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Abstract: Given a set P  of n  points in 
2R , locate two disjoint or overlapping axis-parallel squares, say 1S  and 2S , covering maximum 

number of points from P . However, in case of overlapping, their overlapped zone is empty. This work proposes )log( 2
nnO  time and 

)( 2nO  space algorithm to locate 1S  and 2S . 
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I. INTRODUCTION 

 

   The problem for finding two disjoint axis-parallel 

unit squares containing maximum number of points from 

npppP ,,,{= 21 � , was first studied in [5] along with an 

)( 2
nO  time algorithm. They later improved the 

complexity to )log( nnO  [4]. 

It was mentioned in the same paper that the problem 

find applications in facility location, Pattern Recognition 

and Classification, etc. This work considers an extension of 

this problem [5] to compute two axis-parallel unit squares 

1S  and 2S  such that the number of points covered by 1S  

and 2S  is maximum; 1S  and 2S  may disjoint or 

intersecting. In case of intersecting, their common area is 

empty. Here a pair of square having empty overlapping zone 

may be called as disjoint as they donot contains any point of 

P . So a pair of intersecting axis parallel unit squares with 

common empty area may be taken as a candidate for finding 

better solution of the problem. In other words, the search 

space for finding such pair of disjoint or overlapping squares 

containing essential features is larger than that of two 

disjoint squares only. In this work, an )log( 2 nnO  and 

)( 2
nO  space algorithm is proposed to locate 1S  and 2S . 

The motivation of studying this problem comes from facility 

location [9, 1, 6], where essential features are represented as 

a point set, and the objective is to identify an optimum pair 

of disjoint precise convex regions containing maximum 

number of points. 

   

 

 
    

     Figure.1 Optimum disjoint pair 
  

Observation 1  Here the two squares are of same size. 

Moreover each square is a unit square. This condition can be 

lifted easily, leaving the results unchanged. In the rest of the 

paper, a square means an axis-parallel unit square. Let 1S  

and 2S  be two intersecting axis-parallel unit squares with 

common empty area such that the number of points covered 

by them is maximum and gS  the global optimum 

axis-parallel unit square containing maximum number of 

points from P . Then 1S  and 2S  will both intersect 

gS .  

Proof: We will prove this observation by contradiction. Let 

us suppose that 1S  and 2S  will not intersect gS . Then it 

is very clear that either the pair of squares gS  and 1S  or 

the pair of squares gS  and 2S  constitutes the desired 

solution of our problem. Hence a contraction arrives.          

W   

II. SOME IMPORTANT OBSERVATIONS 

 

 This section describes some important observations. 

Let },,,{= 21 npppP �  be the n  points in 
2

R . 

Without loss of generality assume that the coordinates of all 

points are distinct, since a small perturbation [7] can enforce 
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it. Pre-sort the points (in non-decreasing order) from P  on 

their x - and y -coordinates and store them in lists xL  

and 
yL  respectively. The coordinates of a generic point 

p  are denoted by ),( yx pp  and those for a specific point 

ip  are denoted by ),(
i

y
i

x pp . Let R  be the bounding 

rectangle containing the given n  points from P . Clearly 

R  is defined by the boundaries 

min
y

max
x

max
y

min
x pppp ,,,  , where 

max
x

min
x pp ,  are 

minimum and maximum x -coordinate and 
max

y
min

y pp , , 

minimum and maximum y -coordinate respectively. 

Suppose iS  is an axis-parallel unit square with bottom 

boundary at the level 
iyp  and enclose maximum number 

of points from set P . Similarly, other three types of unit 

squares can be defined. Diaz Banez et. al. in [5] computes 

all such axis-parallel unit squares(i.e at most n4 ) and the 

number of points covered by each such squares in )( 2
nO  

time. Observe that given this set of axis-parallel unit squares, 

the problem of finding two disjoint axis-parallel unit squares 

jointly covering maximum number of points can be solved 

in linear time by sweeping horizontal and vertical lines over 

this set. The details can be found in [5]. Other important 

observations come during solving our problem are described 

below. 

