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IV. AN ALTERRNATIVE  METHOD FOR GOOD FIT  

In this paper, the author exhaustively exercised 
different techniques to solve this situation and proposes the 
consideration of using Correlation Factor as an alternative 
approach instead of plotting the quantiles. 

The qq-plot requires the theoretical quantiles along 
with the distribution quantiles and the quantiles need to be 
plotted and there is no quantified measure to decide the best 
suited distribution, only the visual observation is the 
deciding factor. The process of using correlation factor not 
only gives a quantified measure, but also resolves the 
possible tie in identifying one of many seemingly  equally 
close distributions for a dataset through qq-plot [4]. 
 
PROCEDURE: 

 
To use the correlation factor, the inputs required are same as 
that of qq-plots, i.e., distribution and theoretical quantiles. 
But the burden of plotting is overcomed and quantified 
measure is achieved. The quantified measures achieved for 
different models in question are compared and the solution 
is easily obtained [4]. 
The following are common to determine best fit model 
through qq-plots or through correlation factor. 

Consider the data for which the model must be 
decided and check whether there are any missing values, if 
so fill them with appropriate mean values. Then list the 
models in question and repeat the following steps for each 
model over the same data in focus.  Firstly estimate the 
unknown parameters of the considered grouped data using 

Maximum Likelihood Estimation (MLE) method, then 
generate theoretical quantiles and distribution quantiles.  

Once both the quantiles are determined, the qq-plot 
considers plotting of the quantiles and obtain graphical 
measure whereas the correlation factor process determines 
the correlation between the quantiles and thus obtains the 
quantified measure. 

 
V. ESTIMATION OF UNKNOWN PARAMETERS OF 

GROUPED DATA USING MLE METHOD 
Assessment of parameters is very influential in predicting 
the software reliability. Upon concluding the analytical 
solution for the mean value function m(t) for the specific 
model, the MLE technique is enforced for attaining the 
parameter estimation. The crucial intention of Maximum 
Likelihood parameter Estimation is to resolve the 
parameters that magnify the probability of the fragment 
data. The MLE is deliberated as vigorous, robustious and 
mathematically fierce. They yield estimators with good 
statistical factors. In the outline analysis, MLE methods are 
resilient, versatile and can be employed to distinct models 
and data categories [1][2][3][5].  Accomplishing to present 
day’s computer capability, the mathematical intensity is not 
a considerable hurdle.  
The constants ‘a’, ’b’ surfacing in the mean value function 
also appear in NHPP, through the intensity function to 
materialize error detection rate and in various other 
expressions are treated as  parameters of the model. To 
assess the software reliability, the unknown parameters ‘a’ 
and’ b’ are to be treasured and they are to be predicted 
using the failure data of the software fragment data [7]. 

For a detail, let ‘n’ be the time instances where the first, 
second, third..., kth faults in the software are 
encountered. We can consolidate it as, if  T୩  is the total 
time to the kth failure, ‘tk’ is an observation of random 
variable Tk and ‘n’ such similar failures are 

successively recorded. The combined probability of 

such failure time grasps nttt ,,, 21 
 is given by the 

Likelihood function as 

L ൌ eି୫ሺ୲౤ሻ.∏ mᇱሺt୩
୬
Kୀଵ ሻ  (1) 

The logarithmic application on the equation (1) would 
result a log likelihood function and is given in equation 
(2). 

LogL ൌ ∑ ൣሺn୧ െ n୧ିଵሻ. log൫mሺt୧ሻ െ mሺt୧ିଵሻ൯൧
୩
୧ୀଵ  - mሺt୩ሻ   (2) 

The Maximum Likelihood Estimators (MLEs) is 
featured to maximize L and estimate the values of ‘a’ 
and ‘b’. The process to maximize is by applying partial 
derivation with respective to the unknown variables and 
equate to zero to obtain a close form for the required 
variable. If the closed form is not destined, then the 
variable can be estimated using Newton Raphson 
Method. Subsequently ‘a’ and ‘b’ would be solutions of 
the equations. The section proceeds with Half Logistic 
Distribution (HLD) model. 

log log
0 , 0

L L
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The mean value function mሺtሻ of HLD is given  

