
��������	�
����	��������������

��� ����!��"�����#�������

�$#$��!%�&�&$��

������'���(���������)))��*���������

© 2010, IJARCS All Rights Reserved 313

Locate a Pair Squares for Maximum Points Containment
Priya Ranjan Sinha Mahapatra

Department of Computer Science and Engineering

University of Kalyani

Kalyani, India

Priya_cskly@yahoo.co.in

Abstract: Given a set P of n points in
2R , locate two disjoint or overlapping axis-parallel squares, say 1S and 2S , covering maximum

number of points from P . However, in case of overlapping, their overlapped zone is empty. This work proposes)log(2
nnO time and

)(2nO space algorithm to locate 1S and 2S .

Keywords: Facility Location, Axis-parallel square, Range tree, Staircase.

I. INTRODUCTION

 The problem for finding two disjoint axis-parallel

unit squares containing maximum number of points from

npppP ,,,{= 21 � , was first studied in [5] along with an

)(2
nO time algorithm. They later improved the

complexity to)log(nnO [4].

It was mentioned in the same paper that the problem

find applications in facility location, Pattern Recognition

and Classification, etc. This work considers an extension of

this problem [5] to compute two axis-parallel unit squares

1S and 2S such that the number of points covered by 1S

and 2S is maximum; 1S and 2S may disjoint or

intersecting. In case of intersecting, their common area is

empty. Here a pair of square having empty overlapping zone

may be called as disjoint as they donot contains any point of

P . So a pair of intersecting axis parallel unit squares with

common empty area may be taken as a candidate for finding

better solution of the problem. In other words, the search

space for finding such pair of disjoint or overlapping squares

containing essential features is larger than that of two

disjoint squares only. In this work, an)log(2 nnO and

)(2
nO space algorithm is proposed to locate 1S and 2S .

The motivation of studying this problem comes from facility

location [9, 1, 6], where essential features are represented as

a point set, and the objective is to identify an optimum pair

of disjoint precise convex regions containing maximum

number of points.

 Figure.1 Optimum disjoint pair

Observation 1 Here the two squares are of same size.

Moreover each square is a unit square. This condition can be

lifted easily, leaving the results unchanged. In the rest of the

paper, a square means an axis-parallel unit square. Let 1S

and 2S be two intersecting axis-parallel unit squares with

common empty area such that the number of points covered

by them is maximum and gS the global optimum

axis-parallel unit square containing maximum number of

points from P . Then 1S and 2S will both intersect

gS .

Proof: We will prove this observation by contradiction. Let

us suppose that 1S and 2S will not intersect gS . Then it

is very clear that either the pair of squares gS and 1S or

the pair of squares gS and 2S constitutes the desired

solution of our problem. Hence a contraction arrives.

W

II. SOME IMPORTANT OBSERVATIONS

 This section describes some important observations.

Let },,,{= 21 npppP � be the n points in
2

R .

Without loss of generality assume that the coordinates of all

points are distinct, since a small perturbation [7] can enforce

Priya Ranjan Sinha Mahapatra, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,313-318

© 2010, IJARCS All Rights Reserved 314

it. Pre-sort the points (in non-decreasing order) from P on

their x - and y -coordinates and store them in lists xL

and
yL respectively. The coordinates of a generic point

p are denoted by),(yx pp and those for a specific point

ip are denoted by),(
i

y
i

x pp . Let R be the bounding

rectangle containing the given n points from P . Clearly

R is defined by the boundaries

min
y

max
x

max
y

min
x pppp ,,, , where

max
x

min
x pp , are

minimum and maximum x -coordinate and
max

y
min

y pp , ,

minimum and maximum y -coordinate respectively.

Suppose iS is an axis-parallel unit square with bottom

boundary at the level
iyp and enclose maximum number

of points from set P . Similarly, other three types of unit

squares can be defined. Diaz Banez et. al. in [5] computes

all such axis-parallel unit squares(i.e at most n4) and the

number of points covered by each such squares in)(2
nO

time. Observe that given this set of axis-parallel unit squares,

the problem of finding two disjoint axis-parallel unit squares

jointly covering maximum number of points can be solved

in linear time by sweeping horizontal and vertical lines over

this set. The details can be found in [5]. Other important

observations come during solving our problem are described

below.

