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the grey level values, but also the geometrical configuration of 
the entire neighborhood. Hence, NL-means filters are strong 
and robust than local smoothing filters. 
B. Skull-Stripping 
Skull stripping is an important preprocessing step for the 
analysis of MRI. The background of an image does not 
contain any information of interest but increases the 
processing time. Therefore there is need to remove the 
background and other unnecessary regions. Various Skull-
stripping tools have been used for this purpose like brain 
extraction tool (BET) [2], the brain surface extractor (BSE) 
[3], and the hybrid watershed (HWA) [4]. 
 

III. BRAIN SEGMENTATION METHODS OF MRI 
 
Different method have been employed for segmentation of 
MRI. Among them thresholding [5], region-based 
segmentation [6], classification-based segmentation are most 
widely used. 
 
A. Thresholding Segmentation 
Thresholding [5] is one of the simplest technique used for 
segmentation of MRI. Thresholding divides an MRI into 
various regions by comparing the each pixel value with a pre-
defined threshold value. Thresholding can be either local or 
global. One of the limitation of thresholding is that it only 
considers the intensity, not any relationship between the 
pixels. Global thresholding works well if the MRI contains the 
homogenous regions or the contrast between the dark 
background and light pixel is very high. However, it may fail 
if the two or more regions have overlapping intensities. If the 
contrast between the MRI is low then, selection threshold 
value becomes more difficult. In local thresholding, threshold 
value is determined in a local region around a pixel. Local 
thresholding values can be determined by statistical properties 
such as mean intensity value in T1-weighted MRI.  
 
B. Region-Based Segmentation 
In MRI, region-based segmentation [6] is used to group the 
pixels with similar properties. The first requirement is to select 
the seed point and then form the regions by appending 
neighboring pixel according to the specific criteria. The 
advantage of this method is that it can easily separate the 
regions with similar property and generate connected region. 
However, this method involves the manual selection of 
selection of seed, which is the time consuming process. 
 
C. Classification Segmentation 
In classification based segmentation, fuzzy C-means (FCM) 
[7] algorithm is widely used for segmentation of MRI as it can 
preserve more information than hard segmentation methods. 
FCM is a clustering algorithm developed by Dunn [8], and 
later extended by Bezdek [9] is an improvement over K-
means. In k-means [10] which allows pixel belong to single 
cluster. The main limitation of K-means method is that the 
final result is dependent on the initial centroid value to great 
extent. While in FCM [7 It permits pixel belong to multiple 
clusters having variations in degree of membership value.The 
main drawback of FCM [7] is that it does not consider the any 

information of spatial domain, as it is very sensitive to noise. 
Because medical images are corrupted by Rician noise and 
intensity inhomogeneity caused by operator performance, 
equipment and the environment, the segmentation with FCM 
becomes problematic. So, in order to incorporate the spatial 
information into standard FCM many researchers proposed 
various variants of FCM. Ahmed et al [11] proposed fuzzy C-
means with spatial constraint (FCM_S) altered the objective 
function of standard FCM in order to incorporate spatial 
information. Disadvantage of FCM_S is increase in 
computational time because iteration steps are used to 
compute neighboring terms. In FCM_S, MRI segmentation 
depends mainly upon size of image, as larger size of image is 
it will take more time for segmentation. So in order to reduce 
computational time chen and zang[12] developed two variants 
of FCM. One is called FCM_S1 and another variant as 
FCM_S2.Replacing of neighboring terms of FCM_S,Both 
FCM_S1 and FCM_S2 computes mean and median filtered 
image in advance. Both FCM_S, FCM_S1 and FCM_S2 are 
dependent on regularization parameter (α) so that it controls 
tradeoff between original and corresponding median filtered 
image and mean. 
. However, if the value of regularization parameter (α) is equal 
to 0, then algorithm works as the standard FCM. Cai et al. [13] 
proposed the fast generalized fuzzy C-means algorithm 
(FGFCM) that not only reduces the limitation of FCM_S but 
also improves the clustering performance. FGFCM introduces 
the two factors ��� introduces both local spatial information 
��_�� and local gray information ��_�� into the objective 
function to generate a new image  � in advance given in 
equation as: 
 
 

�� ൌ
��א�∑

�����

��א�∑
���

                                       ሺ1ሻ 

where�� represents the jthpixel of an image, ��� represents 
the similarity measure between jth pixel and its neighboring 
rth pixels, �� represents the neighboring pixels around the jth 
pixel. Fuzzy local information C-means (FLICM) [14] uses 
both local spatial information and local gray information in 
order to guarantee noise insensitiveness and preserve the 
image details. The main advantage of FLICM is independent 
of any regularization parameter unlike in FCM_S, FCM_S1, 
FCM_S2 and FGFCM.  Adhikari et al. [15] proposed 
conditional spatial fuzzy C-means algorithm (csFCM) 
incorporated both local spatial membership value and global 
spatial membership value in order to reduce the problems of 
sensitivity to noise and intensity inhomogeneity in MRI. 
 

IV. COMPARISON   PARAMETERS 
In order to compare the performance of various fuzzy C-
means based methods, various MRI segmentation techniques 
are analyzes using different comparison parameters like 
 
A. Dice coefficient 
Dice coefficient [16] are used for evaluating the accuracy of 
segmentation technique. For a given image if  ���� and ��� 
represents the set pixels belong to segmented output and its 
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corresponding ground truth image. Output of segmented 
image is compared with its corresponding values of ground 
truth image its resemblance with other each cluster is 
calculated as : 
 
 

� ൌ 2 ൈ
��� ת ����

��� ൅ ����
                      ሺ2ሻ 

 
B. Jaccard similarity 
 
Jaccard similarity [16] is defined as ration between 
intersection and union of segmented class and ground truth 
class Jaccard similarity is given by: 
 

� ൌ
��� ת ����
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                      ሺ3ሻ 

 
Dice coefficient and Jaccard similarity value ranges between 0 
and 1, with value near to 0 indicates lesser amount of common 
pixels between segmented image and its corresponding ground 
truth image/ the value near to 1 indicates more accurate 
segmentation. 
 

V. CONCLUSION 
FCM is one of the most widely used in many application 
domains. This paper provides a comprehensive overview of 
various FCM-based methods for segmentation of MRI. This 
paper presents advantages and disadvantages of various FCM- 
based methods. 
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