  ݉ሺݐሻ ൌ ܽ
ሺଵି௘ష್೟ሻ

ሺଵା௘ష್೟ሻ
 

 Implanting the equations for m(t), (t) given by (1) 
and (2) in equation (4) and executing the 
aforementioned process and with the aid of few 
combined simplifications, we get a closure form for 
variable ‘a’ in terms of ‘b’.

a ൌ ሺn୩ െ n଴ሻ ൬
ଵାୣషౘ౪ౡ

ଵିୣషౘౡ
൰            (3) 
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gሺbሻ= ሺn୩ െ n଴ሻ∑
቎ቌ
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షౘ౪౟

ቀభశ౛షౘ౪౟ቁ
మቍିቌ

మ.౪౟౛
షౘ౪౟షభ

ቀభశ౛షౘ౪౟షభቁ
మቍ቏

ቈቆ
భష౛షౘ౪౟

భశ౛షౘ౪౟
ቇିቆ

భష౛షౘ౪౟షభ

భశ౛షౘ౪౟షభ
ቇ቉

୩
୧ୀଵ െ

ଶ.ሺ୬ౡି୬బሻ.୲ౡ.ୣ
షౘ౪ౡ

ቀଵିୣషౘ౪ౡቁቀଵାୣషౘ౪ౡቁ
     (4)  

g’ (b) =ሺn୩ െ  n଴ሻ∑ ቄቂ
ሺ୮ᇲି୯ᇲሺ୰ିୱሻି ሺ୰ᇲିୱሻሺ୮ି୯ሻ

ሺ୰ିୱሻమ
ቃቅ୩

୧ୀଵ +
ଶ.ሺ୬ౡି୬బሻ.୲ౡ

మ.ୣషౘ౪ౡ.ሺଵାୣషౘ౪ౡሻ

ሺଵିୣషౘ౪ౡሻమሺଵାୣషౘ౪ౡሻమ
  (5) 

 

Where p=
ଶ.୲౟.ୣ

షౘ౪౟

ሺଵାୣషౘ౪౟ሻమ
   p'=

ଶ.୲౟
మ.ୣషౘ౪౟ቀଵିୣషౘ౪౟ቁ

ሺଵାୣషౘ౪౟ሻమ
 

q=
ଶ.୲౟షభ.ୣ

షౘ౪౟షభ

ሺଵାୣషౘ౪౟షభሻమ
   q'=

ଶ.୲౟షభ
మ .ୣషౘ౪౟షభቀଵିୣషౘ౪౟షభቁ

ሺଵାୣషౘ౪౟షభሻమ
 

r=
ଵିୣషౘ౪౟

ଵାୣషౘ౪౟
    r'=p; 

s= 
ଵିୣషౘ౪౟షభ

ଵାୣషౘ౪౟షభ
   s'=q; 

Newton-Raphson method is utilized to obtain the most 
required parameter ‘b’ value  

 
VI. GENERATING THEORETICAL QUANTILES 
To generate theoretical quantiles, the cumulative 
probabilities are computed first. The cumulative 
probabilities can be computed by taking the ration of 
cumulative count of failure data to the total sum of failure 
data for each record. The obtained cumulative probability is 
equated to the mean value function of distribution to obtain 
the model quartiles. Say ki is cumulative probability and is 
to be equated to mean value function m(t) of each model and 
here it is demonstrated for HLDand solve for tiwhere ‘i’ is 
interval measure. 
It gives 

௜ݐ ൌ  
ିଵ

௕
݃݋݈ ቀ

ଵି௞೔
ଵା௞೔

ቁ                             (6) 

 
This results in the theoretical quantiles equal in quantity to 
the distribution quantiles. To check whether the opted Half 
Logistic Distribution suits the data, calculation of correlation 
factor eases the task [3][5].   
  
