
Mathifier – Speech Recognition of Math Equations
Salim N. Batlouni, Hala S. Karaki, Fadi A. Zaraket, Fadi N. Karameh

American University of Beirut

Abstract—Speech recognition has become widely used across
many applications. Telephone systems can route a phone call
based on what the caller says, control systems can respond to
actions said by the controller, and mobile phones can recognize
the speech of a contact’s name and call the respective contact
directly. However, speech recognition has found little use in
recognition of textual material due to the large dictionary and
hence large word error rates. Mathifier constricts the speech
recognition to math equations; it takes as input math formulas
presented in the form of user speech and produces the equations
in digital mathematical form. The smaller dictionary and the
specific grammar structure of the math equations help restrict
the problem of the recognition process. The program has room for
smartly guessing words based on the grammar structure and thus
resulting in a lower error rate and better recognition. Mathifier
uses Sphinx, a modular speech recognition tool from CMU, and
adapts it to recognize math equations and convert them into latex
form in real time.

I. INTRODUCTION

EVEN though speech recognition has infiltrated many
applications, its use is still limited as a replacement to

typing text. People have to speak slowly and clearly and
still expect errors when using speech recognition programs.
That keeps the keyboard as the first option to text data entry.
However, when it comes to math equations, people speak
math equations much faster than they could type them or
even write them by hand. For this reason, a speech recognizer
may serve as a realistic and preferable option to typing
math equations. Also, a speech recognizer that is focused on
recognizing only math equations has a very specific dictionary
to be followed, with very exact grammatical sentences thus
allowing for lower processing time and better results. In other
words, the recognizer has room for smartly guessing what
the user is saying, hence greatly improving the accuracy of
recognition. Having a very specific dictionary means much
faster processing, since the system spends less time searching
between available options (or, as we’ll see later, searching the
graph).

The market already offers MathTalk [1], a speech recogni-
tion tool for math equations. Mathifier, however, offers several
advantages over the commercial alternative: Mathifier is free,
open-source, and allows for natural mathematical speaking,
as shown in Section III-E. MathTalk, on the other hand, is
sold starting at $300. Also, the user needs to learn special
commands to be able to use the program.

To convert speech into software-understandable features,
two methods can be used: the Hidden Markov Model (HMM),
and the lesser known time-warping method. The HMM method
is known to be the de-facto standard due to its high accuracy
and low computational needs. Both methods are discussed in
more detail in Section II-A. Sphinx, which Mathifier uses to

convert speech to features, uses the HMM method. This is
more suitable in our case, since we need to recognize speech
in real time.

In this paper we make the following contributions: (1) We
use a novel lazy grammar approach to automatically translate
mathematical speech into digital form in real time, and (2) we
provide a user friendly tool to aid in the process of math speech
recognition and allow editing and correcting the produced
digital formulae.

II. BACKGROUND

A. Models for Speech Recognition

Several models for speech recognition are present. The
two most promising ones are Dynamic time warping and
Hidden Marcov Models. Dynamic time warping (DTW) is
an algorithm for measuring similarity between two sequences
which may vary in time or speed [2]. It has found widespread
use in voice recognition due to its capability to solve major
problems faced when comparing the feature vectors of the
stored speech signal with incoming speech signal. Although
DTW was found to be of much use in speech recognition, it is
computationally expensive, which limits its use in applications.
The second method which has become predominant in the last
several years is Hidden Markov Models[3]. Speech recognition
was one of the first and most popular applications of HMMs,
principally due to the ease of implementation of the overall
recognition system, in addition the ease, efficiency, and avail-
ability of training algorithms for estimating the parameters of
the model from finite training sets of speech data.

B. Speech Recognition System: CMU Sphinx IV

For this project we decided to use CMU Sphinx. It is an
open source speech recognition tool developed at CMU. The
design of Sphinx 4 is modular; this allows us to modify certain
modules within the program without affecting the rest of the
system. The general architecture can be seen on Figure 1
The original application contains the user interface on one
side, and the interface with the speech recognizer (Sphinx 4,
that is) on the other. Sphinx 4 has a front end that receives
speech waveforms and converts them to features. However,
before Sphinx starts to decode, or “recognize”, the speech, it
has to load a knowledge base, which is all the information
it needs to know in order to recognize incoming speech.
Naturally, the knowledge base is specific to a certain language,
and sometimes even a dialect. The features as well as the
knowledge base are supplied to the decoder, which in turn uses
both components in order to recognize speech and convert it
to text.

