
DOI: http://dx.doi.org/10.26483/ijarcs.v8i9.5210
Volume 8, No. 9, November-December 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 738

ISSN No. 0976-5697

PARALLEL AND DISTRIBUTE PROCESSING FOR VIRTUAL MAPREDUCE
CLUSTERS BY USING IMPROVISED HYBRID JOB SCHEDULING ALGORITHM

Dr N Sandhya

Professor, Department of CSE
VNRVJIET Hyderabad, India

Sravan Kumar Kanthi
M. Tech, Department of CSE
VNRVJIET Hyderabad, India

Abstract: MapReduce is a programming model that defines a MapReduce job for instance, a map perform task then reduce perform task. This
model splits the job into several map perform tasks and reduce perform tasks at run time. It also accomplishes these tasks in parallel on a
MapReduce cluster. We have researched a resourceful and appropriate scheduling scheme called as hybrid job-driven scheduling scheme (JoSS)
which source higher map and reduce data-locality. But, in this existing JoSS scheduling scheme, virtual MapReduce cluster does not provide
flexibility over multiple workloads for load balancing. For this purpose, we have enriched native JoSS with advanced JoSS by adding a new
functionality called virtual MapReduce cluster to provide flexibility to JoSS. This enhanced work achieves load-balancing and also improves job
performance.

Keywords: MapReduce, Virtual MapReduce Cluster, Data Locality, JoSS.

I. INTRODUCTION

In current years, MapReduce [1] is a well-known version
designed for data-extensive computation [2]. Considering
specific behaviors and global performance objectives over
numerous jobs, job performance can be increased through
schedulers and this is vital in MapReduce/Hadoop [2]. For
those several jobs which run very slow for Hadoop mapreduce,
resource aware scheduling methodology was enhanced by these
schedulers. Based on process outline and employment of
utilities, we need to dynamically alter the slots allocation where
the present algorithm has such impact on profiling data.
Besides the workload placement, it also increases the resource
utilization of the cluster.

In a Hadoop cluster and also in a big cluster the assets are
commonly placed far from one another because the community
link sources have various bandwidth capabilities when
compared to each other. Here with heterogeneous sources,
communication expenses could be high if a project’s
distribution is maximized in a huge cluster. For this, the
Hadoop device distributes responsibilities to multiple sources
to reduce a process’s total time. MapReduce is an information
processing and a software technique for distribute computing
which is developed in java. In MapReduce methodology Map
and the Reduce tasks are the two main tasks. Map takes raw
data and splits the data into different data sets and these data set
elements are categorized as tuples (key/value pairs).
Furthermore, Map task output is taken as input for reduce task
and joins the information tuples into reduced set of tuples [2].
MapReduce indicates that, Map job and reduce job is
performed one after other. For scalability, data processing
above numerous computing nodes we adopt MapReduce
framework. In MapReduce algorithm, data processing
jobs/tasks are referred as mappers and reducers. Mappers and
reducers are crucial in data processing splitting utility.
Implementing an approach in MapReduce model, which scales
the software to run above multiple loads or several multiple of
nodes in a cluster, is just a configuration change. The
MapReduce model's high scalability has fascinated many
programmers attention to adopt this model.

Many MapReduce Frameworks like Google MapReduce,
Dryand, are adopted by the users. However the free source

supply Hadoop MapReduce is widely used. In maintaining the
global performance of MapReduce Applications scheduling
plays a prominent role. FIFO Scheduler is the standard
scheduler in Hadoop MapReduce, Fair Scheduler is used by
facebook, and Capacity Scheduler is used by Yahoo [2]. These
schedulers are regular examples of schedulers for MapReduce
application. But these schedulers unable to handle the functions
distressed by virtualization used in cloud environments.
Therefore, based on software capabilities, Virtual Machines
and locality of records, by enhancing native schedulers with a
dynamic scheduler could schedule MapReduce packages
substantially. Besides this, the dynamic scheduler successfully
executes these packages in hybrid cloud environment.

