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that the combinative effect of clinical and computing 
methods are successful in delivering the higher accuracy.   

 
3. RULE BASED MINING  

 
In this section of the work, the understanding about the 

rule based classification is presented. Generally a rule based 
classification proposes a set of rules to be deployed in a 
specific order to classify the datasets. The operations of the 
classifier are to be incremental, where the generic processes 
are concatenation, union and difference. This work 
establishes a lemma to make the understanding strong.  
 
Lemma: Considering a set of classifiers as “S”. Every 
subset of the classifier considered to be “s”.  Every rule sets 
in all the subjects of the classifier are to be considered as a 
tuple which again can be denoted as {R, r}. “R” denotes the 
set of rules and “r” denotes the order of the rules to be 
deployed.  

Assuming that, “s” is a classifier and “R” is a rule set, 
then “s” is equal to “r” and “r” is equal to “R”.   
 
Proof:  
Firstly, let it be assumed that there are two classifiers as s1 
and s2, as following:  
 
Where C1 and C2 are the Clusters  
  

 1 1 1{ , }C R r  (Eq. 1) 

And  

 2 2 2{ , }C R r  (Eq. 2) 

 
Secondly, the assumptions are also made as  
  

 1 2C C  (Eq. 3) 

 
Hence, it is natural to understand as,  
  

 1 2R R  (Eq. 4) 

And, subsequently  

 1 2r r  (Eq. 5) 

 
Finally, considering “D” is the data set to be analysed by the 
same classifier, the three categories for the outcomes to be 
delivered by the classifier are as followings:  
 
 , |s D d R r    (Eq. 6) 

 , |s D d R r    (Eq. 7) 

And,  
 , |s D d R r    (Eq. 8) 

 
 

In the above three cases, the order of the rule set “r” is 
clearly controlling the total outcome for the classifier. Thus 
is natural to understand the key value of the order for correct 
classification.  

 
 

 

4. COST BASED IMPROVEMENT   
 
In this section, the work presents the composite 

knowledge on the cost based improvement of the 
classification results. The errors in classifications can be 
observed in many real world problems and the effects are 
significant. The generic solution for the problem is to deploy 
specific rule sets to classify the data. However, the effect of 
specific rule based mining is the method will lose the 
generalization property. Nevertheless, most of the real world 
classification situations are divided into two major 
categories as positive and negative. Often the positive class 
is understood as major category and the negative class is 
understood as minority class. The method of cost based 
matrix can significantly reduce the false negative 
classifications in the situation.  

 
This work, briefly explains the use of cost matrix to 

reduce the class imbalance. First the example of 
classification types are understood [Table – 1].  

 
TABLE I: CLASSIFICATION AND IMBALANCE  

Class – A Class – B  
True Positive False Positive 

False 
Negative 

True 
Negative 

 
 
Henceforth, the applicability for the cost matrix is 

realized in here [Table – 2].  
 

TABLE II: CLASSIFICATION AND IMBALANCE  
Class – A Class – B  

P Q 
R S 

 
It is natural to understand that, the purpose of the cost 

matrix is to reduce the improper classification and 
classification errors. Hence, the costs are to be applied for 
wrong classification, rather the correct classifications. 

 
 Thus, the relationship between P, Q, R and S are to be 

realized as  
 P Q  (Eq. 9) 

And  
 R S  (Eq. 10) 

Where,  
 0P S   (Eq. 11) 

Also, 
 Q R    (Eq. 12) 

Here,  is the optimal cost or weight for the classification. 

 
5. DATASET INFORMATION   

 
This work demonstrates the results and discussions on the 

widely popular UCI heart disease dataset [24] [25] [26] [27].  
This database contains 76 attributes, but all published 
experiments refer to using a subset of 14 of them. In 
particular, the Cleveland database is the only one that has 
been used by ML researchers to this date. The "goal" field 
refers to the presence of heart disease in the patient. It is 
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integer valued from 0 (no presence) to 4. Experiments with 
the Cleveland database have concentrated on simply 
attempting to distinguish presence (values 1,2,3,4) from 
absence (value 0). The names and social security numbers of 
the patients were recently removed from the database, 
replaced with dummy values. The dataset is contributed and 
periodically updated by Hungarian Institute of Cardiology. 
Budapest: AndrasJanosi, M.D., University Hospital, Zurich, 
Switzerland: William Steinbrunn, M.D. and University 
Hospital, Basel, Switzerland: Matthias Pfisterer, M.D. 

