly loaded network and show how it can be 

alleviated by using multiple TCP connections. When there 

is no congestion, the receiver can control the streaming rate 

in a single TCP connection quite accurately by setting the 

maximum the receiver’s window size Wmax. The effective 

throughput during this period is approximately equal to 

 
where RTT denotes the round trip time, including both 

propagation and queuing delay, between the sender and the 

receiver. MTU denotes the TCP maximum transfer unit, 

typically set at 1000 bytes. If a loss event occurs, the TCP 

sender instantly reduces its rate by half as shown in Figure 

2(a). As a result, the area of the inverted triangular region in 

Figure 2(a) indicates the amount of data that would have 

been transmitted if there were no loss event. Thus, the 

amount of data reduction D equals to 

 
Note that the time it takes for the TCP window to 

increase from Wmax/2 to Wmax equals to WmaxRTT/2 

since the TCP window increases by one every round trip 

time. Clearly, if there are a burst of loss events during a 

streaming session, the total throughput reduction can 

potentially be large enough to deplete the start up buffer, 

causing pauses in the playback.  

Now let us consider the case where two TCP 

connections are used for the same application. Since we 

want to keep the same total streaming rate Wmax/RTT as in 

the case of one TCP connection, we set Wmax = Wmax/2 

for each of the two connections as illustrated in Figure 2(b). 

Assuming that only a single loss event happens in one of the 

connection, the total throughput reduction would be equal to  

 
Equation (3) shows that, for a single loss event, the 

throughput reduction of using two TCP connections is four 

times less than that of using a single TCP connection. Even 

in the case when there are simultaneously losses on both 

connections as indicated in Figure 2(c), the throughput 

reduction is half of that of the single TCP. In general, let N 

denote the number of TCP connections for the same 

application and n be the number of TCP connections that 

suffer simultaneous losses during short congestion period, 

the amount of throughput reduction equals to  

 
 

 

 
Figure 2: Throughput reduction for a) one TCP connection with singe loss 

b) Two TCP connections with single loss c) Two TCP connections with 

Double Losses. 

B. Control Streaming Rate in a Congested Network 

In the previous section, we discuss the throughput 

reduction problem in a lightly loaded network and show that 

using multiple TCP connections can alleviate the problem. 

In a lightly loaded network condition, one can set the 

desired throughput Td by simply setting the receiver 

window Wmax = TdRTT/MTU. 

However, in a moderately or heavily congested 

network, the throughput of a TCP does not depend on 

Wmax, instead, it is determined by the degree of 

congestion. This is due to the fact that in a non-congested 

network, i.e. without packet loss, TCP rate would increase 

additively until maxMTU/RTT is reached, after that the rate 

would remain approximately constant at WmaxMTU/RTT. 

However, in a congested network, a loss event would most 

likely occur before the sending rate reaches its limit and cut 

the rate by half, resulting in a throughput lower than 

WmaxMTU/RTT.  

A straightforward method for achieving a higher 

throughput than the available TCP throughput would be to 

use multiple TCP connections for the same application. 

Using multiple TCP connections results in a larger share of 

the fair bandwidth. Hence, one may argue that this is unfair 

to other TCP connections.  

On the other hand, one can view this approach as a way 

of providing higher priority for streaming applications over 

other non time-sensitive applications under resource 

constraints. We also note that one can use UDP to achieve 

the desired throughput. However unlike UDP, using 

multiple TCP connections can provide (a) congestion 
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control mechanism to avoid congestion collapse, and (b) 

automatic retransmission of lost packets. Assuming multiple 

TCP connections are used, there are still issues associated 

with providing the desired throughput in a congested 

network. 

In order to maintain a constant throughput during a 

congested period, one possible approach is to increase the 

number of TCP connections until the measured throughput 

exceeds the desired one. This approach suffers from a few 

drawbacks. First, the total resulting throughput may still 

exceed the desired throughput by a large amount since the 

sending rate of each additional TCP connection may be too 

high. Second, if only a small number of TCP connections 

are required to exceed the desired throughput, this technique 

may not be resilient to the sudden increase in traffic as 

analyzed in Section 3.1. A better approach is to use a larger 

number of TCP connections but adjust the receiver window 

size of each connection to precisely control the sending rate. 