II. RELATED WORK

Jongse Park, Daewoo Lee, Bokyeong Kim, Jaehyuk Huh,
Seungryoul Maeng planned and evaluated Dynamic Resource
Reconfiguration (DRR) [3]. Their work evaluated for
distributed data-intensive platforms on virtualized cloud
environments and developed this DDR using a dynamic VM
reconfiguration mechanism. DRR improves record segment of
a digital MapReduce cluster by concise increase in VMs to run
local responsibilities. DRR schedules locality and fine-tune the
working ability of virtual nodes. This methodology differs from
earlier approaches assuming a cluster that continually features a
fastened quantity of procedure resource in every node. For
balancing unfair distribution, dynamic VM reconfiguration is
extended to differing kinds of load for distributed data-
intensive platforms which are not balanced properly.
Necessities by different jobs or tasks for different resources
may accompany to inappropriate utilization of every single
virtual node resource [3]. With VM reconfiguration, every node
is adjusted to produce the mandatory quantity of resource
demanded for the node [3]. A framework supporting dynamic
VM reconfiguration is their future work.

A. Matsunaga, M. Tsugawa, and J. Fortes researched and
investigated over bioinformatics applications. Their research is
an operative method because it validates its low outlays and
increased performance. They have implemented CloudBLAST,
a distributed implementation of NCBIBLAST [4] which
achieves high performance. The purpose of this implementation

N Sandhya et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,738-744

© 2015-19, IJARCS All Rights Reserved 739

is that it executes parallel by integrating MapReduce
applications where software environment is encapsulated and
virtual networks connect data in virtual machines [4].

In Cloud Computing configurations like Hadoop,
MapReduce etc [5] large scale processing is a gradual process
and is common. In such systems, files are riven into tiny blocks
and every single block is duplicated over many servers. To
increase files efficiency, each single job is riven into several
tasks and every single task is circulated to a server to override a
file block [5]. For the task scheduler it is vital to improve data
locality. Vaishali W. Thawari, Sachin D. Babar, Nitin A.
Dhawas presented data locality driven task scheduling
algorithm [5] also known as the Balance-Reduce algorithm.
According to the workload and network state, BAR algorithm
fine-tunes task data locality and also schedules task using its
global view. With this algorithm data locality can be improved
in poor network environment.

In a planet platform, the network state and the cluster work
modification occur very often. Therefore it's essential to update
the programming strategy by an efficient rescheduling
algorithmic program to handle machine failure and network
anomaly. Yet, the rescheduling occurred regularly by the
scheduler, the rescheduling algorithm ought to be less quality.

Chen He, Ying Lu, David Swanson developed a novel
technique [6] to increase the information locality. This
technique allocates tasks to a node. A native map tasks are
invariably most popular over non-local map tasks. A
neighborhood marker is utilized to mark nodes and also to
confirm every node is in a good probability to acquire its local
tasks. Experimental results show that this technique achieves
the best information locality rate and therefore the minimum
delay for map tasks [6]. This technique is an alternative to the
delay algorithmic program [7] where their technique doesn't
need the tuning of the parameter [6].

The MapReduce programming version has been used at
Google for its special features. Jeffrey Dean and Sanjay
Ghemawat attribute these features to many motives. Firstly,
this methodology is used by the programmers who don’t have
experience in parallel and allotted systems since it hides the
principle factors of fault-tolerance, loads balancing,
parallelization and section optimization [1]. Secondly, an
outsized form of issues is simply represented as MapReduce
computations. For example, Google's production internet
search provider uses MapReduce technology of records for
sorting, data processing, device gaining knowledge and masses
of opportunity structures [1]. Finally, they need advanced
application of MapReduce programming paradigm which
balances large clusters of machines. This application makes
cost-effective use of those machine resources and is appropriate
to use on several big procedure issues encountered at Google
[1].

J. Polo, D. Carrera, et al. represented a model designed on
task scheduling for MapReduce applications which is
implemented on top of Hadoop. Apache introduced a free
source application of MapReduce framework which is called as
Hadoop [8]. The performance time is estimated dynamically
through the scheduler for every MapReduce process within the
system. Each MapReduce activity is composed of a high range
of tasks (maps and reduces) recognized earlier through the
initialization section activity and the results of the tasks are
calculated at runtime [8]. The scheduler takes both submitted
and incomplete Hadoop tasks where it displays the average
undertaking duration for already completed obligations [8].
This information services in guessing the best task execution
time.