 
The notable works by P.Sambasiva Rao &Dr. T. Uma 

Devi [28] demonstrated the regularity/ regularizes the 
outcomes of predictive analyses by reducing the dataset size. 
As an outcome, the analysis time complexity has 
significantly reduced. The reduced attribute set is listed here 
[Table – 3].  

 
TABLE III: LIST OF ATTRIBUTES AND DESCRIPTION   

Attribute Item Purchased Together/ Description 
ID Patient identification number 

AGE Age in years 
SEX Patient Sex, Male or Female  

PAINLOC Chest pain location  
CP Chest pain type 

 Value 1  typical angina 
 Value 2  atypical angina 
 Value 3  non-angina pain 
 Value 4  asymptomatic 

SMOKE Is or is not a smoker 
CIGS Cigarettes per day 

YEARS Number of years as a smoker 
CA Number of major vessels (0-3) colour by 

fluoroscopy 
NUM Denotes the severity of the heart disease  

This work analyses the improvements based on the 
reduced attribute set and furnishes in the results and 
discussion section.  
 
6. RESULTS AND DISCUSSION   

 
In this section of the work, the cost best improvements 

are been demonstrated. 
Firstly, the Cleveland Dataset is been analysed. The 

attribute influence are been recorded here [Table – 4]  
 