(i) From Figures 1 and 2 , it is very clear that only these 

computed axis-parallel unit squares are not sufficient to 

find the solution of problem. 

(ii) Unfortunately, the result in observation 1 is not used to 

find the solution of the problem. 

(iii) If the desired pair of axis-parallel unit squares are 

intersecting having common empty area then the 

boundary of the common empty area may not aligned 

with point from P . 

(iv) When the adjacent boundaries of the common empty 

area are aligned with point from P  then the problem 

can be tackled in simple way. 

(v) If anyone try to find the solution of the problem in brute 

force manner then they have to search 1S  and 2S  

from )( 4
nO  axis-parallel unit squares. 

  

 
    

Figure.2 Optimum overlapping pair 

 

Observation 2  Let },,,{= 21 nx xxxP �  be sorted x - 

coordinates in non-decreasing order of n  points in 
2R . 

Define 
ji xxl =)(  where j  is minimum index of x  

such that )( ji xx −  is less than or equal to one. Then we 

can compute nixl i ≤≤),1(  in )(nO  time. Obviously, 

11 =)( xxl .  

 

Algorithm for proving Observation 2: 

 Initialization: Initialize two indices i  and j  of x  

with 1.   

(1) Repeat following steps until i  becomes n . 

(2) Let ji xxd −= . 

   (2.1) If the d  is less than or equal to one then (i) 

ji xxl ←)(  (ii) increment i  by one. 

    (2.2) Else increment j  by one.  

 Clearly the runtime of this algorithm to compute 

nixl i ≤≤),1(  in )(nO . Hence the Observation 2 is 

proved.            

III. SOLUTION OF THE PROBLEM 

 

 From the Observations 1 and 2  in the section 2, 

the idea of grid is used to find the pair of axis-parallel unit 

squares 1S  and 2S  such that the number of points 

covered by them is maximum using )log( 2
nnO  time 

and )( 2nO  space. We allow 1S  and 2S  to be disjoint 

or intersecting. However, in case they are intersecting, their 

common area is empty. Construct the grid for n  points 

from P  with the help of horizontal grid lines and vertical 

grid lines through these points. Clearly, the largest rectangle 

generated by horizontal grid line and vertical grid line is R . 

Observe that co-ordinates of the grid point, generated i -th 

horizontal grid line and j -th vertical grid line is 

),(
i

y
j

x pp  and these resulting 
2n  grid points can be 

traversed by previously defined sorted lists xL  and yL  in 

appropriate manner. If, for some grid point ),( ji , the 

corresponding x - and y -coordinates are of the same 

point, then the grid point is occupied by a point from P . 

For brevity, we sometimes specify a grid point by its 

coordinates also. Define a function l  over sorted x

-coordinates in non-decreasing order for 
2n  grid points in 

the same way as in Observation 2. Similarly for each grid 

point, define 
i

x
j

x ppr =)(  over sorted x - coordinates 

where i  is maximum index of x  such that )(
j

x
i

x pp −  

is less than or equal to one. Also define functions u  and 

b  over sorted y -coordinates in non-decreasing order for 

2n  grid points. Therefore by Observation 2, each function 

rurl ,,,  can be computed in )( 2
nO  time . Our 
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algorithm works in the following steps.  

Theorem 1 Let P  be a set of n  points in 
2R . A range 

tree T  [3] for P  uses )log( nnO  storage and can be 

constructed in )log( nnO  time. By querying this range 

tree T  one can report the points in P  that lie in a 

rectangular query range [3] in )log(
2

knO +  time, where 

k  is the number of reported points.  

 

Theorem 2  The query time in the Theorem 1 can be 

improved to )log( knO +  by fractional cascading[3].  