An interference and locality-aware scheduler for virtual
MapReduce clusters [9] is employed by Xiangping Bu, Jia Rao,

and Cheng-Zhong Xu. IASM and LASM are the two main
design elements of this ILA. Through a performance prediction
model, an interface-free design is performed with IASM. By
exploitation apt able Delay planning algorithmic rule [7] [9],
task information section is improved by LASM. Experimental
outcomes exhibit that ILA pc hardware may accomplish a
speeding of 1.5-6.5 times for person jobs and yield an
improvement of up to at- least 1.9 instances in system turn-out
as compared with four opportunity schedulers [9]. It improves
statistics locality of map tasks. Though ILA planning
algorithmic rule is meant for MapReduce framework, it can be
applicable to virtual cluster schedulers.

Bikash Sharma, Timothy Wood, Chita R. Das give a two-
phase hierarchical scheduler known as HybridMR, for hybrid
server structures along with a combination of local and digital
systems to governor the aids of every paradigms [10]. In the
first part, HybridMR outlines incoming MapReduce jobs to see
the calculable virtualization overheads and make use of these
records to automatically guide placement among bodily
systems and digital systems [10]. In the second part, HybridMR
builds dynamic resource prediction which plays dynamic aid
planning to ease the interference amongst collocated
MapReduce and interactive packages [10]. Problematic
opinions on a hybrid cluster inclusive of 24 bodily servers,
forty eight digital machines with numerous workload aggregate
of interactive and batch MapReduce applications display that
HybridMR achieves as much as 40% progress in process of
completion time of MapReduce jobs over a digital Hadoop
[10]. Further, HybridMR offers development in aid usage and
energy savings as compared to a local Hadoop with smallest
overall performance penalty. Besides, we have a tendency to
show that it’s run-time modification ability of the local and
virtual cluster configurations to deal with versions in workload
integration for increasing the performance.

Engin Arslan, Mrigank Shekhar, Tevfik Kosar propose the
LoNARS formula for reduce task programming in MapReduce
[11]. Experimenting with 12-server cluster to check the
LoNARS performance as a micro benchmarking they proved
that the existing Hadoop programming formula for reduce
outperformed by LoNARS [11]. Besides this, a 100-server
cluster is used to simulate macro-benchmarking and compared
LoNARS to inventory accounting, Rack Aware, and CoGRS
algorithms. The outcome showed that up to 25% of network
traffic is reduced every time by LoNARS over above 3
algorithms and that marks as a vital effect in power
consumption of network switches [11]. To overcome the worst
job execution interval through LoNARS the shuffle transfer
time should be over one heartbeat time because in most cases
shuffle time is being reduced by LoNARS. This can be
achieved by what quantity circulation a job shuffle within the
shuffle quantity and this dependency is called the reduction
quantitative relation.

III. FRAMEWORK

In this paper, to increase the JoSS flexibility, we are
enriching the native JoSS with heterogeneous virtual
MapReduce cluster [12]. In this proposed model, we can
balance the different workloads of virtual MapReduce clusters.
Through this we can generate multiple servers’ equals to
multiple jobs. Proposed system categorized into two sections -
section A shows existing system and section B shows the load
balancing for proposed system.

A. Existing System

Previously, in native JoSS, the job classification is done
based on the ratio of predefined chunk size of map and reduce
job where it addresses both map-data locality and reduce-data

N Sandhya et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,738-744

© 2015-19, IJARCS All Rights Reserved 740

locality in a digital MapReduce cluster. This job organization
can be classified into either a Map-Heavy (MH) or Reduce-
Heavy (RH) job or large job which is presented in figure 1.
Figure 1 explains that existing JoSS uses three different
benchmarks to conduct our trials.

1. Word-Count which counts the amount of incidences of
each word occurred in data files.

2. Inverted-Index produces word-to-file indexing [12] by
receiving one or more data files as an input.

3. Sort performs sorting and results the data by taking a
data file as input.

These benchmarks are classified into either MH or RH or Large
Jobs based on their filtering percentage value (FPJ value).

