
DOI: http://dx.doi.org/10.26483/ijarcs.v9i1.5265

Volume 9, No. 1, January-February 2018

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 214

ISSN No. 0976-5697

STATIC AND DYNAMIC RESOURCE ALLOCATION STRATEGIES IN HIGH
PERFORMANCE HETEROGENEOUS COMPUTING APPLICATION

Ms. Ragini Karwayun

Research Scholar: Mewar University
Rajasthan, India

Dr. K. P. Yadav
Director: IIMT

 Greater Noida, India

Dr. H. S. Sharma
Pro Vice Chancellor: Mewar University

Rajasthan, India

Abstract: More and more computing services are running in clouds as the number and scope of internet services are increasing exponentially.
Major objective of cloud computing is to give users virtually unlimited pay per use computing resources without any concern for managing the
underlying infrastructure. But this results in huge increase in size of computing environment which makes it very difficult to measure the
performance of allocation strategies that use the description of underlying infrastructure and resource dependency graphs for making decisions.
Both dynamic and static allocation strategies have their share of advantages and drawbacks. In this paper we will try to define a hybrid scheme
for resource allocation that will use the positive features of both schemes to give better performance.

Keywords: Scheduling, Resource Allocation, Dynamic Scheduling strategies;

I. INTRODUCTION

Predicting the performance of allocation and scheduling
algorithms is a difficult task. Static resource allocation and
scheduling schemes demand the resource requirements and
platform description beforehand thus resulting in
unpredictable time difference between the start and finish of
sequence of jobs. On the other hand, dynamic schemes make
decisions based on the available information (resource
requirement and platform specifications) during run time
thus making them too myopic.

Different parts of a very large computing application
have different computation requirements. It is nor practically
feasible to allocate the entire application to a single machine.
With the advent of high speed communication infrastructure,
distributed high performance machines can be connected
together to provide heterogeneous computing environment.

Static algorithms use the resource dependency and
description of the platform to make scheduling and allocation
decisions. The detail description includes the execution time
required by all types of jobs on all types of resources, the
time required for communication between any two resources
and the congestion affecting the communication. The
scheduling decision is made prior to the actual execution of
the application.

Dynamic algorithms make dynamic decisions for
scheduling and resource allocation at run time. These
decisions are based on the information about the platform
such as the list of available resources, set of available jobs
and the location of the data. Dynamic schemes can be
classified into two categories: Task driven or resource
driven. Task driven schemes make allocation decision as
soon as a task becomes ready whereas resource driven
schemes initiate the allocation decision as soon as a resource
becomes free.

Both schemes require complex computations to map the
communication and computing time to decide the priorities

of the requesting jobs so as to allocate a resource to a
job/task.

II. STATIC ALGORITHMS

Static strategies are classified into three categories:
List based scheduling schemes consists of two phases. In the
first phase all the active tasks are defined as nodes in a DAG
and each node is assigned a priority. This phase is referred as
Task prioritization phase and is followed by resource
assignment phase where the resources are assigned to each
task according to the priorities assigned in the first phase in
order to minimize the cost defined according to some
function. These algorithms are not complex and give good
results.HEFT(Heterogeneous Earliest Finish Time) and
CPOP(Critical Path One Processor) are examples of list
based Static algorithms.[1,2,3]

Task duplication based schemes involves duplicating the
tasks and running them on multiple processors to reduce the
waiting time of the dependent tasks. This helps in reducing
the communication cost of intermediate results and also
reduces the possibility of processors waiting for the
successive results in a long computation. Examples of task
duplication based static schemes are STDS (Scalable Task
Duplication based Scheduling) and HCNF (Heterogeneous
Critical Node First).[6,7]

A much generalized workflow of a static scheduling
algorithm that strikes a balance between different degrees of
price and speed of execution is as follows:

i. User specifies the job characteristics such as
maximum task duration and data size.

ii. A DAG depicting the execution plan is defined
by parsing the above specifications. This DAG
is the input to the static job scheduler.

iii. The schedules for the job execution on the
cloud are computed by the scheduler.

Ragini Karwayun et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,214-218

© 2015-19, IJARCS All Rights Reserved 215

iv. These price and finishing time schedules are
provided the user.

v. The user selects the desired schedule that
defines the deadline and pricing details
according to their preferences.

vi. The selected plan is used by the execution
platform to dispatch the user’s task to the
selected virtual machines where they are
executed.

vii. The scheduler is informed of the completion of
the tasks by the execution platform and the
users are refunded the amount charged if their
job uses fewer resources than allocated,
according to the pricing policy.