(i) From Figures 1 and 2 , it is very clear that only these

computed axis-parallel unit squares are not sufficient to

find the solution of problem.

(ii) Unfortunately, the result in observation 1 is not used to

find the solution of the problem.

(iii) If the desired pair of axis-parallel unit squares are

intersecting having common empty area then the

boundary of the common empty area may not aligned

with point from P .

(iv) When the adjacent boundaries of the common empty

area are aligned with point from P then the problem

can be tackled in simple way.

(v) If anyone try to find the solution of the problem in brute

force manner then they have to search 1S and 2S

from)(4
nO axis-parallel unit squares.

Figure.2 Optimum overlapping pair

Observation 2 Let },,,{= 21 nx xxxP � be sorted x -

coordinates in non-decreasing order of n points in
2R .

Define
ji xxl =)(where j is minimum index of x

such that)(ji xx − is less than or equal to one. Then we

can compute nixl i ≤≤),1(in)(nO time. Obviously,

11 =)(xxl .

Algorithm for proving Observation 2:

 Initialization: Initialize two indices i and j of x

with 1.

(1) Repeat following steps until i becomes n .

(2) Let ji xxd −= .

 (2.1) If the d is less than or equal to one then (i)

ji xxl ←)((ii) increment i by one.

 (2.2) Else increment j by one.

 Clearly the runtime of this algorithm to compute

nixl i ≤≤),1(in)(nO . Hence the Observation 2 is

proved.

III. SOLUTION OF THE PROBLEM

 From the Observations 1 and 2 in the section 2,

the idea of grid is used to find the pair of axis-parallel unit

squares 1S and 2S such that the number of points

covered by them is maximum using)log(2
nnO time

and)(2nO space. We allow 1S and 2S to be disjoint

or intersecting. However, in case they are intersecting, their

common area is empty. Construct the grid for n points

from P with the help of horizontal grid lines and vertical

grid lines through these points. Clearly, the largest rectangle

generated by horizontal grid line and vertical grid line is R .

Observe that co-ordinates of the grid point, generated i -th

horizontal grid line and j -th vertical grid line is

),(
i

y
j

x pp and these resulting
2n grid points can be

traversed by previously defined sorted lists xL and yL in

appropriate manner. If, for some grid point),(ji , the

corresponding x - and y -coordinates are of the same

point, then the grid point is occupied by a point from P .

For brevity, we sometimes specify a grid point by its

coordinates also. Define a function l over sorted x

-coordinates in non-decreasing order for
2n grid points in

the same way as in Observation 2. Similarly for each grid

point, define
i

x
j

x ppr =)(over sorted x - coordinates

where i is maximum index of x such that)(
j

x
i

x pp −

is less than or equal to one. Also define functions u and

b over sorted y -coordinates in non-decreasing order for

2n grid points. Therefore by Observation 2, each function

rurl ,,, can be computed in)(2
nO time . Our

Priya Ranjan Sinha Mahapatra, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,313-318

© 2010, IJARCS All Rights Reserved 315

algorithm works in the following steps.

Theorem 1 Let P be a set of n points in
2R . A range

tree T [3] for P uses)log(nnO storage and can be

constructed in)log(nnO time. By querying this range

tree T one can report the points in P that lie in a

rectangular query range [3] in)log(
2

knO + time, where

k is the number of reported points.

Theorem 2 The query time in the Theorem 1 can be

improved to)log(knO + by fractional cascading[3].