There are two categories present in JoSS [10] and are
known as

1. Task-driven Task Assigner (TTA)
2. Job-driven Task Assigner (JTA)

Figure 1 JoSS job categorization into MH, RH and Large jobs

1) Task-driven Task Assigner(TTA): Once the job

classification is done based on the FPJ value we run the
schedule job JoSS TTA which is presented in figure 1 and the
above three benchmarks are processed through TTA scheduler
for fast task assignment. Figure 2 exhibits the processed
results of three benchmarks with TTA by simulatig virtual
private severs. TTA assigner uses Hadoop FIFO algorithm

where a map task is consigned from a map queue to VPS [12]
which is its functionality. The main aim is to govern job
cataloging by earning filtering percentage values and
execution of all newly submitted jobs consequently. In TTA,
other data center’s map-task queue’s, first Map task is
assigned in a round-robin procedure and through this the
consignment of tasks can be finished quickly.

Figure.2 JoSS Task-driven Task Assigner (TTA)

N Sandhya et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,738-744

© 2015-19, IJARCS All Rights Reserved 741

2) Job-driven Task Assigner(JTA): Schedule JoSS JTA,
which works same as of TTA which is shown in figure 1 and
the above three benchmarks are processed through JTA
scheduler presented in figure 3. Figure 3 exhibits the
processed results of three benchmarks with JTA by simulating
virtual private severs. In JTA, for allocating a map task
Hadoop FIFO algorithm is opted which consigns from every
single map-task queue which is a key difference between JTA
and TTA and also improves VPS-locality [12]. Furthermore,
with the aid of categorizing jobs into large jobs, MH jobs, RH
jobs and through round-robin model scheduling, job starvation

can be avoided and increases performance of job [12]
presented in figure 4. In figure 4, we estimate and equate both
TTA and JTA with each other. This tentative outcome validate
that both TTA and JTA provide a improved map-data locality,
succeed a higher reduce-data locality [12]. It also results that
when mapreduce jobs are all small, TTA is highly suitable
than JTA for virtual mapreduce cluster. Besides, when
mapreduce jobs not all small, JTA is more applicable because
the workload improvement time is very short. However, the
JoSS scheme doesn’t provide flexibility for load balancing.

Figure 3 JoSS Job-driven Task Assigner (JTA)

Figure 4 Comparison chart of TTA & JTA

N Sandhya et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,738-744

© 2015-19, IJARCS All Rights Reserved 742

B. Load Balancing

To disperse the load equally throughout the idle nodes Load
balancing [13] method is used, while a node is loaded over its
threshold degree. Load balancing is important while managing
immense documents for processing and during this process
hardware assets usage is vital because load balancing is not
ample in MapReduce design ethics. Besides this, it achieves
adequate progress in global performance and also hardware
employment in resource need circumstances. In HDFS [14]
cluster few data nodes become full or empty, so to balance the
disk space utilization load balancing technique is presented. In
this method to determine whether the cluster is balanced or not
we need to calculate the threshold value where it varies
between 0% - 100% and the default value is 10%.

To determine a cluster is balanced if- “for every record
node, the ratio of used area on the node to the total capability of
node (node usage) differs from the cluster’s used space ratio to
the total capability of the cluster (cluster usage) not higher than
the threshold value.” Here the balancer is time-consuming for
its execution but it balances cluster extremely if the value is
small.

IV. EXPERIMENTAL RESULTS

In this experiment, we are also taking three types of jobs
named as WordCount, Inverted Index and Sort presented in
figure 5. We have to run these three jobs by using
MapReducers (explained in previous section existing system).
The proposed or enhanced work can assign an individual
virtual MapReduce server for every individual job presented in
figure 6. Figure 6 exhibits all the results of each benchmark in
an individual server for load balancing where in previous
homogeneous virtual mapreduce cluster the same results are
exhibited with predefined virtual severs (2 virtual servers).

We evaluate and compare Virtual mapreduce cluster with
both JoSS TTA and JoSS JTA presented in figure 7. In figure
7 the extensive experiment outperforms both JoSS-TTA and
JoSS-JTA. It works same as existing homogeneous virtual
mapreduce cluster but our experiment achieves fast task
performance than TTA. In figure 7 we demonstrated that the
implemented scheduling scheme can enhance the performance
time of jobs and balancing of different workloads.