TABLE IV: ATTRIBUTE INFLUENCE IN THE CLEVELAND 

DATASET   
 

Attribute Name : AGE 

Mean 52.7312 55.1040 57.9484 55.8750 
59.80

00 

std. dev. 9.4636 7.9702 6.9918 8.0383 
9.176

1 
weight 
sum 

157.000
0 50.0000 31.0000 32.0000 

12.00
00 

Precisio
n 1.2000 1.2000 1.2000 1.2000 

1.200
0 

Attribute Name : SEX 

mean 0.5478 0.8800 0.8065 0.8125 
0.833

3 
std. dev. 0.4977 0.3250 0.3951 0.3903 0.372

7 
weight 
sum 

157.000
0 50.0000 31.0000 32.0000 

12.00
00 

precisio
n 1.0000 1.0000 1.0000 1.0000 

1.000
0 

Attribute Name : PAINLOC

mean -9.0000 -9.0000 -9.0000 -9.0000 

-
9.000

0 

std. dev. 0.0017 0.0017 0.0017 0.0017 
0.001

7 
weight 
sum 

157.000
0 50.0000 31.0000 32.0000 

12.00
00 

precisio
n 0.0100 0.0100 0.0100 0.0100 

0.010
0 

Attribute Name : CP 

mean 2.8217 3.4000 3.7097 3.7500 
3.666

7 

std. dev. 0.9204 0.9592 0.6812 0.5590 
0.849

8 
weight 
sum 

157.000
0 50.0000 31.0000 32.0000 

12.00
00 

precisio
n 1.0000 1.0000 1.0000 1.0000 

1.000
0 

Attribute Name : SMOKE

mean -9.0000 -9.0000 -9.0000 -9.0000 

-
9.000

0 

std. dev. 0.0017 0.0017 0.0017 0.0017 
0.001

7 
weight 
sum 

157.000
0 50.0000 31.0000 32.0000 

12.00
00 

precisio
n 0.0100 0.0100 0.0100 0.0100 

0.010
0 

Attribute Name : CIGS  

mean 14.6960 21.3055 15.8358 12.4261 
24.13

64 

std. dev. 19.0934 19.8223 17.1743 18.6926 
19.27

07 
weight 
sum 

157.000
0 50.0000 31.0000 32.0000 

12.00
00 

precisio
n 4.9091 4.9091 4.9091 4.9091 

4.909
1 

Attribute Name : YEARS 

mean 13.6325 18.1849 17.3017 10.6951 
24.83

11 

std. dev. 15.2531 14.4657 16.1422 15.8374 
14.42

21 
weight 
sum 

157.000
0 50.0000 31.0000 32.0000 

12.00
00 

precisio
n 1.7027 1.7027 1.7027 1.7027 

1.702
7 

Attribute Name : CA 

mean 0.1338 0.3600 0.9677 1.6875 
1.500

0 

std. dev. 1.0350 1.7636 1.4024 1.4882 
1.500

0 
weight 
sum 

157.000
0 50.0000 31.0000 32.0000 

12.00
00 

Precisio
n 3.0000 3.0000 3.0000 3.0000 

3.000
0 
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Furthermore, the summary of the Naïve Bayes 
classification is furnished [Table – 5].  

 
TABLE V: SUMMARY OF NAÏVE BAYES 

Correctly Classified 
Instances 

(%) 

Incorrectly Classified 
Instances 

(%) 
54.2553 45.7447 

 
 
Here, the cost matrix is been listed [Table – 6]. 
 

TABLE VI: SUMMARY OF COST MATRIX 
 Class 0  Class 1 Class 2 Class 3 Class 4 

Class 0 0 5.0 5.0 5.0 5.0 
Class 1 5.0 0 5.0 5.0 5.0 
Class 2 5.0 5.0 0 5.0 5.0 
Class 3 5.0 5.0 5.0 0 5.0 
Class 4 5.0 5.0 5.0 5.0 0 

 
 
Furthermore, the summary of the CostSensitiveClassifier 

classification is furnished [Table – 7].  
 
TABLE VII: SUMMARY OF COST SENSITIVE CLASSIFIER 
Correctly Classified 

Instances 
(%) 

Incorrectly Classified 
Instances 

(%) 
55.6738 44.3262 

 
 
Secondly, the Hungarian Dataset is been analysed. The 

attribute influence are been recorded here [Table – 8]   
 