A. Step I to compute optimum axis-parallel unit squares

within grid

 Define jiS , as the square with the grid point

),(
i

y
j

x pp as top-left corner and jiCount , is the

number of points within jiS , . Let
opt

jiS , be the optimum

axis-parallel unit square containing maximum number of

points within the sub-rectangle defined by the grid points

),(
i

y
j

x pp and),(
min

y
max

x pp , say
sub

jiR , , embedded in

the grid. Let
opt

jiCOUNT , be the number of points within

opt

jiS , . Clearly
sub

jiR , is generated by the grid point

),(
i

y
j

x pp as the top-left corner. Observe that, other types

of
opt

jiS , and
opt

jiCOUNT , can be defined and computed

for the sub-rectangles within grid generated by other corner

positions of
jiS , . However, since they are similar, we

describe only the top-left corner case.

First of all, we compute jiCount , and

opt

jiCOUNT , within bottom-most unit strip having

boundaries
min

xp ,
max

xp ,
min

yp and)(
min

ypu . To do

so, construct a range tree TR [3] from the points in P in

the following way.

The main tree is 1T is a AVL tree [3] built on x

-coordinate of the points in xL .

For any intermediate or leaf node v in 1T , the

canonical subset)(vP is stored in a AVL tree assocT (v)

on the y -coordinate of the points in yL . The node v

stores a pointer to the root of assocT (v), which is called the

associated structure of v .

We compute jiCount , by querying the range tree

TR that lie in the range],[],[
i

y
min

y
max

x
j

x ppXpp

using Theorem 1 where
j

x
max

x ppl =)(and

i
y

min
y ppu =)(. Obviously ji

opt

ji CountCOUNT ,, = .

Then by another range query, we can compute 1, −jiCount .

Clearly ,{= ,1,

opt

ji

opt

ji COUNTmaxCOUNT −

}1, −jiCount and the corresponding optimum square is

opt

jiS , . Hence by Theorem 1, we can compute at most n -1

opt

jiCOUNT , ,
opt

jiS , generated by the bottom-most unit

strip in)log(nnO time. Similarly one can also compute

at most n -1
opt

jiCOUNT , ,
opt

jiS , generated by the

right-most unit vertical strip having boundaries
min

yp ,

max
yp ,

max
xp and)(

max
xpl in)log(nnO time. In

the next step, we compute)(nO jiCount 1,−

corresponding to jiS 1,− , generated by the unit horizontal

strip having boundaries
1

,,
−iy

max
x

min
x ppp and

k
yp

where
k

y
i

y ppb =)(
1−

 in the following fashion. It is very

clear that we have already computed jiS 1,− ,
opt

jiS 1,− at the

time of processing all
jiS , in the unit vertical strip. So we

first process 11, −− jiS to compute 11, −− jicount .

(i) If the point on the 1)(−j -th vertical grid line is

within 11, −− jiS then increase the value of 11, −− jiCount

by one.

(ii) Traverse all vertical grid lines from the right side of the

right boundary of 11, −− jiS to the right boundary of jiS ,

and find the number of points ,say m , on these vertical

grid lines. Clearly these m points was within jiS , but

not within 11, −− jiS . So decrease the value of 11, −− jiS by

m .

(iii) Increase 11, −− jiCount by jiCount , .

 Clearly we can compute)(nO jiCount 1,−

corresponding to jiS 1,− in this horizontal unit strip in

)(nO time. Since there are at most 2−n unit horizontal

strip excluding the bottom-most horizontal strip, so we can

compute)(2
nO jiCount , corresponding to jiS ,

generated by)(nO unit horizontal strips in)(2
nO time.

Now we are in a position to compute
opt

jiCOUNT ,

corresponding to
opt

jiS , with the help of (i) already

computed
opt

jiCOUNT , corresponding to
opt

jiS , within the

bottom-most unit horizontal strip and right-most unit

vertical strip. (ii) all already computed jiCount ,

corresponding to jiS , . Let
i

x
max

x ppl =)(and

j
y

min
y ppu =)(. Then

opt

jiCOUNT 11, −− = max

{
opt

jiCOUNT 1, − ,
opt

jiCOUNT 1,− , 11, −− jiCount }. It is very

Priya Ranjan Sinha Mahapatra, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,313-318

© 2010, IJARCS All Rights Reserved 316

clear that we can compute
opt

jiCOUNT 11, −− and
opt

jiS , in

constant time. Hence the time required to compute
opt

jiS ,

and njiCOUNT
opt

ji ≤≤ ,,1, is)(2nO .

