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This system is mainly depends on the CBR which act as a 
core part of phishing detection system. This system is highly 
adaptive and dynamic as it can easily detected new phishing 
attacks. The CBR classifier classified websites with a 
relatively small dataset but other classifiers required to be 
trained in advance before classifying the websites. Initially 
CBR-PDS process checks OPT of current URL and checks 
whether the OPT is exist or not. If the OPT is present, the 
proposed CBR-PDS flag it as phishing website otherwise 
extracts features of that URL and it is formulated a new case 
to be tested. Then it starts CBR process which retrieves the 
most similar cases.  

A multilayer model called as Phishing Detection using 
Multi-filter Approach (PhiDMA) [8] is proposed to detect 
phishing. The main intend of the proposed method is single 
filter methods is not sufficient to detect various categories of 
phishing attempts. The proposed PhiDMA model consists of 
five layers are Auto upgrade whitelist layer, URL features 
layer, Lexical signature layer, String matching layer and 
Accessibility Score comparison layer. Each layer acts a filter 
to detect the phishing websites using a specified dimension. 
Moreover, accessibility score of web page is incorporated as 
a phishing indicator. The PhiDMA is attempted by built an 
accessibility score filter.  

 A new rule based phishing detection method [9] is 
proposed for detection of phishing websites. The proposed 
rule based method consists of two feature sets which are used 
to find out the identity of web pages. There are four features 
are used to evaluate the identity of web pages and it also used 
to determine the access control of page resources elements. 
The relationship between web page content and URL of a 
page is determined by using string matching algorithms 
which is done in the first proposed feature set. The proposed 
features are independent from third party services. Finally, 
Support Vector Machine (SVM) is employed to classify the 
websites based on the feature sets. The extracted rules are 
embedded into PhishDetector which makes the proposed 
method is more functional and easy to use.  

Multi-label classifier Associative Classification (MCAC) 
[10] is proposed to detect the phishing websites with high 
accuracy. The phishing problem is investigated and based on 
the problems an associative classification data mining 
method is developed to discover the correlation among 
features and produces them in simple yet effective rules. The 
proposed MCAC produce multi label rules from the phishing 
data generating rules associated with a new class called 
Suspicious that was not originally in the training data set.  

A phishing detection technique called as PhishWHO [11] 
is proposed to detect the phishing websites based on the 
difference between actual and target identities of a webpage. 
PhishWHO comprised of three phases. In the first phase of 
PhishWHO identity keywords are extracted from the textual 
contents of the website. For this purpose, a novel weighted 
URL tokens system based on N-gram model is proposed. 
Whereas in the second phase of PhishWHO, the target 
domain name is determined by using search engine and 
selected the target domain name according to identity-
relevant features. In the third phase of PhishWHO, a 3-tier 
identity matching system is proposed which determine the 
legitimacy of the query web page.   

A system [12] is proposed to identify the phishing 
websites along with its victimized domain. The proposed 
system automatically identifies the target domain of every 
successfully distinguished phishing websites. The feign 
relationship among the web pages and its associated domains 
are analyzed through in degree link associations which is 
used for determination of target domains. In addition, a novel 

Target Validation (TVD) algorithm is used to verify the 
correctness of the identified target domain which is also used 
to reduce the false target prediction of the system.     

A multi tier classification model [13] is proposed for 
phishing email filtering. The proposed method combines 
multiple classification algorithms to reduce the false positive 
problems and to reduce the analyzing complexity. This 
method extracted the features of phishing emails based on 
weighting of message header and message content. Then 
based on priority ranking of features, the most discriminative 
features are selected. Based on the selected features multi-tier 
classification algorithm classified the emails as legitimate 
email and phishing email.  

A new phishing detection approach [14] is proposed for 
detection phishing webpages based on kind of semi 
supervised learning method called as Transductive Support 
Vector Machine (TSVM). Initially, in this approach features 
of web pages are extracted which complement the 
disadvantage of phishing detection based only on document 
object model (DOM). These features also include color 
histogram, gray histogram and spatial relationship between 
sub graphs. By using page analysis method based on DOM 
objects, the features of sensitive information are examined. 
The conventional SVM algorithm classified the data by 
simply train classifier through learning poor and little 
representative labeled samples whereas the proposed TSVM 
considered the distribution information implicitly embodied 
in the large quantity of the unlabeled samples.  

A novel approach based on minimum enclosing ball 
support vector machine (BVM) is proposed [15] to detect 
phishing websites. The integrity of feature vectors is 
improved by performing analysis on topology structure of 
website according to the DOM tree. Then the web crawler is 
used to extract twelve topological features of the websites are 
the number of web pages, average number of inbound links, 
average number of outbound links, average number of 
internal links, average number of images, average number of 
CSS files, average number of JS files, average number of 
forms, average number of input boxes, average number of 
password boxes, proportion of form links and dynamic 
webpage proportion. Finally, the feature vectors are detected 
by using BVM.  

