
DOI: http://dx.doi.org/10.26483/ijarcs.v8i9.5189
Volume 8, No. 9, November-December 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 574

ISSN No. 0976-5697

NOVEL APPROACH FOR COST ESTIMATION OPTIMIZATION BASE
FEATURE SELECTION AND CLASSIFICATION

Swati Sharma

Student of M.tech ,Department Of computer Science
Palampur(H.P) India

MunishKatoch,
Assistant Professor , Department Of computer Science

Palampur(H.P) India

Abstract- Software development effort estimation is the process of predicting the most realistic effort required to develop or maintain software.
It is important to develop estimation models and appropriate techniques to avoid losses caused by poor estimation. IN text mining is use for
understand user requirement, so understanding features optimize by ant colony optimization, it reduce the overlapping of features and then learn
by generative classifier using Naïve Bayes.

Keywords-Optimization, Naïve Bayes, ACO, cost estimation

I. INTRODUCTION

Predictive modeling has been broadly utilized within IT
enterprise environments, uses of which run from
recommendation-based IT benefit conveyance and support
[2], [10] to desert expectation for business software [7]. This
exploration specifically goes for software effort estimation
which has been examined in various software outline and
development enterprises. In spite of the fact that there have
been diverse estimation models grew so far, no single model
has been appeared to be out performing others.
Subsequently there is a requirement for new anticipating
models because of dynamic changes in the environment. As
of late more research consideration was attracted to factual
modeling so as to address general effort estimation
challenges. Authors in [8] gave a relative investigation
comprising of more than twelve learning models against
various benchmarks. Likewise in [5] an ensemble learning
approach was proposed for effort estimation to support
estimation exactness. Within Agile environments,
nonetheless, there has not been much research for effort
estimation utilizing supervised learning models.
Software development effort estimation is the way toward
foreseeing the most reasonable effort required to create or
keep up software in light of inadequate, dubious as well as
loud information. Within Agile Development projects with a
high level of client inclusion at each iteration, it is
especially vital to have precise appraisals. It gives status
visibility to the partners, contrasting arranged advance and
the real advance. Effort gauges are utilized as contribution
to extend plans, iteration designs, spending plans, and
offering rounds.
Agile tries to limit the effect of inadequate estimation
exactness by guaranteeing that the most vital functionality is
created first. This is accomplished through an adaptable
development process with short iterations. In Agile a client
story is the unit at which software highlights are evaluated
and created.

Every story is in the dialect of the client, and regularly
written on a record card. The cards fill in as updates for

discussions to be had about the components. The points of
interest are then fleshed out later in the discussions, and
passed on and archived as tests [2].

In section II the related work and the state of the art research
in software effort estimation will be discussed; in section III
the methodology for proposed algorithm is described, in
section IV the key steps in building and validating system
model are shown. Experimental results on improved
estimation methods will be presented in section V. Finally
conclusions are in section VI.

II. LITERATURE REVIEW

Cost estimation and software effort are essential at the
beginning time of the software development life cycle for
the project manager to have the capacity to effectively get
ready for the software project. Sadly, the greater part of the
estimation models rely upon subtle elements that will be
accessible at the later phase of the development process. In
[1], they proposed to use Function Point Analysis in
application with dataflow outline to take care of this
planning basic issue. The proposed system was approved
through the graduate understudy software projects at the
Chulalongkorn University Business School. The outcomes
demonstrate the high capability of the appropriateness and
some fascinating bits of knowledge which merit
investigating. In [2], they proposed a novel model to
anticipate software effort from use case graphs utilizing a
cascade correlation neural network approach. The proposed
demonstrate was assessed in light of the PRED and MMER
criteria utilizing 214 industrial and 26 educational projects
against a various linear regression display and the Use Case
Point show. The outcomes demonstrate that the proposed
cascade correlation neural network can be used with
promising outcomes as an option way to deal with foresee
software effort. An effort estimation display with more than
20 parameters is not extremely useful at early reasonable
stage on the off chance that you don't have a legitimate
approach for determining the information values. [3]
displays a basic approach for anticipating software