  

A. Step I to compute optimum axis-parallel unit squares 

within grid 

 Define jiS ,  as the square with the grid point 

),(
i

y
j

x pp  as top-left corner and jiCount ,  is the 

number of points within jiS , . Let 
opt

jiS ,  be the optimum 

axis-parallel unit square containing maximum number of 

points within the sub-rectangle defined by the grid points 

),(
i

y
j

x pp  and ),(
min

y
max

x pp , say 
sub

jiR , , embedded in 

the grid. Let 
opt

jiCOUNT ,  be the number of points within 

opt

jiS , . Clearly 
sub

jiR ,  is generated by the grid point 

),(
i

y
j

x pp  as the top-left corner. Observe that, other types 

of 
opt

jiS ,  and 
opt

jiCOUNT ,  can be defined and computed 

for the sub-rectangles within grid generated by other corner 

positions of 
jiS , . However, since they are similar, we 

describe only the top-left corner case. 

First of all, we compute jiCount ,  and 

opt

jiCOUNT ,  within bottom-most unit strip having 

boundaries 
min

xp , 
max

xp , 
min

yp  and )(
min

ypu . To do 

so, construct a range tree TR  [3] from the points in P  in 

the following way. 

The main tree is 1T  is a AVL tree [3] built on x

-coordinate of the points in xL . 

For any intermediate or leaf node v  in 1T , the 

canonical subset )(vP  is stored in a AVL tree assocT ( v ) 

on the y -coordinate of the points in yL . The node v  

stores a pointer to the root of assocT ( v ), which is called the 

associated structure of v . 

We compute jiCount ,  by querying the range tree 

TR  that lie in the range ],[],[
i

y
min

y
max

x
j

x ppXpp  

using Theorem 1 where 
j

x
max

x ppl =)(  and 

i
y

min
y ppu =)( . Obviously ji

opt

ji CountCOUNT ,, = . 

Then by another range query, we can compute 1, −jiCount . 

Clearly ,{= ,1,

opt

ji

opt

ji COUNTmaxCOUNT −  

}1, −jiCount  and the corresponding optimum square is 

opt

jiS , . Hence by Theorem 1, we can compute at most n -1 

opt

jiCOUNT , , 
opt

jiS ,  generated by the bottom-most unit 

strip in )log( nnO  time. Similarly one can also compute 

at most n -1 
opt

jiCOUNT , , 
opt

jiS ,  generated by the 

right-most unit vertical strip having boundaries 
min

yp , 

max
yp , 

max
xp  and )(

max
xpl  in )log( nnO  time. In 

the next step, we compute )(nO  jiCount 1,−  

corresponding to jiS 1,− , generated by the unit horizontal 

strip having boundaries 
1

,,
−iy

max
x

min
x ppp  and 

k
yp  

where 
k

y
i

y ppb =)(
1−

 in the following fashion. It is very 

clear that we have already computed jiS 1,− , 
opt

jiS 1,−  at the 

time of processing all 
jiS ,  in the unit vertical strip. So we 

first process 11, −− jiS  to compute 11, −− jicount .   

(i)  If the point on the 1)( −j -th vertical grid line is 

within 11, −− jiS  then increase the value of 11, −− jiCount  

by one.  

(ii) Traverse all vertical grid lines from the right side of the 

right boundary of 11, −− jiS  to the right boundary of jiS ,  

and find the number of points ,say m , on these vertical 

grid lines. Clearly these m  points was within jiS ,  but 

not within 11, −− jiS . So decrease the value of 11, −− jiS  by 

m . 

 

(iii) Increase 11, −− jiCount  by jiCount , .  

 Clearly we can compute )(nO  jiCount 1,−  

corresponding to jiS 1,−  in this horizontal unit strip in 

)(nO  time. Since there are at most 2−n  unit horizontal 

strip excluding the bottom-most horizontal strip, so we can 

compute )( 2
nO  jiCount ,  corresponding to jiS ,  

generated by )(nO  unit horizontal strips in )( 2
nO  time. 