Program  Parser  Execution Plan  Job Scheduler

 Schedule  User choice  User chosen schedule

 Job execution platform

Finding an optimal schedule using static schemes is very
difficult and problem is NP-complete. Approximation
algorithms do not give acceptable results. Therefore list
based static algorithms are more common and HEFT
algorithm defines priorities for each task which are
calculated from the difference in time before the
scheduling time of the next task and the execution time
of the previous task, that depends on the average values
of communication and processing times.
Other than optimization problem, static scheduling
algorithms suffer from one another problem. As the
computing resources scale upwards the static schemes
suffer unpredictable failures. A single resource failure
may result in arbitrarily long execution times and
replication becomes mandatory to overcome this
obstacle.

III. DYNAMIC ALGORITHMS

In contrast to static schemes discussed above, task based
runtime systems uses dynamic strategies more commonly.
These schemes adapt their decisions very quickly to the
current state of the resources and the actual computing
environment. These schemes are very myopic giving very
short term view. Most of the task based runtime systems rely
on dynamic schemes for scheduling. Dynamic schemes can
be classified into two categories - task centric and resource
centric.

In Task centric strategies, decision to schedule is taken as
soon as a task becomes ready for execution. Minimum
Completion Time [MCT] scheme assigns a resource to a
ready task in such a way that it minimizes the finishing time
of the task. Computation and data both are modeled for
selection .

In Resource centric strategies decision to schedule is
taken as soon as the queue corresponding to a computing
resource gets empty. A task is either selected from the set of
ready tasks or stolen from other resources. The algorithm that
handles the distribution of work at runtime uses two
approaches. In the first approach, referred as work – dealing,
a master node takes the responsibility of distributing and
balancing the work among all available resources . In the
second approach, known as work – stealing, when any
resource becomes free can steal tasks from other resources
termed as victim. The criteria of stealing relies heavily on the

principle of locality, so as to, have minimum data
movements. The selection of a victim node is very critical in
the successful implementation of work –stealing schemes. If
the selection is not done properly, it can lead to significant
underutilization of available resources and performance
degradation. For example, if the resources steal from only a
subset of related resources, will result in highly unbalanced
system.

Replication is an important tool used in scheduling
strategies to reduce waiting time for dependent tasks waiting
for intermediate results. At the end of computation, when a
resource becomes idle but there are no available tasks, it
duplicates the execution of already running tasks on another
resource. Several studies have analyzed the cost and benefits
of replication. This technique is very commonly used in grid
computing.

Cloud computing gives unlimited usage of computing
resources on pay per use model.Most commercial clouds
rents instances on per hour basis. Ideally the payment scheme
should include the time required by each task and the amount
of data transferred required executing the task. So a perfect
pricing model should declare the cost of computation taking
into account the number of rented instances and the duration
of use. If all communication and processing time are
accurately known in advance, the dynamic schemes perform
in a greedy static behavior.

IV. HYBRID ALGORITHMS

Hybrid Scheduling techniques use static allocation
policies along with a dynamic strategy to adjust and comply
with changes in timing predictions which arise due to several
real time factors such as error in predictions, resource
failures or concurrent applications.

Hybrid schemes use initial static mapping and a dynamic
policy to cope with runtime issues of communication and
processing. For example, dynamic schedulers can use
priorities defined by static algorithm HEFT, to decide which
task should be scheduled first in situations when more than
one tasks becomes available.

[8][9] have considered the static and dynamic strategies
for the outer product computation. [5] focuses on the design
and analysis of static, dynamic and hybrid schemes for
matrix multiplication. Several divide and conquer schemes
are defined for matrix multiplication such as strassen’s where
successive steps can be considered as sequence of phases of
independent tasks which share data.

This context is very apt to compare static and dynamic
schemes and to define a hybrid scheme that take advantages
of both the worlds. Analyzing the performance of an
allocation strategy is difficult due to large number of
parameters, designing a dynamic strategy that considers data
reuse is a tedious task.

Proposed Hybrid strategy will be a two phase model . In
the first phase it will use an efficient static algorithm, taking
into account variable processor speeds and resource
performances to define an allocation schedule. In the second
phase modify these scheduling and allocation decisions
depending on the state of the system and the applications
running on the system.

In the scenario, where we have independent tasks
operating on independent data, replication strategies can be
used to achieve a good life cycle in such a way that there are
limited number of tasks having multiple executions. In order
to avoid unnecessary communication expenditure, the
decisions should be taken carefully on the basis of location of
data and the assumed processing speeds of the resources.