TABLE VIII: ATTRIBUTE INFLUENCE IN THE HUNGARIAN 

DATASET    
Attribute Name : AGE 

mean 47.0575 
47.021

2 
49.534

3 
52.70

85 50.6667 
std. 
dev. 7.9235 8.5799 6.6821 

5.868
2 5.8660 

weight 
sum 

188.000
0 

37.000
0 

26.000
0 

28.00
00 15.0000 

Precisi
on 1.0270 1.0270 1.0270 

1.027
0 1.0270 

Attribute Name : SEX 

mean 0.6330 0.8649 0.9615 
0.892

9 0.8000 
std. 
dev. 0.4820 0.3419 0.1923 

0.309
3 0.4000 

weight 
sum 

188.000
0 

37.000
0 

26.000
0 

28.00
00 15.0000 

Precisi
on 1.0000 1.0000 1.0000 

1.000
0 1.0000 

Attribute Name : PAINLOC 

mean 0.8989 0.9459 0.9615 
0.964

3 1.0000 
std. 
dev. 0.3014 0.2261 0.1923 

0.185
6 0.1667 

weight 
sum 

188.000
0 

37.000
0 

26.000
0 

28.00
00 15.0000 

precisio
n 1.0000 1.0000 1.0000 

1.000
0 1.0000 

Attribute Name : CP 

mean 2.6170 3.6216 3.8077 
3.392

9 3.8000 
std. 
dev. 0.8581 0.7480 0.6214 

0.976
1 0.5416 

weight 
sum 

188.000
0 

37.000
0 

26.000
0 

28.00
00 15.0000 

precisio
n 1.0000 1.0000 1.0000 

1.000
0 1.0000 

Attribute Name : SMOKE

mean -9.5213 
-

9.4595 
-

9.6154 

-
10.00

00 
-

10.0000 
std. 
dev. 2.1350 2.2612 1.9231 

0.833
3 0.8333 

weight 
sum 

188.000
0 

37.000
0 

26.000
0 

28.00
00 15.0000 

precisio
n 5.0000 5.0000 5.0000 

5.000
0 5.0000 

Attribute Name : CIGS  

mean 0.3670 0.0000 0.0000 
0.000

0 0.0000 
std. 
dev. 11.5000 

11.500
0 

11.500
0 

11.50
00 11.5000 

weight 
sum 

188.000
0 

37.000
0 

26.000
0 

28.00
00 15.0000 

precisio
n 69.0000 

69.000
0 

69.000
0 

69.00
00 69.0000 

Attribute Name : YEARS 

mean -9.0000 
-

9.0000 
-

9.0000 

-
9.000

0 -9.0000 
std. 
dev. 0.0017 0.0017 0.0017 

0.001
7 0.0017 

weight 
sum 

188.000
0 

37.000
0 

26.000
0 

28.00
00 15.0000 

precisio
n 0.0100 0.0100 0.0100 

0.010
0 0.0100 

Attribute Name : CA 

mean -8.8085 
-

8.7568 
-

9.0000 

-
9.000

0 -9.0000 
std. 
dev. 1.5964 1.5000 1.5000 

1.500
0 1.5000 

weight 
sum 

188.000
0 

37.000
0 

26.000
0 

28.00
00 15.0000 

precisio
n 9.0000 9.0000 9.0000 

9.000
0 9.0000 

 
 
Furthermore, the summary of the Naïve Bayes 

classification is furnished [Table – 9].  
 

TABLE IX: SUMMARY OF NAÏVE BAYES 
Correctly Classified 

Instances 
(%) 

Incorrectly Classified 
Instances 

(%) 
47.619 52.381 

 
The cost matrix is been listed same as [Table – 6]. 
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Furthermore, the summery of the CostSensitiveClassifier 
classification is furnished [Table – 10].  

 
TABLE X: SUMMERY OF COST SENSITIVE CLASSIFIER 
Correctly Classified 

Instances 
(%) 

Incorrectly Classified 
Instances 

(%) 
63.9456 36.0544 

Thirdly, the Switzerland Dataset is been analysed. The 
attribute influence are been recorded here [Table – 11]   