VII. CALUCULATING CORRELATION FACTOR 
Correlation is a statistical measure basically to quantify the  
relationship between two variables  It   is commonly used in 
linear regression. The results of correlation always vary 
between -1 to +1 exclusively. When the value is nearing +1, 
the two variables are strongly correlated and change in one 
variable positively affects the other variable. When the value 
is nearing -1, their effect is inversely over one another. 
When it is nearer to ‘0’, the effect of one variable over 
another is negligible. The Correlation is measured for the 
two variables x and y of n values as   
 

ݎ ൌ
∑ ௫೔௬೔  ି∑ ௫೔ ∑ ௬೔

೙
೔సభ

೙
೔సభ

೙
೔సభ

ටቀ∑ ௫೔
మି൫∑ ௫೔

೙
೔సభ ൯

మ೙
೔సభ ቁቀ∑ ௬೔

మି൫∑ ௬೙
೔సభ ൯

మ೙
೔సభ ቁ

                   (7) 

 
This complex calculation is eased through the R by 
using “cor()” function. 
The same process is repeated for all the models 

considered for investigation. Here the author considers 

HLD, GO & LPETM Models for same dataset [5][8][9] . 
The sample codeusing Rlanguage to generate the unknown 
parameters using MLE and further to calculate correlation 
factor is given below [10].  
#starting data 
 
#starting data 
 
com_filename<-“D:\\phase10b.csv" 
temp.data<-read.csv(com_filename) 
 
 
hld.data<-NULL 
hld.data$T<-temp.data$T 
hld.data$fd<-temp.data$fd 
hld.data$Cumm_fd<-NA 
hld.data$a<-NA 
hld.data$b<-NA 
hld.data$cumm_prob<-NA 
hld.data$modelQuantiles<-NA 
 
sqr<- function(x) 
{ 
  return (x * x) 
} 
 
 
readseed.b <- function() 
{  
  b0 <- readline(prompt="Please, enter seed value for 
b: ") 
} 
 
g<- function(b,t,n,k) 
{ 
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  cons <- (-2 * (n[k] - n[1]) * t[k] * exp(-b * t[k]))/(1 - 
exp(-2 * b * t[k])) 
  sum<-0 
  for(i in 2:k) 
  { 
    p <- ((2 * t[i] * exp(-b * t[i])) / (sqr(1 + exp(-b * 
t[i])))) 
    q <- ((2 * t[i - 1] * exp(-b * t[i - 1])) / (sqr(1 + exp(-
b * t[i - 1])))) 
    r <- (1 - exp(-b * t[i])) / (1 + exp(-b * t[i])) 
    s <- (1 - exp(-b * t[i - 1])) / (1 + exp(-b * t[i - 1])) 
 
    sum <- sum + ((p - q) / (r - s)) 
 
  } 
  g_val <- (n[k] - n[1]) * sum + cons 
  return(g_val) 
} 
 
gdash <- function(b,t,n,k) 
{ 
  # t<-hld.data$T 
  # b<-0.1 
  # k<-length(t) 
  # n<-c(1:k) 
 
 
  cons <-0 
  sum<-0 
 
  # cons = (2 * (n[k - 1] - n[0]) * sqr(t[k - 1]) * 
Math.Exp(-b * t[k - 1]) * (1 + Math.Exp(-2 * b * t[k - 
1]))) 
  # / 
  #   (sqr(1 - Math.Exp(-b * t[k - 1])) * sqr(1 + 
Math.Exp(-b * t[k - 1]))); 
 
  cons <- (2 * (n[k] - n[1]) * sqr(t[k]) * exp(-b * t[k]) * 
(1 + exp(-2 * b * t[k]))) / (sqr(1 - exp(-b * t[k])) * 
sqr(1 + exp(-b * t[k]))) 
 
  for (i in 2:k) 
  { 
    p <- ((2 * t[i] * exp(-b * t[i])) / (sqr(1 + exp(-b * 
t[i])))) 
    q <- ((2 * t[i - 1] * exp(-b * t[i - 1])) / (sqr(1 + exp(-
b * t[i - 1])))) 
    r <- (1 - exp(-b * t[i])) / (1 + exp(-b * t[i])) 
    s <- (1 - exp(-b * t[i - 1])) / (1 + exp(-b * t[i - 1])) 
    rdash <- p 
    sdash <- q 
    pdash <- ((2 * sqr(t[i]) * exp(-b * t[i])) * (-1 * (1 + 
exp(-b * t[i])) + 2 * exp(-b * t[i]))) / (sqr((1 + exp(-b * 
t[i]))) * (1 + exp(-b * t[i]))) 
    qdash <- ((2 * sqr(t[i - 1]) * exp(-b * t[i - 1])) * (-1 * 
(1 + exp(-b * t[i - 1])) + 2 * exp(-b * t[i - 1]))) / (sqr((1 
+ exp(-b * t[i - 1]))) * (1 + exp(-b * t[i - 1]))) 

    sum<- sum + ((((pdash - qdash) * (r - s)) - ((rdash - 
sdash) * (p - q))) / sqr((r - s))) 
  } 
  gdash_val <- (n[k] - n[1]) * sum + cons; 
  return(gdash_val) 
} 
 