Now we are in a position to compute 
opt

jiCOUNT ,  

corresponding to 
opt

jiS ,  with the help of (i) already 

computed 
opt

jiCOUNT ,  corresponding to 
opt

jiS ,  within the 

bottom-most unit horizontal strip and right-most unit 

vertical strip. (ii) all already computed jiCount ,  

corresponding to jiS , . Let 
i

x
max

x ppl =)(  and 

j
y

min
y ppu =)( . Then 

opt

jiCOUNT 11, −− = max 

{
opt

jiCOUNT 1, − , 
opt

jiCOUNT 1,− , 11, −− jiCount  }. It is very 
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clear that we can compute 
opt

jiCOUNT 11, −−  and 
opt

jiS ,  in 

constant time. Hence the time required to compute 
opt

jiS ,  

and njiCOUNT
opt

ji ≤≤ ,,1,  is )( 2nO . 

 
   

    

Figure.3 Stair case within unit square 
jiS ,  

   

B. Step II to compute staircase AB  and additional grid 

points FE,  within 
jiS ,  

 Define jiS ,  as an axis-parallel unit square with 

bottom-right corner at the grid point ),(
iyjx pp  on the i

-th horizontal grid line and 
j

x
min

x ppr =)( . In this 

subsection, we first construct staircase AB between lowest 

point A  and top-most point B  within jiS ,  and then 

compute two additional grid points FE,  with respect to 

bottom-right corner position of the square 
jiS , . Observe 

that other types of staircase can be constructed with respect 

to other corner positions of the square jiS , . However, since 

they are similar, we describe the bottom-right corner case.  

 

a)Algorithm for constructing AB 

 

Preface: By Theorem 2, all points within unit square jiS ,  

can be found and these are in non-deceasing order of y

-coordinate. We process all points in jiS ,  according to 

nondecreasing order of y -coordinate using two sweep 

lines named horizontal sweep line HSL  lines and vertical 

sweep line VSL . 

Denote two consecutive points of the staircase by 

p  and q . Let 
sub

y
q

x
pR ,  be sub-rectangle embedded in the 

grid, defined by the grid points ),( yx qp  and 

),(
min

y
max

x pp . Observe that we have already computed 

opt

y
q

x
pCOUNT ,  and the corresponding square 

opt

y
q

x
pS , . 

Create a binary search tree (BST) T  with yq  as key to 

represent the staircase AB  between lowest point A  and 

top-most point B  within 
jiS , . Attach the variables qp,  

and 
opt

y
q

x
pCOUNT , , 

opt

y
q

x
pS ,  with each node of T . Here 

p  and q  generate the grid point ),( yx qp  as a member 

of the staircase AB . Create a max heap H  with 
opt

y
q

x
pCOUNT ,  as key. Attach the variable 

opt

y
q

x
pS ,  with 

each node of H . 

Initialization: Initialize p  with lowest point within jiS ,  

and VSL  at p .   

(1)For each point q  encountered by the HSL  

(2) If the point q  is on the right side of the current position 

of the VSL    

(2.1) These HSL  and VSL  generate the grid point 

),( yx qp  as a member of the staircase AB . Find 

opt

y
q

x
pCOUNT ,  corresponding to 

opt

y
q

x
pS , . Insert qp,  

and 
opt

y
q

x
p

opt

y
q

x
p SCOUNT ,, ,  into T  with yq  as          

key. Also insert 
opt

y
q

x
pCOUNT ,  as key along               

with 
opt

y
q

x
pS ,  into H . 

(2.2) qp ←   

(2.3)  Move the VSL  to the point p
.
 

(3) Else discard the point q .  