Figure.3 Stair case within unit square
jiS ,

B. Step II to compute staircase AB and additional grid

points FE, within
jiS ,

 Define jiS , as an axis-parallel unit square with

bottom-right corner at the grid point),(
iyjx pp on the i

-th horizontal grid line and
j

x
min

x ppr =)(. In this

subsection, we first construct staircase AB between lowest

point A and top-most point B within jiS , and then

compute two additional grid points FE, with respect to

bottom-right corner position of the square
jiS , . Observe

that other types of staircase can be constructed with respect

to other corner positions of the square jiS , . However, since

they are similar, we describe the bottom-right corner case.

a)Algorithm for constructing AB

Preface: By Theorem 2, all points within unit square jiS ,

can be found and these are in non-deceasing order of y

-coordinate. We process all points in jiS , according to

nondecreasing order of y -coordinate using two sweep

lines named horizontal sweep line HSL lines and vertical

sweep line VSL .

Denote two consecutive points of the staircase by

p and q . Let
sub

y
q

x
pR , be sub-rectangle embedded in the

grid, defined by the grid points),(yx qp and

),(
min

y
max

x pp . Observe that we have already computed

opt

y
q

x
pCOUNT , and the corresponding square

opt

y
q

x
pS , .

Create a binary search tree (BST) T with yq as key to

represent the staircase AB between lowest point A and

top-most point B within
jiS , . Attach the variables qp,

and
opt

y
q

x
pCOUNT , ,

opt

y
q

x
pS , with each node of T . Here

p and q generate the grid point),(yx qp as a member

of the staircase AB . Create a max heap H with
opt

y
q

x
pCOUNT , as key. Attach the variable

opt

y
q

x
pS , with

each node of H .

Initialization: Initialize p with lowest point within jiS ,

and VSL at p .

(1)For each point q encountered by the HSL

(2) If the point q is on the right side of the current position

of the VSL

(2.1) These HSL and VSL generate the grid point

),(yx qp as a member of the staircase AB . Find

opt

y
q

x
pCOUNT , corresponding to

opt

y
q

x
pS , . Insert qp,

and
opt

y
q

x
p

opt

y
q

x
p SCOUNT ,, , into T with yq as

key. Also insert
opt

y
q

x
pCOUNT , as key along

with
opt

y
q

x
pS , into H .

(2.2) qp ←

(2.3) Move the VSL to the point p
.

(3) Else discard the point q .

b) Compute additional grid points E and F

 If the lowest point within jiS , is not on the

left-boundary of
jiS , then the horizontal line through the

lowest point within jiS , and the vertical line along the

left-boundary of the square
jiS , will generate the

additional grid point E . Find the optimum square, say
opt

ES , from the sub-rectangle defined by the grid points E

and),(minmax pp . Let
opt

EC be the count of
opt

ES .

If top-most point within
jiS , is not on the right

boundary of jiS , then the vertical line through the

top-most point and the horizontal line along the

top-boundary of jiS , will generate the grid point F . Find

opt

FS and
opt

FC in the similar way. Observe that E and

F may not exist.

Clearly the optimal square, say ABS , at the root of

heap H contains maximum number of points ,say ABC ,

among all optimal squares in the heap H . Compute

),(max= opt

F

opt

EABEF CCCC and the corresponding

Priya Ranjan Sinha Mahapatra, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,313-318

© 2010, IJARCS All Rights Reserved 317

square be EFS . Observe that the pair EFS and jiS , may

be disjoint or intersecting with empty common zone. So the

optimal square EFS together with the square
jiS , is a

candidate pair jointly covering number of point, say

SUM , from P .