Ragini Karwayun et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,214-218

© 2015-19, IJARCS All Rights Reserved 216

In the context of matrix multiplication, many studies have
focused on comparing different schedulers on dense
computations on heterogeneous systems [11]. [10] has
proposed and analyzed some hybrid techniques for the
scheduling problem with precedence constraints. [12] has
analyzed the cost of communication incurred for matrix
multiplication where we have limited memory.

V. ALGORITHM DETAIL

Several hybrid scheduling schemes have been proposed
for analyzing some very complex problems of scheduling
with predefined parameters and constraints. In the proposed
scheme we will use independent tasks, which use shared data
and both the lifecycle and communication cost will be
analyzed. The amount of communication that is required to
perform matrix multiplications has been analyzed in [18] and
a lower bound for the communication cost is calculated.
Static algorithms for the matrix multiplication satisfying
analyze hybrid schemes that matches the lower bounds on
communication costs while having good operational
behavior.

The objective of the static algorithm is to optimally
distribute the computation tasks between different processors
in such a way so as to obtain an optimal lifespan, while
keeping a close tab on communication costs. While
multiplying algorithms using divide and conquer approach
like Strassen’s , the partial product of sub matrices are
divided between the processors depending on their
processing speeds. If we assume that the area allocated to
each processor is a rectangular cell, then half of the perimeter
of each cell represent volume of communication and so
processing cost is directly proportional to the area of the cell.
Thus the total amount of communication can be obtained
from the product of area of each cell and the cost of
transferring the by-product of the matrix multiplication after
each intermediate phase. Major problem is to achieve a
perfect load balance and can be solved by partitioning a
square into rectangles of fixed area. This problem has been
already studied in [15], [16], [17]. The Column based
algorithm proposed in [15] is a 7/4 approximation scheme,
but in reality it gives approximation value as low as 1.1.
Divide and conquer algorithm proposed by Nagamochi et al.
achieves approximation ratio upto 5/4 theoretically as well as
practically. In [17] a different version of Divide and Conquer
algorithm gives an approximation ratio of 2√3.

On relatively small size of input data, static column based
and divide and conquer algorithm give similar optimal
results. But as the block sizes of order of 1000 are
considered, divide and conquer algorithm gives relatively
poor performance with respect to lifespan minimization.
However the performance regarding communication cost is
relatively better. On heterogeneous platforms, lifespan ratio
is as high as 1.38 and can get higher if new processors are
added.

Two new variants static column based new and static
divide and conquer new provide non rectangular area
assignment, while retaining the partitions provided by
Column based or Divide and Conquer. Following procedure
is used to implement the new variants- the output of Column
based is directed to a processor in such a way that each
processor is assigned equal number of tasks. The assignment
is first done column wise and is followed by doing it row
wise so that each cell contains exactly same number of tasks
in the range of Sk N2 /[∑k’Sk’] where Sk is the size of each
cell. In [05] it is observed that Static Column based new is
more efficient in terms of lifespan than Divide and conquer

and achieves similar performance with respect to
communication costs.

Dynamic algorithms are easily able to adapt their
decisions according to the real time state of the resources and
make a good choice for task based runtime systems.
However, these schemes provide a very short term and
limited view .

As discussed earlier, greedy dynamic algorithms to
allocate and schedule task on resources can be classified into
two main categories. Task-centric view and the resource-
centric approach Here , we will discuss one algorithm from
each class of dynamic algorithms: Minimum Completion
Time [MCT], a task-centric strategy , and MINCOST, a
resource-centric strategy which selects a task among the
available tasks randomly considering only those tasks which
incur a minimal amount of communication, assuming that the
data is already received by their source.

Hybrid algorithms use resource-centric static schemes to
allocate tasks to resources at the start of the computation and
then greedy strategy is used to allocate tasks to resources.
This phenomenon is referred as “task-stealing”

There can be several versions of this hybrid approach,
each version using a different static allocation approach in
the first phase. Hybrid Column based used column based
scheme, and the new version Hybrid Column based new. By
using Divide and Conquer we get Hybrid divide and conquer
and the new version Hybrid Divide and Conquer new..

Replication is another important feature for resource-
centric algorithms. As soon as a resource becomes available
at the end of a computation it looks for available tasks for
allocation. But if no new tasks are available, this feature
allows duplicating the execution of an already started task on
some other resource to this resource. The objective is to
decrease execution time of a big computation.

VI. ALGORITHM EVALUATION

In this section we present the results of our evaluations of the
different algorithms presented above.

A. Static Scenario

Static algorithms rely on completely accurate parameters
where we have stable resource performances with time. In
[05] it is observed that all the algorithms give near optimal
performance except Static column based and Divide and
Conquer. There is non-significant variation in case of
heterogeneous platforms.