  

b) Compute additional grid points E  and F  

 If the lowest point within jiS ,  is not on the 

left-boundary of 
jiS ,  then the horizontal line through the 

lowest point within jiS ,  and the vertical line along the 

left-boundary of the square 
jiS ,  will generate the 

additional grid point E . Find the optimum square, say 
opt

ES , from the sub-rectangle defined by the grid points E  

and ),( minmax pp . Let 
opt

EC  be the count of 
opt

ES . 

If top-most point within 
jiS ,  is not on the right 

boundary of jiS ,  then the vertical line through the 

top-most point and the horizontal line along the 

top-boundary of jiS ,  will generate the grid point F . Find 

opt

FS  and 
opt

FC  in the similar way. Observe that E  and 

F  may not exist. 

Clearly the optimal square, say ABS , at the root of 

heap H  contains maximum number of points ,say ABC , 

among all optimal squares in the heap H . Compute 

),(max= opt

F

opt

EABEF CCCC  and the corresponding 
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square be EFS . Observe that the pair EFS  and jiS ,  may 

be disjoint or intersecting with empty common zone. So the 

optimal square EFS  together with the square 
jiS ,  is a 

candidate pair jointly covering number of point, say 

SUM , from P . 

 

C. Step II to compute staircase BA ′′  and additional grid 

point E′  within 1),( +jiS  

 Let BA ′′  be the staircase between lowest point A′  

and top-most point B′  within 1, +jiS  and E′  be the 

additional grid point. Observe that the additional grid point 

of type F  within square 
jiS ,  does not exist and the 

additional grid point E′  may not exist. 

If the point on the −+1)( j th vertical grid line is 

within 1, +jiS  then compute staircase BA ′′  within square 

1, +jiS  from the staircase AB  and additional grid point 

E′  in the following way.   

(1) If the left boundary of 1, +jiS  coincides with the left 

boundary of jiS ,    

(1.1) Don't update the the lower end of the staircase 

AB  and E  becomes E′ .  

(1.2) Update the upper end of the staircase AB  by the 

algorithm  3.3.1  

(2) Else if left boundary of 1, +jiS  is on the left of the 

lowest point within jiS ,    

(2.1) Don't update the the lower end of the staircase AB  

and compute the additional grid point E′  in the same 

way as described in the subsection 3.2.2.  

(2.2) Update the upper end of the staircase AB by the 

algorithm  3.3.1  

  

(3)  Else compute the staircase BA ′′  from AB  by the 

algorithms  3.3.1 and  3.3.2 and the additional grid 

point E′  in the similar way.  

 

 

Algorithm to update the upper end of the staircase AB  

to compute the staircase BA ′′  

(1)  Find the largest key from T  and denote the 

corresponding node by α .  

(2) If y -coordinate of the point under processing on the 

right boundary of 1, +jiS  is greater than yq  

associated with α .   

(2.1) The point p  becomes the point q  associated with 

α  and q  becomes the point under processing. The 

horizontal line through the point q  and the vertical line 

through the point p  generate the grid point ),( yx qp  as 

a member of BA ′′ .  

(2.2) Find 
opt

y
q

x
pCOUNT ,  and corresponding square 

opt

y
q

x
pS , . Insert 

yq  as key along with qp,  and 

opt

y
q

x
p

opt

y
q

x
p SCOUNT ,, ,  into T . Also insert 

opt

y
q

x
pCOUNT ,  as key along with 

opt

y
q

x
pS ,  into H .  

  

(3)  Else-if the point under processing is above the point 

p  associated with α    

(3.1) Find the node, say β , from heap H  containing 

opt

y
q

x
pCOUNT ,  associated with                  α .  

(3.2) Clearly, the point q  associated with α  will be 

replaced by the point under                   

processing. The vertical line through the                   

point p  associated with α  and the                   

horizontal line through the point under                   

processing generate the grid point          

),( yx qp  as a member of BA ′′ . Find                 

opt

y
q

x
pCOUNT ,  and corresponding 

opt

y
q

x
pS ,                   

Save 
opt

y
q

x
pCOUNT ,  and corresponding                 

opt

y
q

x
pS ,  at the node α . 