It is undesirable to use too many TCP connections as they 

use up system resources and may further aggravate an 

already congested network. In practice, our algorithm 

maintains a relatively stable number of TCP connections 

while varies the size of the receiver windows to achieve the 

desired throughput. 

IV. RESULTS 

 In this section, we show simulation results using NS to 

demonstrate the effectiveness of our MultiTCP system in 

achieving the required throughput as compared to the 

traditional single TCP approach. Our simulation setup 

consists of a sender, a receiver, and a traffic generator 

connected together through a router to form a dumb bell 

topology as shown in Figure 3. The bandwidth and 

propagation delay of each link in the topology are identical, 

and are set to 6 Mbps and 20 milliseconds, respectively. The 

sender streams 800 kbps video to the receiver continuously 

for a duration of 1000s, while the traffic generator generates 

cross traffic at different times by sending packets to the 

receiver using either long term TCPs or short bursts of 

UDPs. In particular, from time t = 0 to t = 200s, there is no 

cross traffic. From t = 200s to t = 220s and t = 300s to t = 

340s, bursts of UDPs with rate of 5.5 Mbps are generated 

from the traffic generator node to the receiver. At t = 500s 

the traffic generator opens 15 TCPs connections to the 

receiver, and 5 additional TCP connections at t = 750s. We 

now consider this setup under three different scenarios: (a) 

the sender uses only one TCP connection to stream the 

video, while the receiver sets the receiver window size to 8, 

targeting at 800 kbps throughput, (b) the sender and the 

receiver use our MultiTCP system to stream the video with 

the number TCP connections limited to two, and (c) the 

sender and the receiver also use our proposed MultiTCP 

system, except the number of TCP connections are now set 

to five. 

V. RELATED WORK 

There has been previous work on using multiple 

network connections to transfer data. For example, path 

diversity multimedia streaming framework [10][11][9] 

provide multiple connections on different path for the same 

application. These work focus on either efficient source or 

channel coding techniques in conjunction with sending 

packets over multiple approximately independent paths. On 

the other hand, our work aims to increase and maintain the 

available throughput using multiple TCP connections on a 

single path. There is also a related work using multiple 

connections on a single path to improve throughput of a 

wired-to-wireless streaming video session [15]. This work 

focuses on obtaining maximum possible throughput and is 

based TFRC rather than TCP. On the other hand, our work 

focuses on eliminating short term throughput reduction of 

TCP due to burst traffic and providing precise rate control 

for the application. As such, the analysis and rate control 

mechanism in our paper are different from those of [15]. 

Another related work is Streaming Control Transmission 

Protocol (SCTP)[16], designed to transport PSTN signaling 

messages over IP networks. SCTP allows user’s messages 

to be delivered within multiple streams, but it is not clear 

how it can achieve the desired throughput in a congestion 

scenario. In addition, SCTP is a completely new protocol, as 

such the kernel of the end systems need to be modified. 

There is also other work related to controlling TCP 

bandwidth. For example, the work in [17] focuses on 

allocating bandwidth among flows with different priorities. 

This work assumes that the bottleneck is at the last-mile and 

that the required throughput for the desired application is 

achievable using a single TCP connection. On the other 

hand, our work does not assume the last-mile bottleneck, 

and the proposed MultiTCP system can achieve the desired 

throughput in variety of scenarios. 

Also, the authors in [18], use weighted proportional fair 

sharing web flows to provide end-to-end differentiated 

services. The work in [19] uses the receiver advertised 

window to limit the TCP video bandwidth in VPN link 

between video and proxy servers. Finally, the authors in 

[20] propose a technique for automatic tuning of receiver 

window size in order to increase the throughput of TCP. 

VI. CONCLUSION 

We conclude our paper with a summary of 

contributions. First, we propose and implement a receiver- 

driven, TCP-based system MultiTCP for multimedia 

streaming over the Internet using multiple TCP connections 

for the same applications. Second, our proposed system is 

able to provide resilience against short-term insufficient 

bandwidth due to traffic bursts. 

Third, our proposed system enables the application to 

control the sending rate in a congested scenario, which 

cannot be achieved using traditional TCP. Finally, our 

proposed system is implemented at the application layer, 

and hence, no kernel modification to TCP is necessary. The 

simulation results demonstrate that using our proposed 

system, the application can achieve the desired throughput 

in many scenarios, which cannot be achieved by traditional 

single TCP approach. 
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