978-1-4577-1846-5/11/$26.00 ©2011 IEEE 301

Fig. 1. Sphinx Architecture

1) Front End: The Front End is used to transform an input
audio signal into a sequence of output features, which will be
used for processing. This block extracts the cepstral features
from the input audio signal in real time and feeds these features
to the Sphinx decoder.

2) Knowledge Base: The Knowledge Base provides needed
information to the decoder in order to do its job. It consists
of three components: a dictionary, a language model, and
an acoustic model. The dictionary is a list of words along
with their phoneme sequence. The language model is the
“grammar” to be used which dictates the sequence of allowed
words. For instance, once the word ’plus’ is recognized, the
language model knows that ’divided’ will not follow, and
hence the recognizer will not consider ’divided’ as a possible
option. To implement language models correctly, Sphinx uses
a standard established by Java, known as the Java Speech
Grammar Format (JSGF) [4]. The acoustic model has acoustic
data (HMM) for every phoneme in the dictionary. Sphinx
supports the use of triphones, where the phoneme has several
models based on the context it is in. For example, the phoneme
AH will be different when preceded by a silence than when
preceded by M.

3) Search Manager and Search Graph: The Search Graph
is a directed acyclic search graph, constructed from the lan-
guage model, dictionary, and acoustic model. The language
model or grammar defines the transitions allowed between
words and their probabilities. Each word points to a list
of possible pronunciations of that word and each respective
pronunciation points to its list of units which are the phonemes
that make up the word. Sphinx IV allows for a dynamic
construction of the Search Graph during decoding. This is
done through the use of the Search Manager and aids in proper
real time recognition [5].

C. Application

Sphinx can be thought of as the inner layer (recognizer), and
the application as the outer layer (interface) with which a user
will be interacting. The application layer provides the input to
the recognizer and the output to the user. In our project, the
application layer provides the input audio signal to Sphinx and
outputs the compiled Latex to the user.

III. MATHIFIER COMPONENTS

Mathifier provides the user with the visual feedback of what
they’re saying in real-time, i.e. the display of equations in
mathematical form and not the Latex code. Section III-A1
presents how in Mathifier the utterance a user says journeys
through the Grammar Layer and Application Layer to to come
out as compilable latex code. This is then followed by sections
that present the progression of the grammar model which
yielded the best results. Section Section III-A2 explains the
steps taken to train the system followed by Section III-A3
which demonstrates how the results gets to be displayed in
the final visual math form to the user. Section III-A4 mentions
some program functionalities which were implemented based
on user intuition.

A. Grammar Language Model

1) Relationship between Grammar layer and Application
Layer: As previously noted in Section II-B3, the grammar lan-
guage model dictates the allowed transitions between words.
In Mathifier, we specified a mathematical language model
which only allows transitions between words which can be
mathematically sound. For example the transition from ’plus’
to ’divided by’ is not an allowed one in math grammar. To
implement this math grammar, we used the Java Speech Gram-
mar Format (JSGF) which sphinx utilizes to know the possible
word transitions in real-time. JSGF allows grammar nodes to
be specified as in the example of the node ’<equation>’ in
Figure 2. In grammar nodes, the allowed word transitions are
specified, and a word in a grammar node may be itself another
grammar node such as <number> and <op> within the node
<equation>. A key feature provided by the JSGF is tagging.
Each node or word can be assigned a specific string value.
Accordingly, values can be assigned to their Latex equivalent
such as ’\sqrt’ for square root in Figure 2. Moreover, Java
functions can be called through these tags. This means that
whenever a certain grammar node or word is reached, its
respective Java function will be called. This actually sets the
basis of interaction between the grammar layer and application
layer.

Fig. 2. JSGF Example

The application layer keeps track of the total equation in
a string and a cursor position of the equation. The grammar
layer is responsible for the recognition of individual speech
segments. It specifies within one continuous segment what
is allowed to be said with no knowledge of what has been

302

previously said. Once the decoder and grammar layer have
recognized the speech into words, the result is passed on
to the application layer by triggering the respective Java
functions of these words. The application layer employs it’s
previous knowledge of what was said and intelligently places
the decoded result in the total equation making sure the entire
equation string remains latex compilable.

2) Comprehensive Grammar: Our initial approach for the
math grammar was to specify a comprehensive grammar.
The grammar search graph defined allowed for long math
equations with math restrictions such as: integral from a to
b open x squared plus y squared close d x. Whilst this is
a valid sentence, most users will not actually say such a
long sentence at once. Furthermore, a well defined set of
mathematical rules could cause the search graph to grow
unnecessarily large in size and complexity if we were to allow
every possible sentence in math to be said. This had its toll on
recognition time which increased to several seconds, as well
as on precision which went below acceptable rates.