Swati Sharma et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,574-578

© 2015-19, IJARCS All Rights Reserved 575

development effort. The regression display uses item size
and application sorts to anticipate effort. Item estimate is
measured as far as the comparable source lines of code. The
analysis depends on experimental information gathered from
317 extremely late projects executed inside the United
States Department of Defense through the span of nine years
starting in 2004. Statistical outcomes demonstrated that
source lines of code and application sort are critical
supporters of development effort. The condition is less
difficult and more feasible to use for early gauges than
customary parametric cost models. The impact of item
measure on software effort should be translated alongside
application area.
Agile software development process [4] speaks to a
noteworthy departure from conventional, design based ways
to deal with software building. Evaluating effort of agile
software precisely in beginning period of software
development life cycle is a noteworthy test in the software
business. For enhancing the estimation exactness, different
streamlining strategies are used. The Support Vector
Regression (SVR) is one of these methods that aides in
getting ideal assessed esteems. The primary goal of the
exploration work did in this paper is to evaluate the effort of
agile softwares utilizing story point approach. An endeavor
has been made to advance the outcomes acquired from story
point approach utilizing different SVR strategies to
accomplish better forecast exactness. An execution
examination of the models acquired utilizing different SVR
bit strategies is likewise introduced with a specific end goal
to feature execution accomplished by every technique.
The required effort of an errand can be evaluated
subjectively in interviews with specialists in an association
in various ways. Meeting systems managing which sort of
things to ask are assessed and strategies for consolidating
gauges from people into one gauge are looked at in an
investigation. The outcome demonstrates that the meeting
procedure is not as vital as the combination method. The
gauge which is best regarding mean esteem and standard
deviation of the effort depends on an equivalent weighting
of every individual gauge. The analysis is performed inside
the Personal Software Process (PSP) [5]. Despite many
years of research, there is no accord on which software
effort estimation strategies [6]-[7]create the most exact
models. Prior work has detailed that, given M estimation
strategies, no single technique reliably beats all others.
Maybe as opposed to prescribing one estimation technique
as best, it is savvier to create gauges from outfits of different
estimation strategies. Strategy: Nine students were
consolidated with 10 preprocessing choices to create 9 × 10
= 90 solo strategies. These were connected to 20 datasets
and assessed utilizing seven mistake measures. This
recognized the best n (in our case n = 13) solo techniques
that demonstrated stable execution over numerous datasets
and mistake measures. The best 2, 4, 8, and 13 solo
strategies were then joined to produce 12 multi-methods,
which were then contrasted with the performance
techniques. 1) The main 10 (out of 12) multi-methods
fundamentally outflanked each of the 90 solo techniques. 2)
The blunder rates of the multi-methods were fundamentally
not as much as the performance techniques. 3) The
positioning of the best multi-method was amazingly steady.
Conclusion: While there is no best single effort estimation
technique, there exist best mixes of such effort estimation

strategies. This examination in [7] focuses on development
of effort estimation show for agile software projects.
Development and use of the model is clarified in detail. The
model was aligned utilizing the exact information gathered
from 21 software projects. The trial comes about
demonstrate that model has great estimation exactness as far
as MMRE and PRED (n).In [8], analyzed how complex
adaptive systems (CAS) hypothesis can be used to build our
understanding of how agile software development practices
can be used to build up this capacity. A mapping of agile
practices to CAS standards and three measurements (item,
process, and individuals) brings about a few proposals in
systems development for "best practices". To give a superior
understanding of lean software development methodologies
and how they are connected in agile software development,
in [9] they have inspected 30 encounter reports distributed in
past agile software meetings in which encounters of
applying lean methodologies in agile software development
were accounted for. The analysis distinguished six sorts of
lean application. The consequences of their investigation
demonstrate that lean can be connected in agile processes in
various conducts for various purposes. Lean ideas, standards
and practices are frequently used for consistent agile process
change, with the latest presentation being the kanban
approach, presenting a persistent, flow-based substitute to
time-boxed agile processes. In [10], the proposed
development approach adjusts agile standards and examples
keeping in mind the end goal to manufacture implanted
control systems concentrating on the issues identified with
the framework's imperatives and wellbeing. Solid unit
testing is the establishment of the proposed procedure for
guaranteeing convenience and rightness. Also, stage based
plan approach is used to adjust costs and time-to-showcase
in perspective of execution and functionality requirements.
They presume that the proposed procedure lessens
essentially the plan time and cost and also prompts better
software measured quality and dependability.

III. ALGORITHM USED

A. Ant Colony Optimization

Ant colony optimization is fundamentally roused by the
genuine ant settlements conduct and called artificial
framework. Through the charts the Ant colony optimization
calculation (ACO) is utilized for the taking care of
computational problems and discovering great way. Like ant
conduct, looking for way between food source and their
colony to look through an ideal way comparative is the
principle point of this calculation. To take care of the
problem of traveling salesman problem (TSP) the principal
ACO was created. Prior to the pheromones are refreshed
along their food source trail on change probability bases a
probability decision is made in the standard ACO. Before
refreshing the pheromones along their trail to a food source
in the standard ACO, which depends on the progress
probability, ants settles on a probabilistic decision. For the
kth ant the change probability at the time step t from city x
to city y in the TSP problem:

𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑥𝑥𝑥𝑥𝑘𝑘 (𝑡𝑡) = �
�𝜏𝜏𝑥𝑥𝑥𝑥 (𝑇𝑇)�𝛼𝛼 . �𝜂𝜂𝑥𝑥𝑥𝑥 �

𝛽𝛽

∑ �𝜏𝜏𝑥𝑥𝑥𝑥 (𝑇𝑇)�𝛼𝛼 . �𝜂𝜂𝑥𝑥𝑥𝑥 �
𝛽𝛽

𝑦𝑦∈𝐼𝐼𝑥𝑥𝑘𝑘
if j𝜖𝜖𝐼𝐼𝑥𝑥𝑘𝑘

0 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�

Swati Sharma et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,574-578

© 2015-19, IJARCS All Rights Reserved 576

Where

𝜂𝜂𝑥𝑥𝑥𝑥priority heuristic information,

𝜏𝜏𝑥𝑥𝑥𝑥pheromones trail amount on the edge (x, y) at the time
T,

The pheromone trail and heuristic information relative
effects are identified by two factors i.e., 𝛼𝛼and 𝛽𝛽. And the
city’s neighborhood set that are reasonable is denoted by 𝐼𝐼𝑥𝑥𝑘𝑘 .

After a visit is finished by every ant, a constant dissipation
rate at first bringing down them which refreshed the
pheromone trail. Inferable from which every ant is permitted
effective pheromone affidavit on curves which is its visit
part as appeared in the condition underneath:

𝜏𝜏𝑥𝑥𝑥𝑥 = (1 − 𝜌𝜌). 𝜏𝜏𝑥𝑥𝑥𝑥 + � Δ𝜏𝜏𝑦𝑦𝑦𝑦𝑘𝑘
𝑁𝑁

𝑘𝑘=1

Where

𝜌𝜌Pheromones rate of trail evaporation,

Nno. of ants,

The pheromone trail that is boundless aggregated is averted
by the utilization of parameter ρ which empowers the awful
choices to be overlooked by the calculation. The no. of
cycles declining the pheromone quality related on circular
segments which ants don't choose. Δ𝜏𝜏𝑦𝑦𝑦𝑦𝑘𝑘 , the trail substance
quality per unit length which lays nervous (y,x) is given as
takes after:

Δ𝜏𝜏𝑦𝑦𝑦𝑦𝑘𝑘 = �
𝑄𝑄
𝐿𝐿𝑘𝑘

 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑦𝑦, 𝑥𝑥)

0 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
�

Where

Qconstant that is predefined,

𝐿𝐿𝑘𝑘length of the tour.

B. Support Vector Machine

SVM for classification in high-dimensional space builds a
hyper plane. A hyper plane attaining best performance
which maximizes the distances of both classes nearest
training instances that is, functional margin maximization.
The generalized error reduction is the main objective which
makes it over fitting resistant.
A classification task is considered as: {𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖}, 𝑖𝑖 ∈
1, 2, … … ,𝑛𝑛, 𝑣𝑣𝑖𝑖 ∈ {−1, 1}𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑖𝑖 ∈ 𝑅𝑅
Where

𝑢𝑢𝑖𝑖Data point,
𝑣𝑣𝑖𝑖 Corresponding label,
For separation, the hyper plane is given as:

𝑥𝑥𝑡𝑡𝑢𝑢 + 𝑎𝑎 = 0
Where
x coefficient vector,
aoffset from origin
The optimization objective solving helps in obtaining ideal
margin in case of separation.

𝑀𝑀𝑀𝑀𝑀𝑀 𝐺𝐺(𝑥𝑥, 𝜉𝜉) =
1
2
‖𝑥𝑥‖2 + 𝑐𝑐�𝜉𝜉𝑖𝑖

𝑙𝑙

𝑖𝑖=1

𝑣𝑣𝑖𝑖(𝑥𝑥𝑇𝑇𝑢𝑢𝑖𝑖 + 𝑎𝑎) ≥ 1 − 𝜉𝜉𝑖𝑖 ,, 𝜉𝜉 ≥ 0
Here
cgeneralized parameter,
𝝃𝝃Positive slack variable
The Lagrangian multiplier 𝛼𝛼𝑖𝑖(𝑖𝑖 = 1, 2, … . . 𝑙𝑙) is introduced
for the reduction of optimization problem to Lagrangian
dual problem (obtaining x and a). Therefore, the linear
discriminant problem is given below:

𝐺𝐺(𝑢𝑢) = 𝑠𝑠𝑠𝑠𝑠𝑠([�𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖𝑢𝑢𝑖𝑖𝑇𝑇𝑢𝑢] + 𝑎𝑎)
𝑙𝑙

𝑖𝑖=1

When linear line do not separate the classes, thus mapping
the original feature space to high dimensional feature space.
The representation of the new decision function is:

𝐺𝐺(𝑢𝑢) = 𝑠𝑠𝑠𝑠𝑠𝑠([�𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖𝜙𝜙(𝑢𝑢𝑖𝑖)𝑇𝑇𝜙𝜙(𝑢𝑢)] + 𝑎𝑎)
𝑙𝑙

𝑖𝑖=1

Where
𝑢𝑢𝑖𝑖𝑇𝑇𝑢𝑢input space in feature space depicted as 𝜙𝜙(𝑢𝑢𝑖𝑖)𝑇𝑇𝜙𝜙(𝑢𝑢)]
Kernal function is utilized for computing 𝜙𝜙(𝑢𝑢)and SVM
(support vector machine) utilizes several kernel functions.
𝛾𝛾defines the pre-defined parameter which controls the
Gaussian kernal width.

IV. SYSTEM MODEL

The description of the system model flow:
Step1: Input the storyline dataset from with the text is
extracted.
Step 2: TF-IDF features are extracted after the pre-
processing of text.
Step 3: The extracted features are labeled and Ant Colony
Optimization is initialized.
Step 4: Fitness function is updated and optimization of
features takes place.
Step 5: Classification validation of the obtained optimized
features with class in this step.
Step 6: Calculating the performance parameter: accuracy,
precision and recall.

Swati Sharma et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,574-578

© 2015-19, IJARCS All Rights Reserved 577

V. EXPERIMENTAL RESULT

Table 1: Performance comparison table between two
classifiers: Nave Bayes and SVM-ACO

Parameters Naïve Bayes Naive-ACO

Accuracy 71.156 77.777

Precision 69.666 81.666

Recall 71.666 75.833

Figure1: Comparison graph of accuracy between Naive Bayes and
SVM-ACO

66

68

70

72

74

76

78

80

Naïve Bayes SVM-ACO

Accuracy

Accuracy

Swati Sharma et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,574-578

© 2015-19, IJARCS All Rights Reserved 578

Figure 2: Comparison graph of precision between Naïve Bayes and SVM-
ACO

Figure 3: Comparison graph of recall between Naive Bayes and SVM-ACO

VI. CONCLUSION

Cost Estimate gets better trained on the story cards, human
estimates, and actual effort data. Therefore by the later
stages of the project the algorithm is more reliable than
manual Planning Poker estimates and thus suitable as a tool
for augmenting human effort estimation. For future work we
propose research with larger datasets, and using features
which were not used in this experiment (developers’
demographics, story criticality, and other system and
framework aspects).

VII. REFERENCES

[1] TharwonArnuphaptrairong, “Early Stage Software Effort
Estimation Using Function Point Analysis: Empirical
Evidence”, in IMECS Vol-2,2013

[2] Nassif, Ali Bou, Luiz Fernando Capretz, and Danny Ho.
"Software effort estimation in the early stages of the
software life cycle using a cascade correlation neural
network model." Software Engineering, Artificial
Intelligence, Networking and Parallel & Distributed
Computing (SNPD”), 2012 13th ACIS International
Conference on.IEEE, 2012.

[3] Rosa, Wilson, et al. "Simple empirical software effort
estimation model." Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software
Engineering and Measurement”,In ACM, 2014.

[4] Satapathy, ShashankMouli, Aditi Panda, and Santanu
Kumar Rath. "Story point approach based agile software
effort estimation using various svr kernel methods."
(2014).

[5] Höst, Martin, and ClaesWohlin. "An experimental study of
individual subjective effort estimation and combinations
of the estimates." Proceedings of the 20th international
conference on Software engineering.IEEE Computer
Society, 1998.

[6] Kocaguneli, Ekrem, Tim Menzies, and Jacky W. Keung.
"On the value of ensemble effort estimation." IEEE
Transactions on Software Engineering 38.6 (2012): 1403-
1416.

[7] Ziauddin, Shahid Kamal Tipu, and Shahrukh Zia. "An effort
estimation model for agile software
development." Advances in computer science and its
applications (ACSA) 314 (2012): 314-324.

[8] Meso, Peter, and Radhika Jain. "Agile software
development: adaptive systems principles and best
practices." Information systems management23.3 (2006):
19-30.

[9] Wang, Xiaofeng, Kieran Conboy, and OisinCawley.
“Leagile” software development: An experience report
analysis of the application of lean approaches in agile
software development." Journal of Systems and
Software 85.6 (2012): 1287-1299.

[10] Cordeiro, Lucas, et al. "An agile development methodology
applied to embedded control software under stringent
hardware constraints." ACM SIGSOFT Software
EngineeringNotes 33.1(2008).

60
65
70
75
80
85

Naïve Bayes SVM-ACO

Precision

Precision

68
70
72
74
76
78

Naïve Bayes SVM-ACO

Recall

Recall

