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In most of the cases if a patient is suffering from a bone 
ailment he may be treated with  
i) immobilization, ii) metal plates and screws, iii) platter 
casts, iv) external fixates and v) Healing    

III. BIVARIATE GENERALIZED GAUSSIAN MIXTURE 

MODEL 

Most of the fractures that are highlighted are mostly non-
homogenous and are asymmetric in nature. To analyze the 
type of fracture, one need to consider distributions that can 
cater both symmetric and asymmetric nature of the 
distributions. Bivariate Generalized Gaussian Mixture Model 
is one among such distributions. Hence, in this article, we 
have considered Bivariate Generalized Gaussian Mixture 
Model. 

The probability density function of the distribution is 
given by 

fμ,   σ,   λ x
σ

�
μ

σ
.Φ λ

μ

σ
  ---(1) 

 Where μ � R,σ>0  and λ � R represents the location, 
scale and shape parameters respectively. Where � and Φ 
denote the probability density function and the cumulative 
density function of the standard normal distribution. The 
maximum and minimum intensity of pixels within the image 
regions are denoted by ‘a’ and ‘b’. Truncating the data 
between these limits helps to minimize the image space. 
Using this concept, Truncating equation (1) between these 
limits ‘a’ and ‘b’ we have 

IV. DATASET CONSIDERED 

In order to portray the proposed method, we have 
considered real-time dataset from MVP Hospital, 
Visakhapatnam having images of deformities near leg 
segment, hand, arm, elbow, thigh and each of these images 
are pre-processed such that they are free from noise. Each 
image is acquired using an x-ray and all these images are 
processed with the support of medical practitioner.   

 

 

Figure 1.  Dataset Considered. 

V. EXPERIMENTATION AND RESULTS 

In order to portray to present model, we have considered 
a dataset presented in the above section for the experimental 
purpose. The experimentation is carried out in MATLAB 
environment and for training purpose, we have considered 75 
images and for testing 15 images were considered. Each of 
the images is eliminated from the noise and the features of 
these images were considered as inputs. Since we have 
considered the Bivariate model, we have considered the 
symptom and the deformity in the consideration and these 
two features are given as input to the model highlighted in 
section 3 of the article. The corresponding PDF are therefore 
obtained against each of these images considered for training 
as well as testing. The image PDF’s are collected and stored 
and against a query image the relevant PDF are correlated 
and the similar images are retrieved. This methodology will 
be well suited for specific cases like identification of the 
deformity based on the x-ray image even at rural health care 
centres because the probability of a particular symptom can 
be correlated with that of the symptoms and probabilities in 
the database to have a concreteness in the disease. The 
methodology is tested and the results are compared with that 
of the existing models based on GMM and are presented in 
the following table 1 of the article  

Table I.  Experimental Results 

Image 
Quality 
Metrics 

MSSGMM 
Standard 

Limits 
Standard 
Criteria 

 

Average 
Difference 0.00073 -1 to 1 

Closer to 1 

Maximum 
Difference 

0.01893 -1 to 1 
Closer to 1 

Image 
Fidelity 

0.95843 0 to 1 
Closer to 1 

Mean 
Squared 
Error 

0 0 to 1 
Closer to 0 

Signal to 
Noise 
Ratio 

∞ -∞ to ∞ 
As big as 
possible 

 

Average 
Difference 6.00644E-

05 
-1 to 1 

Closer to 1 

Maximum 
Difference 

0.010577 -1 to 1 
Closer to 1 

Image 
Fidelity 

0.989414 0 to 1 
Closer to 1 

Mean 
Squared 
Error 

0 0 to 1 
Closer to 0 

Signal to 
Noise 
Ratio 

∞ -∞ to ∞ 
As big as 
possible 

 

Average 
Difference 0.00027 -1 to 1 

Closer to 1 

Maximum 
Difference 

0.00042 -1 to 1 
Closer to 1 

Image 
Fidelity 

0.99892 0 to 1 
Closer to 1 

Mean 
Squared 
Error 

0 0 to 1 
Closer to 0 

Signal to 
Noise 
Ratio ∞ -∞ to ∞ 

As big as 
possible 
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Average 
Difference 0.000275 -1 to 1 

Closer to 1 

Maximum 
Difference 

0.006698 -1 to 1 
Closer to 1 

Image 
Fidelity 

0.996931 0 to 1 
Closer to 1 

Mean 
Squared 
Error 

0 0 to 1 
Closer to 0 

Signal to 
Noise 
Ratio 

∞ -∞ to ∞ 
As big as 
possible 

 

Average 
Difference 0.000587 -1 to 1 

Closer to 1 

Maximum 
Difference 

0.003322 -1 to 1 
Closer to 1 

Image 
Fidelity 

0.993874 0 to 1 
Closer to 1 

Mean 
Squared 
Error 

0 0 to 1 
Closer to 0 

Signal to 
Noise 
Ratio 

∞ -∞ to ∞ 
As big as 
possible 

 

Average 
Difference 0.000171 -1 to 1 

Closer to 1 

Maximum 
Difference 

0.114874 -1 to 1 
Closer to 1 

Image 
Fidelity 

0.998026 0 to 1 
Closer to 1 

Mean 
Squared 
Error 

0 0 to 1 
Closer to 0 

Signal to 
Noise 
Ratio 

∞ -∞ to ∞ 
As big as 
possible 

VI. PERFORMANCE EVALUATION  

In order to test the effectiveness of the model several 
quality testing metrics like average difference, maximum 
difference, image fidelity, mean squared error, signal to noise 
ratio. The formulas for calculation are presented in table 2. 
The methodology tested against these metrics are tabulated 
and presented in the above table. 

Table II.  Quality Metrics 

Quality 
Metrics 

Formula to Evaluate 

Average 
Difference 

∑ ∑ , ,
 

Where M, N are image matrix Rows and 
Columns 

Maximum 
Distance 

, ,  

Image Fidelity 
1

∑ ∑ , ,
∑ ∑ ,

 

Where M, N are image matrix Rows and 
Columns 

Mean Squared 
Error 

1 ∑ ∑ , ,
∑ ∑ ,

 

Where M, N are image matrix Rows and 
Columns 

Signal to 
Noise Ratio 

20. log
√

 

Where MAXI is maximum possible pixel value 
of image, MSE is the Mean Squared Error 

VII. CONCLUSION 

In this article, a methodology was presented for 
highlighting the identification of fractures based on a 
bivariate statistical modelling approach. Since we have 
considered two variants into consideration the article is 
assumed to generate fruitful results and can be underlined 
from the above table 1. The results derive are compared to 
that of the existing models based on GMM and from the 
developed results it can be understood that a proposed 
method outperforms the existing model. 
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