(3.3) Replace the values associated with node β  in H  

with the modified values                 
opt

y
q

x
pCOUNT ,  and corresponding 

opt

y
q

x
pS ,                   

in α .  

  

(4) Else delete the node α  from T  and β  from H .  

 

 Repeat Step 1 until the Step 2 or Step 3 is executed.  

 

Algorithm to update the lower end of the staircase AB  

to compute the staircase BA ′′  

   

(1) Find the lowest key from the BST T  and denote the 

corresponding node by γ .  

(2) If the left-boundary of 
1),( +jiS

 is between points 
p

 and 
q

 associated with 
γ

   

(2.1) Find the node, say δ , from H  containing 
opt

y
p

x
pCOUNT ,  associated with γ .  

(2.2) Delete the node γ  from BST T  and δ  from heap 

H .  

 

 Repeat Step 1 until the Step 2 is executed. 

 

Clearly the square, say BAS ′′ , at the root of heap H  

contains maximum number of points, say BAC ′′ , among all 

squares in the heap H . Compute 

),(max= opt

EBABE CCC ′′′′′  and the corresponding square 

be BES ′′ . Observe that the pair BES ′′  and 1, +jiS  may be 

disjoint or intersecting with empty common zone. So the 
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square BES ′′  together with the square 1, +jiS  is a 

candidate pair jointly covering number of points, say 

MSU ′ , from P . 

If SUM  is greater than MSU ′  then squares 

EFS  and jiS ,  is current optimal candidate pair. 

Otherwise squares BES ′′  1, +jiS  is current optimal 

candidate pair. 

This is done for all unit squares jiS ,  with 

right-bottom corner at the grid point on i -th horizontal grid 

line. So after processing all such unit squares on i -th 

horizontal grid line, we get an optimal candidate pair. 

Repeat Step II to find )(nO  optimal candidate 

pairs generated in similar way. 

At the end of processing )( 2
nO  axis-parallel unit 

squares generated from )(nO  horizontal grid lines, 1S  

and 2S  can be found. 

 

D. Complexity analysis of Phase II 

 

 It should be observed that points constructing the 

staircase AB  within jiS ,  may not be present in the 

staircase BA ′′  within 1, +jiS . So a point within 
jiS ,  

may be deleted from the BST T  or inserted into BST T  

for atmost one time to process 1, +jiS . The number nodes in 

heap H  is )(nO  to process all 
jiS ,  on the −i  th 

horizontal grid line and insertion and deletion operation 

takes of )log( nO  time. Hence the time required to 

process all axis-parallel unit squares on the i -th horizontal 

grid line is )log( nnO . Consequently, the time required to 

process )( 2
nO  axis-parallel unit squares on )(nO  

horizontal grid lines is )log( 2
nnO . We thus have the 

result.  

Theorem 3  Given a set P  of n  points in 
2R . Two 

disjoint or intersecting (with empty overlapping zone) 

axis-parallel unit squares covering maximum number of 

points can be found using )log( 2 nnO  time and )( 2nO  

space.  

  

Observation 3 This algorithm can be easily extended to find 

and report the points, covered by a pair of rectangles say 

1R  and 2R  with pairwise parallel side with given 

directions and with disjoint interiors or intersecting (with 

empty overlapping zone) that maximizes the sum of the 

points covered by 1R  plus the number of points covered 

by 2R  in )log( 2
nnO  time and )( 2

nO  space.  

  

IV.CONCLUSION 

 

 We have taken the help of range tree to compute all 

axis-parallel unit squares within the bottom-most horizontal 

and right-most vertical strips as our proposed complexity is 

)log( 2
nnO . It can be observed that the way of computing 

all axis-parallel unit squares can be avoided by traversing 

the grid points in xL  or yL . The proposed time 

complexity can be reduced to )( 2
nO  if we can manage 

the updating of the staircase in better way. 
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