As far as communication costs are concerned, static
algorithms give better performance as there is no transfer of
information once allocation schedule is calculated. But the
hybrid new versions do not incur any significant extra cost.
Their performance is equally good and approximation ratio is
always under 1.5. The reason behind this performance is that
in practice very few task stealing operations take place. The
only exception is hybrid column scheme for heterogeneous
platforms which has high communication overhead. The
reason is that it unnecessarily replicates task on multiple
machines which does not contribute in minimizing the
execution time.

The communication costs for purely dynamic strategies
are considerable high. MINCOST algorithm gives
approximation ratio of 2 for heterogeneous platform and 2.5
for homogeneous ones. It is larger than 9 for homogeneous
platform in MCT algorithm.

Ragini Karwayun et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,214-218

© 2015-19, IJARCS All Rights Reserved 217

Lifespan as a function of the chosen algorithm for
homogeneous systems for static settings

Lifespan as a function of the chosen algorithm for
heterogeneous systems for static settings

B. Dynamic scenario

In a dynamic environment, static algorithms perform

poorly. This is because the processor speeds vary and the
performance of a single processor can have a huge impact on
overall performance.. The situation worsens further if the
processors involved have significant variations in their
speeds. For dynamic algorithms, replication is compulsory to
have a good lifespan, particularly in cases where variation in
parameters is very high. Replication once is enough.
However, if instead of faster processors, slower processors
are used for replication, it will make a very large impact on
computation time.

In case of communication cost, the static algorithms give
similar performance as they give for static scenario. MCT
performs poorly , whereas the MINCOST and the hybrid
algorithms perform considerably better keeping
approximation ratio below 3, even in cases where only a
single replication is allowed. In addition MCT displays
better robustness against the varying parameters of the
underlying platform.

 Varying parameters affect Hybrid strategies more since
predicting unreliable processing speeds have negative effect
on their static assignments It is observed that Hybrid Divide
and Conquer new , achieve a better balance, and is more
effective when there is less variance in parameters since there
is less job stealing.

 From these observations we can infer some facts. First,
resource based strategies gives better performance if we wish

to have minimal communication cost, and in addition these
strategies give optimal life-span. Second, purely static
schemes are not reliable enough to be used in practice, but
when we use hybrid schemes by adding a dynamic twist to
the static algorithm, it becomes both a cost-efficient and
time-optimal strategy.

Communication Cost as a function of the chosen algorithm
for homogeneous systems for static settings

Communication Cost as a function of the chosen algorithm
for heterogeneous systems for static settings

VI. CONCLUSION

We have considered the problem of allocating and

scheduling a mathematical problem onto a set of
heterogeneous resources whose performance cannot be
predicted and may change with time. On the one hand, since
input data is shared among different tasks, it is important to
use intelligent allocation schemes that generally cannot be
found with the short term view of a purely dynamic runtime
strategy. It is often believed that only dynamic runtime
strategies can perform in dynamic real time environments.
We have thus studied and analysed the behaviour of static,
dynamic and hybrid strategies. We have observed that both
static strategies and dynamic strategies fail to perform well
and obtain a reasonable lifespan in absence of replication, but
when done it is seen that it is enough if replication is done
once. On the other hand, dynamic algorithms achieves a
consistently low lifespan but at the cost of a very high
communication overhead. Finally, hybrid strategies are able

1

1.1

1.2

1.3

1.4 ColumnBase
d

ColumnBase
dNew

DivideAndCo
nquer

DivideAndCo
nquerNew

Dynnamic

1

1.1

1.2

1.3

1.4 ColumnBase
d

ColumnBase
dNew

DivideAndCo
nquer

DivideAndCo
nquerNew

Dynnamic

1

1.1

1.2

1.3

1.4 ColumnBase
d

ColumnBase
dNew

DivideAndCo
nquer

DivideAndCo
nquerNew

Dynamic

1

1.1

1.2

1.3

1.4 ColumnBase
d

ColumnBase
dNew

DivideAndCo
nquer

DivideAndCo
nquerNew

Dynnamic

Ragini Karwayun et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,214-218

© 2015-19, IJARCS All Rights Reserved 218

to get the advantages of both schemes, even in situations
with very large variance. This advocates strongly the
addition of more static knowledge in task-based runtime
systems. In addition to this, it also motivates the design and
analysis of good hybrid algorithms. This also helps in
developing more static algorithms whose results can be used
as input of hybrid strategies.