Figure 5 Heterogonous Virtual MapReduce cluster

N Sandhya et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,738-744

© 2015-19, IJARCS All Rights Reserved 743

Figure 6 JOSS flexibility using Virtual MapReduce clusters

Figure 7 Comparison chart of TTA, JTA & Heterogeneous Virtual MapReduce cluster

N Sandhya et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,738-744

© 2015-19, IJARCS All Rights Reserved 744

V. CONCLUSION

In this paper, we have enriched the native JoSS work with
an advanced virtual MapReduce cluster technique. In the
existing JoSS, the virtual MapReduce clusters are
homogeneous so we cannot balance the workloads and we
need to improve the JoSS flexibility. So, we have enriched
native JoSS by adding a new functionality called virtual
MapReduce cluster which provides flexibility to native JoSS
and also increase in the performance. Our experiments also
proved that the new approach increases the performance
than the previous approach.

VI. REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” Communications of the
ACM, vol. 51, no. 1, 1 Jan. 2008, pp. 107–113,
doi:10.1145/1327452.1327492.

[2] B. Anusha and S. Afroz. “Mitigating network traffic while
job execution and improving the job performance for
mapreduce clusters.” International Journal of Engineering
Research in Computer Science and Engineering
(IJERCSE), Vol. 4, no. 11, Nov. 2017, pp. 304-308.

[3] J. Park, D. Lee, B. Kim, J. Huh, and S. Maeng, “Locality-
Aware dynamic VM reconfiguration on MapReduce
clouds.” Proceedings of the 21st international symposium
on High-Performance Parallel and Distributed Computing -
HPDC 12, 2012, pp. 27–36, doi:10.1145/2287076.2287082.

[4] A. Matsunaga, M. Tsugawa, and J. Fortes, “CloudBLAST:
Combining MapReduce and Virtualization on Distributed
Resources for Bioinformatics Applications,” 2008 IEEE
Fourth International Conference on eScience, 2008, pp.
222–229, doi:10.1109/escience.2008.62.

[5] V. W. Thawari, S. D. Babar, N. A. Dhawas, “An Efficient
Data Locality Driven Task Scheduling Algorithm for Cloud
Computing,” International Journal in Multidisciplinary and
Academic Research (SSIJMAR), vol. 1, no. 3, 2012.

[6] C. He, Y. Lu, and D. Swanson, “Matchmaking: A New
MapReduce Scheduling Technique,” 2011 IEEE Third

International Conference on Cloud Computing Technology
and Science, Nov. 2011, pp. 40–47,
doi:10.1109/cloudcom.2011.16.

[7] M. Zaharia, D. Borthakur, et al. “Delay scheduling: A
simple technique for achieving locality and fairness in
cluster scheduling,” Proceedings of the 5th European
conference on Computer systems - EuroSys 10, Apr. 2010,
pp. 265–278, doi:10.1145/1755913.1755940.

[8] J. Polo, D. Carrera, et al. “Performance-Driven task co-
Scheduling for MapReduce environments,” 2010 IEEE
Network Operations and Management Symposium - NOMS
2010, 2010, pp. 373–380, doi:10.1109/noms.2010.5488494.

[9] X. Bu, J. Rao, and C.-Z. Xu, “Interference and locality-
Aware task scheduling for MapReduce applications in
virtual clusters,” Proceedings of the 22nd international
symposium on High-Performance parallel and distributed
computing - HPDC 13, 2013, pp. 227–238,
doi:10.1145/2493123.2462904.

[10] B. Sharma, T. Wood, C. R. Das, “HybridMR: A
Hierarchical MapReduce Scheduler for Hybrid Data
Centers,” 2013 IEEE 33rd International Conference on
Distributed Computing Systems, 2013, pp. 102–111,
doi:10.1109/icdcs.2013.31.

[11] E. Arslan, M. Shekhar, and T. Kosar, “Locality and
Network-Aware Reduce Task Scheduling for Data-
Intensive Applications,” 2014 5th International Workshop
on Data-Intensive Computing in the Clouds, 2014, pp. 17–
24, doi:10.1109/datacloud.2014.10.

[12] M. Lee, J. Lin, and R. Yahyapour, “Hybrid Job-Driven
Scheduling for Virtual MapReduce Clusters,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27,
no. 6, Jan. 2016, pp. 1687–1699,
doi:10.1109/tpds.2015.2463817.

[13] S. Shaheena, SD. Afzal A and P. Sham. “Solving load
rebalancing for distributed file system in cloud.”
International Journal of Advances in Applied Science and
Engineering (IJAEAS), vol. 1, no. 3, 2014.

[14] Hadoop Distributed File System,
http://hadoop.apache.org/hdfs/, 2012.