 
TABLE XI: ATTRIBUTE INFLUENCE IN THE SWITZERLAND 

DATASET    
Attribute Name : AGE 

mean 
54.687

5 
55.586

8 
52.682

3 
58.37

22 
52.033

3 
std. 
dev. 9.8898 

10.116
2 7.3156 

7.712
3 5.0370 

weight 
sum 8.0000 

48.000
0 

32.000
0 

30.00
00 5.0000 

Precisi
on 1.1667 1.1667 1.1667 

1.166
7 1.1667 

Attribute Name : SEX 

mean 1.0000 0.8750 0.9063 
0.966

7 1.0000 
std. 
dev. 0.1667 0.3307 0.2915 

0.179
5 0.1667 

weight 
sum 8.0000 

48.000
0 

32.000
0 

30.00
00 5.0000 

Precisi
on 1.0000 1.0000 1.0000 

1.000
0 1.0000 

Attribute Name : PAINLOC 

mean 0.5000 0.9375 0.8750 
1.000

0 1.0000 
std. 
dev. 0.5000 0.2421 0.3307 

0.166
7 0.1667 

weight 
sum 8.0000 

48.000
0 

32.000
0 

30.00
00 5.0000 

Precisi
on 1.0000 1.0000 1.0000 

1.000
0 1.0000 

Attribute Name : CP 

mean 3.0000 3.6667 3.7500 
3.833

3 4.0000 
std. 
dev. 0.7071 0.7169 0.7500 

0.453
4 0.1667 

weight 
sum 8.0000 

48.000
0 

32.000
0 

30.00
00 5.0000 

Precisi
on 1.0000 1.0000 1.0000 

1.000
0 1.0000 

Attribute Name : SMOKE 

mean 

-
10.000

0 -8.1250 -8.4375 

-
7.666

7 -6.0000 
std. 
dev. 0.8333 3.9031 3.6309 

4.229
5 4.8990 

weight 
sum 8.0000 

48.000
0 

32.000
0 

30.00
00 5.0000 

precisi
on 5.0000 5.0000 5.0000 

5.000
0 5.0000 

Attribute Name : CIGS  

mean 0.0000 2.0417 3.0625 
4.083

3 4.9000 

std. 
dev. 4.0833 8.4180 

10.157
2 

11.10
79 9.8000 

weight 
sum 8.0000 

48.000
0 

32.000
0 

30.00
00 5.0000 

precisi
on 

24.500
0 

24.500
0 

24.500
0 

24.50
00 

24.500
0 

Attribute Name : YEARS 

mean 0.0000 0.6146 0.0000 
1.966

7 0.0000 
std. 
dev. 4.9167 4.9167 4.9167 

10.59
08 4.9167 

weight 
sum 8.0000 

48.000
0 

32.000
0 

30.00
00 5.0000 

precisi
on 

29.500
0 

29.500
0 

29.500
0 

29.50
00 

29.500
0 

Attribute Name : CA 

mean -9.6250 

-
10.541

7 

-
11.000

0 

-
10.26

67 

-
11.000

0 
std. 
dev. 3.6379 2.1981 0.9167 

2.743
9 0.9167 

weight 
sum 8.0000 

48.000
0 

32.000
0 

30.00
00 5.0000 

Precisi
on 5.5000 5.5000 5.5000 

5.500
0 5.5000 

 
Furthermore, the summary of the Naïve Bayes 

classification is furnished [Table – 12].  
 

TABLE XII: SUMMERY OF NAÏVE BAYES 
Correctly Classified 

Instances 
(%) 

Incorrectly Classified 
Instances 

(%) 
39.0244 60.9756 

 
The cost matrix is been listed same as [Table – 6]. 
 
 
Furthermore, the summary of the CostSensitiveClassifier 

classification is furnished [Table – 13].  
 

 
TABLE XIII: SUMMARY OF COST SENSITIVE CLASSIFIER  

Correctly Classified 
Instances 

(%) 

Incorrectly Classified 
Instances 

(%) 
39.0244 60.9756 

 
Henceforth, the final analysis of the classification task is 

furnished here [Table – 14].  
 

TABLE XIV: SUMMARY OF IMPROVEMENTS  
Naïve BayesClassification 

 Cleveland Hungarian Switzerland 
Correctly 
Classified 
Instances 

(%) 

54.2553 47.619 39.0244 

Incorrectly 
Classified 
Instances 

(%) 

45.7447 52.381 60.9756 
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Cost Sensitive Classification  
Correctly 
Classified 
Instances 

(%) 

55.6738 63.9456 39.0244 

Incorrectly 
Classified 
Instances 

(%) 

44.3262 36.0544 60.9756 

 
Finally, the results are been analysed graphically [Fig – 1] 

and [Fig – 2].  
 

 
Fig.1Comparative Study of Naïve Bayes Classification 

 
Fig.2  Comparative Study of Cost Sensitive Classification 

I. CONCLUSION   
 
Motivated by the current improvements in the field of 

pharmaceutical applicability and the supremacy of curing 
the life threating diseases, the need for the medical research 
is to improve the disease detection with the help of 
computing capabilities. Thus, a number of predictive 
approaches are been carried out by various researchers to 
detect and prevent the disease, especially the heart disease 
being highest mortality rated in growing countries. This 
work analyses the popular predictive techniques to detect 
the heart diseases in the early stages. Nevertheless, the 
accuracy is always been a challenge for the researches. 
Hence, this work introduces the cost matrix oriented fuzzy 
rule based predictive analysis to improve the results. The 
results are significant in terms of accuracy improvement and 
been demonstrated in three popular datasets from UCI 
source. The outcome of the research is a novel framework to 
improve the detection accuracy, which can be generalized 
targeting to save precious human life and made it available 
in low cost for the underdeveloped countries.    
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