VII. REFERENCES

[1] R. Eswari and S. Nickolas, "Path-based Heuristic Task
Scheduling Algorithm for Heterogeneous Distributed
Computing Systems", International Conference on
Advances in Recent Technologies in Communication and
Computing, 2010.

[2] H. Arabnejad, J. Barbosa, " List Scheduling Algorithm for
Heterogeneous Systems by an Optimistic Cost Table",
IEEE Transactions on Parallel & Distributed Systems, Vol.
25, PP. 682-694, March 2013.

[3] H.Topcuoglu, S. Hariri, and M.Y.Wu, "Performance-
Effective and Low-Complexity Task Scheduling for
Heterogeneous Computing", IEEE Trans. Parallel and
Distributed Systems,March 2002, Vol. 13, No.3, pp. 260-
274.

[4] Aida A. Nasr,Nirmeen A. El-Bahnasawy and Ayman El-
Sayed “Task Scheduling Algorithm for High Performance
Heterogeneous Distributed Computing
Systems”International Journal of Computer Applications
(0975 – 8887) Volume 110 – No. 16, January 2015.

[5] Olivier Beaumont, Lionel Eyraud-Dubois,
AbdouGuermouche, Thomas Lambert. Comparisonof Static
and Dynamic Resource Allocation Strategies for Matrix
Multiplication.26th IEEEInternational Symposium on
Computer Architecture and High Performance Computing
(SBAC-PAD), 2015, Oct 2015, Florianopolis, Brazil.

[6] M. Jing and L. Kenli, "Energy-Aware Scheduling
Algorithm with Duplication on Heterogeneous Computing
Systems," Publish in: Grid Computing (GRID), ACM/IEEE
13th International Conference, Page: 122 -129, Sept. 2012.

[7] T. Gautier, X. Besseron, and L. Pigeon, “Kaapi: A thread
scheduling runtime system for data flow computations on
cluster of multi-processors,” in PASCO ’07. New York,
NY, USA: ACM, 2007.

[8] C. Boeres, A. Lima, and V. Rebello, “Hybrid task
scheduling: integratingstatic and dynamic heuristics,” in
15th Symposium on ComputerArchitecture and High
Performance Computing, 2003. Proceedings, Nov.2003, pp.
199–206.

[9] J. V. F. Lima, T. Gautier, V. Danjean, B. Raffin, and N.
Maillard,“Design and analysis of scheduling strategies for
multi-cpu and multi-gpuarchitectures,” Parallel Computing,
vol. 44, pp. 37–52, 2015.

[10] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz,
“Minimizingcommunication in linear algebra,” SIAM
Journal on Matrix Analysisand Applications, vol. 32, no. 3,
pp. 866–901, Jul. 2011, arXiv:0905.2485. [Online].
Available: http://arxiv.org/abs/0905.2485

[11] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert,
“Partitioning asquare into rectangles: Np-completeness and
approximation algorithms,”Algorithmica, vol. 34, no. 3, pp.
217–239, 2002.

[12] ThomasA. Henzinger, Anmol V. Singh, Vasu Singh and
ThomasWies,” Static scheduling in clouds”

[13] O. Beaumont and L. Marchal, “Analysis of dynamic
scheduling strategiesfor matrix multiplication on
heterogeneous platforms,” in HPDC’14.ACM, 2014.

[14] H.-J. Lee, J. P. Robertson, and J. A. Fortes, “Generalized
cannon’salgorithm for parallel matrix multiplication,” in
Proceedings of the 11thinternational conference on
Supercomputing. ACM, 1997, pp. 44–51.

[15] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert,
“Partitioning asquare into rectangles: Np-completeness and
approximation algorithms,”Algorithmica, vol. 34, no. 3, pp.
217–239, 2002.

[16] H. Nagamochi and Y. Abe, “An approximation algorithm
for dissectinga rectangle into rectangles with specified
areas,” Discrete AppliedMathematics, vol. 155, no. 4, pp.
523 – 537, 2007.

[17] A. Fügenschuh, K. Junosza-Szaniawski, and Z. Lonc,
“Exact andapproximation algorithms for a soft rectangle
packing problem,” Optimization,vol. 63, no. 11, pp. 1637–
1663, 2014.

[18] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz,
“Minimizingcommunication in linear algebra,” SIAM
Journal on Matrix Analysisand Applications, vol. 32, no. 3,
pp. 866–901, Jul. 2011, arXiv:0905.2485. [Online].
Available: http://arxiv.org/abs/0905.2485

	INTRODUCTION
	STATIC ALGORITHMS
	DYNAMIC ALGORITHMS
	HYBRID ALGORITHMS
	ALGORITHM DETAIL
	CONCLUSION
	REFERENCES