#fd is failure data 
#Cumm_fd is cummulative failure data 
 
hldcalcuations<- function() 
{ 
  t<-hld.data$T 
 
  b<-as.numeric(readseed.b()) 
  k<-length(t) 
 
  t<-sort(t) 
 
  #Add Cumm fd in hld.data table 
 
  for(i in 1:k) 
  { 
    csum<-0 
    for(j in 1:i) 
    { 
      csum<-csum+hld.data$fd[j] 
    } 
    hld.data$Cumm_fd[i]<-csum 
  } 
  n<-hld.data$Cumm_fd 
   i<-0 
  repeat 
  { 
    i<-i + 1 
    g1<-g(b[i],t,n,k) 
    g2<-gdash(b[i],t,n,k) 
    b[i+1]<-(b[i] - (g1 / g2)) 
    if(abs(b[i + 1] - b[i]) <= 0.00001) 
    { 
        break 
    } 
  }  
  bfinal<-b[i+1] 
  a <- (n[k] - n[1]) * ( (1 + exp(-bfinal * t[k]))/(1 - 
exp(-bfinal * t[k])) ) 
 
  #Add a and bfinal values to the hld table 
  hld.data$a<-a 
  hld.data$b<-bfinal 
 
  hld.data$cumm_prob<-
hld.data$Cumm_fd/hld.data$Cumm_fd[k] 
  for(i in 1:k-1) 
  { 
    hld.data$modelQuantiles[i]<--log((1-
hld.data$cumm_prob[i])/(1+hld.data$cumm_prob[i]))/
hld.data$b 
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  } 
 
  corHLDData<-cor(hld.data$T[1:k-
1],hld.data$modelQuantiles[1:k-1]) 
  print("a:") 
  print(a) 
  print("b Final:") 

  print(bfinal) 
  print("Correlation factor with HLD:") 
  print(corHLDData) 
 
  } 
 
hldcalcuations() 

 
VIII. RESULTS The process is worked out different datasets and a sample 

dataset which suits all three models with considered.  
 

Table 1- Phase 1 Data on number of errors encountered during corresponding week. [6] 
 

Week No  Failure Data 
Cumulative 
Failure Data 

Cumulative 
Probabilities 

Week No  Failure Data 
Cumulative 
Failure Data 

Cumulative 
Probabilities 

1  2  2  0.090909  12  1  13  0.590909 

2  1  3  0.136364  13  1  14  0.636364 

3  1  4  0.181818  14  1  15  0.681818 

4  1  5  0.227273  15  1  16  0.727273 

5  1  6  0.272727  16  1  17  0.772727 

6  1  7  0.318182  17  1  18  0.818182 

7  1  8  0.363636  18  1  19  0.863636 

8  1  9  0.409091  19  1  20  0.909091 

9  1  10  0.454545  20  1  21  0.954545 

10  1  11  0.5  21  1  22  1 

11  1  12  0.545455             
 
After processing the correlation factor for the three models 
HLD, GO & LPETM [5][8][9] is as  
 
Model HLD GO LPETM 
Correlation  0.9569259 0.9313087 0.9932913 
 
Here considering individually the three models suit the data 
as they correlate to more than 90%, but when we want to 
consider only the best suited model, the decision making can 
be quite complex through graphical plots. But with the use 
of correlation coefficient comparison, the decision making is 

easy and the best suited model is easily decided. Here the 
results show LPETM best suits the data, so it is selected. 
 

IX. CONCLUSION 
The main focus of this prime is to show a convenient 

and easy process to suggest model best suits the data out of 
multiple models by quantifying the closeness of model to 
the data through calculating the comparisons and instead of 
graphical plots(QQ-Plot).  
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