C. Step II to compute staircase BA ′′ and additional grid

point E′ within 1),(+jiS

 Let BA ′′ be the staircase between lowest point A′

and top-most point B′ within 1, +jiS and E′ be the

additional grid point. Observe that the additional grid point

of type F within square
jiS , does not exist and the

additional grid point E′ may not exist.

If the point on the −+1)(j th vertical grid line is

within 1, +jiS then compute staircase BA ′′ within square

1, +jiS from the staircase AB and additional grid point

E′ in the following way.

(1) If the left boundary of 1, +jiS coincides with the left

boundary of jiS ,

(1.1) Don't update the the lower end of the staircase

AB and E becomes E′ .

(1.2) Update the upper end of the staircase AB by the

algorithm 3.3.1

(2) Else if left boundary of 1, +jiS is on the left of the

lowest point within jiS ,

(2.1) Don't update the the lower end of the staircase AB

and compute the additional grid point E′ in the same

way as described in the subsection 3.2.2.

(2.2) Update the upper end of the staircase AB by the

algorithm 3.3.1

(3) Else compute the staircase BA ′′ from AB by the

algorithms 3.3.1 and 3.3.2 and the additional grid

point E′ in the similar way.

Algorithm to update the upper end of the staircase AB

to compute the staircase BA ′′

(1) Find the largest key from T and denote the

corresponding node by α .

(2) If y -coordinate of the point under processing on the

right boundary of 1, +jiS is greater than yq

associated with α .

(2.1) The point p becomes the point q associated with

α and q becomes the point under processing. The

horizontal line through the point q and the vertical line

through the point p generate the grid point),(yx qp as

a member of BA ′′ .

(2.2) Find
opt

y
q

x
pCOUNT , and corresponding square

opt

y
q

x
pS , . Insert

yq as key along with qp, and

opt

y
q

x
p

opt

y
q

x
p SCOUNT ,, , into T . Also insert

opt

y
q

x
pCOUNT , as key along with

opt

y
q

x
pS , into H .

(3) Else-if the point under processing is above the point

p associated with α

(3.1) Find the node, say β , from heap H containing

opt

y
q

x
pCOUNT , associated with α .

(3.2) Clearly, the point q associated with α will be

replaced by the point under

processing. The vertical line through the

point p associated with α and the

horizontal line through the point under

processing generate the grid point

),(yx qp as a member of BA ′′ . Find

opt

y
q

x
pCOUNT , and corresponding

opt

y
q

x
pS ,

Save
opt

y
q

x
pCOUNT , and corresponding

opt

y
q

x
pS , at the node α .

(3.3) Replace the values associated with node β in H

with the modified values
opt

y
q

x
pCOUNT , and corresponding

opt

y
q

x
pS ,

in α .

(4) Else delete the node α from T and β from H .

 Repeat Step 1 until the Step 2 or Step 3 is executed.

Algorithm to update the lower end of the staircase AB

to compute the staircase BA ′′

(1) Find the lowest key from the BST T and denote the

corresponding node by γ .

(2) If the left-boundary of
1),(+jiS

 is between points
p

 and
q

 associated with
γ

(2.1) Find the node, say δ , from H containing
opt

y
p

x
pCOUNT , associated with γ .

(2.2) Delete the node γ from BST T and δ from heap

H .

 Repeat Step 1 until the Step 2 is executed.

Clearly the square, say BAS ′′ , at the root of heap H

contains maximum number of points, say BAC ′′ , among all

squares in the heap H . Compute

),(max= opt

EBABE CCC ′′′′′ and the corresponding square

be BES ′′ . Observe that the pair BES ′′ and 1, +jiS may be

disjoint or intersecting with empty common zone. So the

Priya Ranjan Sinha Mahapatra, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,313-318

© 2010, IJARCS All Rights Reserved 318

square BES ′′ together with the square 1, +jiS is a

candidate pair jointly covering number of points, say

MSU ′ , from P .

If SUM is greater than MSU ′ then squares

EFS and jiS , is current optimal candidate pair.