3) Loose Grammar: An alternative simplistic approach was
to have a loose grammar where the list of allowed statements
are short and limited to the succession of few words. For
example, ’<number> over <number>’ and ’<number> plus
<number>’ were placed in two completely separate gram-
mar nodes each calling its respective different Java function.
Whilst the separation makes it easier for the Java function
implementations and latex value assignments, the fact that both
nodes could begin with the same word allowed for confusion.
Assume the user started out by saying ’one’ followed by some
other words. Both grammar nodes would have to be loaded and
traversed before figuring out to which grammar node of the
two the word ’one’ belongs. Having to check all possibilities
before deciding on an answer was redundant and wasted time.
Recognition time also increased unacceptably in this situation
to several seconds.

4) Lazy Grammar: As a middle way solution, what we
called the Lazy Grammar was defined in such a way that all
entry points in the grammar nodes are distinct. Once the first
word in a speech segment is identified it will have only one
possible tree to traverse hence avoiding the confusion. Upon
adopting this approach, both the precision and processing
time for recognition improved significantly. Remarkably, the
processing delay went down from few seconds long to real-
time.

B. Training the System

As with any speech recognition system, creating a knowl-
edge database which produces reliable learning, the so called
training phase, requires considerable time and patience. Ut-
terances have to be recorded several times, under different
situations (different background noise), and using different
speakers (different tones, pitches, accents). To aid and stream-
line the training process, we developed and added several tools
to Mathifier. One important tool is a Java program that takes
a text file as an argument and displays each line sequentially.
The trainer would speak the line and hit enter, in which case
the program automatically creates the corresponding .wav file

and displays the next line in the file. This makes it much easier
to train the file in a shorter amount of time.

C. Real-Time Recognition

Users will use this system in order to get rid of writing
equations on paper or typing them on screen. This means
that the user will speak equations that are in their mind,
and not on paper. Hence, it is necessary to show the user
the result of their speech while they are speaking, and not
only when the sentence is finished. After all, a user cannot
keep a whole complicated equation in mind and be able to
say it all in one shot. In the original Sphinx, however, this
is not the case. CMU Sphinx recognizes a sentence, which
is an utterance bounded by two moments of silence. Each
time a complete sentence is uttered, Sphinx prints out the best
path. We overcame this limitation by implementing a real-
time recognition feature, where the best path of the active
list is printed every time a feature is processed. While the
implementation worked well, the overhead is large since the
best path is computed at every feature. We intend to optimize
real-time recognition by computing the best path only when a
completely new word is recognized.

D. User Interface

Two threads run simultaneously in our system. A user
interface thread runs in the foreground, displaying controls
and results by using the Java Swing library in a pleasant envi-
ronment. The Sphinx speech recognizer runs in a background
thread, listening to voice input and decoding the speech signals
to text. It was shown in that the grammar language can convert
english words to Latex code on-the-fly. Still, it is not pleasant
to the user to show plain Latex code of what was recognized.
Instead, compiled Latex code should be shown, where the
equation is in easily understandable mathematical form. A
first take on this problem was to use system calls to invoke
the Latex compiler. The overhead in this case is considerably
large since the OS had to perform several context switches, in
addition to exchanging information using files. This overhead
amounted to more than 200ms for every compilation of a
single line of Latex code. A better solution that we will
implement is to use an open-source Latex Java API called
JLatexMath. By using the API, system calls are replaced by
lighter interactions between Latex and our system. Also, data
would be exchanged using buffers instead of the filesystem.

E. Program functionalities

Program functionalities were developed in accordance with
what’s user friendly and intuitive when speaking math. It
utilizes pauses between words to predict what the user meant.
For example assume the user says ”a over b”, pauses, and then
says ”squared”. This power will be interpreted as belonging to
the entire fraction. If the user says directly ”a over b squared”
then the power will be interpreted as belonging to ”b” strictly.
Useful commands have also been implemented to ease the
formation of the equation such as ”close everything”. If the
user has opened several brackets in the equation, this command
will correctly count all unclosed brackets and close them all.

303

IV. RESULTS & FUTURE WORK

After considerable training, we performed tests to gain
knowledge about the error rate in our program. Two tests
were performed: one that finds the error rate for speakers who
trained the system, and another for speakers who did not train
the system. Three persons trained Mathifier, so the same three
were used in the first test. For the second test, we chose three
different persons who did not train Mathifier. For speakers who
trained the system, the WER (word error rate) was 16.3%. In
fact, the system missed 1571 out of 9620 words. For speakers
who did not train the system, the WER was slightly higher,
at 21.0%. The system missed 2194 words out of 10455. The
results are summarized in Figure 3. The testing process showed
good results, especially since the word error rate for speakers
who did not train the system was not considerably higher than
those who did train the system.

