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In consideration to discriminative training, it mainly consist of 
four major components in performing learning process. it 
mainly consist of loss function, input space, output space and 
hypothesis space. It is an automatic process of learning that 
depends on training dataset. Hence it is known as supervised 
learning. This kind of learning process is also highly 
recommended for search engines. The two characteristics such 
as feature based and discriminative learning are widely used in 
LTR methods. LTR methods are used in commercial search 
engines as well. Therefore, academic research and industrial 
research focused more on LTR methods. It is the continuous 
effort that resulted in LTR methods with high utility in 
information retrieval.  
 
IV. WORKING OF LEARN TO RANK ALGORITHM  

As LTR is supervised machine learning, it needs training data 
and test data. It also includes a learning system and ranking 
system. The learning system mainly uses training data using 
which it produces a training model which is used by ranking 
model. The ranking system takes test data as input and 
employs the knowhow obtained from learning system in the 
form of a model. With supervised learning process in place, 
the ranking system is able to predict labels for unlabelled data 
objects. The architecture of learn-to-rank is shown in Figure 1. 
The framework is taken from the work of [10].  
 

 
Figure 1: Overview of LTR framework 

 
A set of queries is in the training data denote as {q1, q2, ..., 
qn}. Each query is associated with a set of documents. For 
instance, set of documents of query 1 is represented as {x1

(1), 
x2

(1), ..., xn
(1)}. In the same fashion, set of documents of query 

2 is represented as {x1
(2), x2

(2), ..., xn
(2)}. Here ranking model is 

leaned with a specific learning algorithm. For the prediction of 
ground truth table for training data can be performed using 
ranking model. When a new query is issued, the query is taken 
by the ranking system and performs raking process by 
employing ranking model provided by the learning system. It 
can take the set of documents associated with given query and 
sort them in an order based on the ranking model that has been 

built already. This way, learn to rank algorithms work in the 
real time applications such a search engines.  
 

V. LEARN TO RANK APPROACHES 

There are different approaches in which LTR methods can 
operate. They are known as pair-wise approach, point-wise 
approach and list-wise approach. These three approaches aim 
at producing ranking models by learning with the help of 
given training set. However, they differ in their approach. The 
following sub sections provide more information on the three 
models which are used in the real world applications.  
 

1. Point wise Approach  
 

In this approach the info space has a component vector that 
that speaks to a record. It means that a component vector is 
worked for each record related with given inquiry. The yield 
space of the point savvy approach contains importance degree 
for each report. The significance degree is extremely valuable 
in this approach for making ground truth marks. There are 
numerous judgments in this approach can be changed over into 
ground truth marks. This approach has speculation space 
which has instruments that utilization include vector to foresee 
importance level of each archive. The capacity utilized as a 
part of the procedure is known as scoring capacity which is 
utilized to make a rundown of positioned archives. 
Misfortune work related with point astute approach is utilized 
to check the exactness of forecast for each record. The issue 
with the point astute approach is that, it doesn't consider 
conditions among archives related with given inquiry. In the 
last positioning rundown, along these lines, misfortune work 
can't see the position of the report. This approach likewise 
does not consider the way that a similar inquiry has 
relationship with numerous records. Since numerous measures 
utilized for assessment in data retrieval are based on position 
of document and query level, point wise approach exhibits its 
limitations.  
 

2. Pair wise Approach  
 
In this approach, the info space contains sets of reports related 
with given inquiry. The records in each combine are spoken to 
by highlight vectors. The yield space contains positioning 
request for each combine of archives. Various types of 
judgments like pertinence degree, match savvy inclination, and 
aggregate request are conceivable to get changed over into 
ground truth names. Here the theory space displays bi-
assortment work that takes two archives as information and 
decides their request. The misfortune work in this approach is 
utilized to gauge consistency between ground truth table and 
scoring capacity. 
In the combine savvy approach, the info space contains sets of 
reports related with given inquiry. The archives in each 
combine are spoken to include vectors. The yield space 
contains positioning request for each match of records. 
Various types of judgments like importance degree, combine 
insightful inclination, and aggregate request are conceivable to 
get changed over into ground truth marks. Here the theory 
space displays bi-assortment work that takes two archives as 
information and decides their request. The misfortune work in 
this approach is utilized to gauge consistency between ground 
truth table and scoring capacity. Moreover, most of the 
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evaluation measures make use of position and query based 
approaches which shows exhibits a gap between general 
ranking for information retrieval and this approach.  
 

3.  List wise Approach 
 
In this approach the information space contains a question and 
its related records. Its yield space is only positioned rundown 
of reports. It likewise underpins various types of judgments to 
be changed over to ground truth marks. The judgment might 
be as pertinence degree, match astute inclinations, and 
aggregate request. The learning procedure needs yield space 
which is like the yield space of undertaking. Accordingly there 
may be befuddles between yield space of errand and the yield 
space utilized for learning process. The speculation space in 
this approach contains multi-assortment works keeping in 
mind the end goal to work on set of archives for expectation. 
The speculation is through scoring capacity which offers score 
to each archive. 
The list-wise approach utilizes two misfortune capacities. The 
first is identified with assessment measures while the second 
one isn't identified with assessment measures. A rundown 
savvy misfortune work displays certain properties. It is 
characterized concerning all reports related with inquiry 
(preparing set). It can't be subjected to full disintegration. It 
concentrates on the idea of positioned list. Dissimilar to point 
insightful and match savvy approaches, the rundown astute 
approach is in this way as per the positioning errand utilized as 
a feature of data recovery. In the rundown insightful approach, 
the scoring capacity seems like a point astute scoring capacity, 
it can't be called as point shrewd approach. The arrangement 
of LTR approaches depends on the four columns on which 
machine learning is assembled. The columns incorporate info 
space, yield space, speculation space and misfortune 
capacities.  

VI. CONCLUSIONS 

In this paper we presented working of learn to rank 
algorithm which are mainly used in handling large data bases. 

We have presented mainly three approaches used for  learn to 
rank that are point wise, pair wise and list wise approaches. 
These techniques mainly used in handling automation of data 
and question and answer kind of applications. 
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