An efficacious method [16] is proposed to detect 
phishing websites through target domain identification. The 
proposed method is a novel approach which overcomes 
many difficulties in detecting phishing websites and it also 
identifies the phishing target that is being mimicked. It is an 
anti-phishing technique which groups the hyperlinks having 
direct or indirect association with the suspicious web pages. 
In order to arrive at a target domain, the domains collected 
from the directly associated web pages are compared with 
the web pages which are indirectly associated with 
suspicious web pages. Then finally, Target Identification 
(TID) is applied to determine the target domain of the 
phishing website.    

 
A new solution called as Phishing Alarm [17] is proposed to 
detect the phishing websites through page component 
similarity. It utilized features which are hard to evade by 
attackers. An algorithm is presented which quantify the web 
pages suspiciousness ratings according to the similarity of 
visual appearance between web pages. In this proposed 
solution, Cascading Style Sheet (CSS) is used as the basis to 
accurately quantify the visual similarity of each page 
elements. The page elements do not have the same influence 
to pages so base the proposed rating method on weighted 
component similarity.  
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Table I. Comparison based on Approaches 

 
Reference 

No. 
Approaches used Merits Demerits Performance Measures 

[3] PhishGen Highly effective No guaranteed decrease 
in click through rates 

Z-Score = 2.5344 
P-Value = 0.0114 

[4] Bayesian classifier  High accuracy  Content of mails are not 
considered 

Accuracy = 96.46  
Precision = 0.95 
Recall = 0.87 

[5] Intelligent Phishing 
website Detection and 
Categorization Model 

Handle 50 pages per 
second  

High computational 
complexity  

Precision = 98.12 
Recall = 98.73 

[6] SHA-1 High efficiency  Not experimentally 
proved 

NIL 

[7] Case-Based Reasoning 
Phishing Detection 
System 

Need not be trained 
in advance  

Failed to implement in 
integrated web based 
CBR-PDS system 

Accuracy =98.07 
F-measure = 0.98 
False Positive = 2% 
False Negative =1.75%  

[8] Phishing Detection 
using Multi-filter 
Approach 

Can detect all 
categories of threats  

Low accuracy  Accuracy = 92.72% 
True Positive Rate = 90.54% 
True Negative Rate = 94.18% 
False Positive Rate = 5.82% 
False Negative Rate = 9.46%   

[9] Rule based phishing 
detection 

High accuracy  May not correctly detect 
and classify the web 
pages when it content 
images  

True Positive =99.14% 
True Negative = 97.63% 
Accuracy =98.65% 
F-measure = 0.9901 

[10] Multi-label classifier 
Associative 
Classification 

Enhance classifier 
predictive 
performance  

Performance based on 
the generated rules 

Accuracy =97.5% 

[11] PhishWHO Highly effective Extract insufficient 
keywords while 
phishers using visual 
cloning strategy 

Accuracy = 96.10% 
True Positive Rate = 99.68% 
False Positive Rate = 7.48% 
True Negative Rate = 92.52% 
False Negative Rate = 0.32% 

[12] Target Validation High accuracy  Threshold value affect 
the performance  

Accuracy = 99.54% 
True Positive Rate = 99.53% 
False Positive Rate = 0.45% 

[13] Multi-tier classification  Reduces false 
positive problems 
substantially with 
lower complexity  

Considered only static 
features which may 
affect the classification 
performance 

Accuracy = 95% 
 

[14] Transductive Support 
Vector Machine 

More flexible  Low Recall  Accuracy = 95.5% 
Precision = 96.4% 
Recall = 90.7% 

[15] Ball support Vector 
Machine  

High precision of 
detecting  

Complex to choose 
kernel function   

True Positive Rate = 0.964 
False Positive Rate =0.037  
Precision = 0.996  
Recall = 0.964 
F-value =0.963  

[16] Target Identification Doesn’t require 
prior knowledge 
about the site and 
the training data  

Depending on external 
information repositories 
in the web 

Accuracy = 99.45% 
True Positive Rate = 99.8% 
False Positive Rate = 0.9% 

[17] Phishing Alarm Highly effective  CSS works differently 
on different browsers 

Recall = 97.92% 
F1-measure = 0.990  
Precision = 100% 

 
 
In Table I, there are different approaches for phishing 

detection are analyzed based on their merits, demerits and 
performance metrics like accuracy, precision, recall, f-measure, 
true positive rate, true negative rate, false positive rate, false 
negative rate, Z- score and P value. From the above table it is 
known that the target validation method [12] has high accuracy 
of 99.54% than the other methods. Then phishing alarm [17] 
has high precision value of 100% than the other methods, 
Intelligent Phishing website Detection and Categorization 
Model [5] method has high recall value of 98.72% than the 
other methods, Target Identification [16] has high true positive 
rate of 99.8% than the other methods, Rule based phishing 
detection [9] has high true negative rate of 97.63% than the 

other methods, Ball support Vector Machine [15] method has 
low false positive rate of 0.037 than the other methods and 
PhishWHO [11] has low false negative rate of 0.32 than the 
other methods.  

III. PERFORMANCE ANALYSIS 

In this section, the various methods for phishing detection 
are analyzed in terms of accuracy, precision, recall, true 
positive rate, true negative rate, false positive rate and false 
negative rate.  
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