WER Words Correct Words Incorrect
Trained 16.3% 8049 1571

Untrained 21% 8261 2194

Fig. 3. Results

The presented system was implemented and a knowledge
database for training is currently being developed. Due to
the large lexicon of what math users could find useful, the
process of building this database requires significant time
(not withstanding the user-friendly trainer that mathifier in-
cludes). Thus far, we have trained numbers between zero
and one hundred. The process is time consuming because,
after composing a transcript (list of sentences to train the
system with) and training the system, the acoustic model
created has to be tested by using it in the recognition process.
For instance, we noticed that after some preliminary training,
the recognizer had a high error rate in resolving utterances
that are acoustically very similar. For example, high errors
occured when resolving multiples of ten, exchanging thirty
with thirteen, forty with fourteen, etc. In classification terms
(HMM), one could consider that the knowledge database had
not sampled the probability distribution sufficiently to build
fine models of sound feature transitions. To remedy this issue,
manual intervention is needed. Here, another transcript was
devised with more stress on the words experiencing a higher
error rate. The re-training of the system gave much better
results. It is clear then that it is necessary to train the system
by introducing small batches of new words and stressing on
those with higher error rates.

As a demonstration of the utility of the lazy grammar that
mathifier introduces, the system did not experience the same
high error rate when the speaker said a 2-digit number that
is not a multiple of ten (ie, seventy two) even with the small
database currently compiled. This is due to the grammar model
shown in Section III-B. The model specifies that a digit cannot
follow a number between 10 and 19, but it could follow
larger 2-digit numbers. Hence, when the system has a similar
acoustic weight to both thirty and thirteen, and the following
word is three, then the system will go with thirty.

In addition to sampling the math lexicon finely, the knowl-
edge database should also include a rich enough variation

on pronunciations from multiple speakers in different envi-
ronments. That translates to lower accuracy for novel users
whose pronunciation profile do not closely math those in the
database.

V. CONCLUSION

Handwritten text is slowly losing favor to word processors,
and converting speech to digital math equations goes in
the same direction. The specificity of our domain, the math
language, has an advantage over general speech recognizers,
since it has a specific application that is not met by general
recognizers. Additionally, the restriction to the math domain
offers better accuracy and faster results. The applications for
our product are interesting. Naturally, the product can be used
to dictate math equations and have them converted in realtime.
The product can also be used in lower education, where young
children would know numbers verbally. By using Sphinx,
these children can practice writing equations by mapping how
equations sound to how they look. In the professional field,
our product would be very useful as an add-on to latex.
Professionals spend a lot of time meddling with different latex
functions, and have to keep up with long equations in textual
form. With the addition of a speech recognizer, professionals
can write these equations on latex more naturally. In this
project, we are using a successful, research-driven, and open-
source software, and we are trying to build upon it. The
scope of our project is the building of a complete product that
benefits everyone. We have adhered to constraints that target
the everyday user by making it intuitive and easy to use.

REFERENCES

[1] http://mathtalk.com/, “Mathtalk,” 2011.
[2] P. Senin, “Dynamic time warping algorithm review,” December 2008.
[3] B.-H. J. Lawrence Rabiner, Fundamentals Of Speech Recognition.

Prentice Hall, 1993.
[4] http://java.sun.com/products/java media/speech/forDevelopers/JSGF/,

“Grammar format specification,” 2011.
[5] P. Lamere, P. Kwok, W. Walker, E. Gouva, R. Singh, B. Raj, and P. Wolf,

“Design of the cmu sphinx-4 decoder,” MERL – A Mitsubishi Electric
Research Laboratory, August 2003.

[6] B. Raj, “Bhiksha’s notes,” these are unofficial notes prior to the
implemention of Sphinx 4.

[7] P. Lamere, P. Kwok, W. Walker, E. Gouva, R. Singh, B. Raj, and P. Wolf,
“The cmu sphinx-4 speech recognition system.”

[8] S. Young and N. Ressell, “Token passing: a simple conceptual model
for connected speech recognition systems,” Cambridge University En-
gineering Department, 1989.

[9] M.-Y. Hwang and X. Huang, “Subphonetic modeling with markov states
- senone,” Camegie Mellon University, 1992.

[10] http://cmusphinx.sourceforge.net/wiki/tutorialam, “Training specifica-
tions,” 2011.

[11] http://www.adobe.com/products/acrobat/adobepdf.html, “Adobe portable
document format,” 2011.

[12] The cmu pronouncing dictionary. [Online]. Available: http://www.
speech.cs.cmu.edu/cgi-bin/cmudict

304