Otherwise squares BES ′′ 1, +jiS is current optimal

candidate pair.

This is done for all unit squares jiS , with

right-bottom corner at the grid point on i -th horizontal grid

line. So after processing all such unit squares on i -th

horizontal grid line, we get an optimal candidate pair.

Repeat Step II to find)(nO optimal candidate

pairs generated in similar way.

At the end of processing)(2
nO axis-parallel unit

squares generated from)(nO horizontal grid lines, 1S

and 2S can be found.

D. Complexity analysis of Phase II

 It should be observed that points constructing the

staircase AB within jiS , may not be present in the

staircase BA ′′ within 1, +jiS . So a point within
jiS ,

may be deleted from the BST T or inserted into BST T

for atmost one time to process 1, +jiS . The number nodes in

heap H is)(nO to process all
jiS , on the −i th

horizontal grid line and insertion and deletion operation

takes of)log(nO time. Hence the time required to

process all axis-parallel unit squares on the i -th horizontal

grid line is)log(nnO . Consequently, the time required to

process)(2
nO axis-parallel unit squares on)(nO

horizontal grid lines is)log(2
nnO . We thus have the

result.

Theorem 3 Given a set P of n points in
2R . Two

disjoint or intersecting (with empty overlapping zone)

axis-parallel unit squares covering maximum number of

points can be found using)log(2 nnO time and)(2nO

space.

Observation 3 This algorithm can be easily extended to find

and report the points, covered by a pair of rectangles say

1R and 2R with pairwise parallel side with given

directions and with disjoint interiors or intersecting (with

empty overlapping zone) that maximizes the sum of the

points covered by 1R plus the number of points covered

by 2R in)log(2
nnO time and)(2

nO space.

IV.CONCLUSION

 We have taken the help of range tree to compute all

axis-parallel unit squares within the bottom-most horizontal

and right-most vertical strips as our proposed complexity is

)log(2
nnO . It can be observed that the way of computing

all axis-parallel unit squares can be avoided by traversing

the grid points in xL or yL . The proposed time

complexity can be reduced to)(2
nO if we can manage

the updating of the staircase in better way.

V. REFERENCES

[1] T. Asano, B. Bhattacharya, M. Keil, F. Yao

Clustering algorithms based on maximum and minimum
spanning trees. Proc. 4th Annual Symposium on
Computational Geometry, 252--257, 1988.

[2] A. Aggarwal and S. Suri, Fast Algorithm for
Computing the Largest Empty Rectangle, Proceedings
of the third annual symposium on Computational
Geometry, 278--290, 1987.

[3] M. de Berg, M. Van Kreveld, M. Overmars, O.
Schwarzkopf, Computational Geometry, Algorithms
and Applications, Springer, 1997.

[4] Sergio Cabello, J. Miguel Diaz-Banez, Carlos Seara, J.
Antoni Sellares, Jorge Urrutia, Inmaculada Ventura,
Covering point sets with two disjoint disks or squares.
Computational Geometry Theory and Applicaions, 40,
195--206, 2008.

[5] J. Miguel Diaz-Banez, Carlos Seara, J. Antoni Sellares,
Jorge Urrutia, Imma Ventura, Covering Points Sets
with Two Convex Objects, EWCG, 2005.

[6] Z. Drezner and H. Hamacher, Facility Location:
Applications and Theory. Springer Verlag, Berlin,
2002.

[7] Edelsbrunner, H. and Mucke, E.P. Simulation and
simplicity: A technique to cope with degenerate cases in
geometric algorithms, ACM Trans. Graphics, vol. 9,
66--104, 1999.

[8] B. Chazelle, R.L. Drysdale, D.T. Lees Computing
The Largest Empty Rectangle, SIAM J.
COMPUTING, vol. 15, 1986.

[9] J. A. Hartigan, Clustering Algorithms, Wiley, New
York, 1975.

[10] D. T. Lee, Y. F. Wu, geometric complexity of some
location problems, Journal of Algorithmica, vol. 1,
193--211, 1986.

