
DOI: http://dx.doi.org/10.26483/ijarcs.v8i9.5064
Volume 8, No. 9, November-December 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 753

ISSN No. 0976-5697

 ENHANCEMENT OF BACKWARD COMPATIBILITY IN SOFTWARE

COMMUNICATION ARCHITECTURE (SCA) STANDARDS AMONG SCA

COMPLAINT SOFTWARE DEFINED RADIOS (SDR)

N Thinakaran
Research Scholar

Dept of ECE, PMU

Thanjavur, India

Dr D Kumar
Head Nano, and Professor

Dept of ECE, PMU

Thanjavur, India

Dr P Saikrishnan
Associate Professor

Dept of Mathematics, NIT

Trichy, India

Dr N Vetrivelan
Principal and Professor

Dept of MCA, Dhanalakhsmi Group of Institutions

Perambalur, India

Dr C Vimala
Head of Mathematics and Associate Professor (SG),

Dept of Mathematics, PMU

Thanjavur, India

Abstract: Since World War-II, world is developing newer communication radio continuously by spending efforts, money and assets. After

digital communication systems are invented, the development is rapidly progressing at every country. With globalization in mind, country-to-

country starts interacting with each other and begins to share their radios too for operations. In military-to-military contact, there exists a

problem of incompatibility of radios between friendly countries. With the Software inventions and mathematical processor improvements,

Software Defined Radio (SDR) started appearing in both military and commercial world. We explore the SDR and suggest some Universal

standards in Software Communication Architecture (SCA) which can be followed for mitigating the interoperability problem. With SCA-

compliant-SDR, the radio can be reconfigured with high flexibility for multi-band-multi-mode capability with maximum portability.

Keywords: Components, JTRS, SDR, SCA, UML and Waveform.

1. INTRODUCTION

All The term Software Radio was coined by Joe Mitola in

1991, for referring the class of reprogrammable or

reconfigurable radio [1]. SDR is a radio, in which some or

all of the physical layer functions in OSI (Open System

Interconnection) network model, are software defined. It

means that different waveforms can be supported by

modifying the software or firmware, but not changing the

hardware. Waveform here means a signal with specific

values for all the parameter such as carrier frequency, data

rate, modulation, coding etc., Due to advancements in

waveform signal processing and hardware processing

capacity, radio communication systems were becoming

more of software processing and controlling. Each radio is

becoming more of mission specific and is not able to

communicate with joint forces in military tactical operation

or disaster relief. With this as compulsion, Unites States,

Department of Defence (DoD) initiated a program in 1990

called Joint Tactical Radio System (JTRS). As a result a

prototype named SPEAKeasy was created in various phases

[2]. Other programs such as PMCS (Programmable Modular

Communication System), WITS(Wireless Information

Transfer System) by Motorola, SpectrumWare at MIT by

DARPA, CHARIOT(Changeable Advanced Radio for Inter-

Operable Telecommunications) at Virginia Tech as part of

DARPA’s GloMo programs were developed to make a

unified Software Communication Architecture. Thus in year

2000, SCA was created by SDR Forum comprising US DoD

and civil telecom companies and SCA version 1.0 was

released [2]. By the end of year 2001, the SCA framework

for development of SDR version 2.2 was released [3]. Over

a period of five years of rigorous discussion by SDR forum

among US DoD, various telecom manufacturing companies

and academicians around the world arrived at a major

revision of SCA version 2.2.2 in the year 2006. This version

has enhanced the interoperability of communication systems

by leveraging the benefits of technology advances in

commercial standards for military applications [4]. Michael

L Dickens et al.,[5] has designed and implemented a

Portable Software Radio in the year 2008. In the next six

years of hard work the JPO has released SCA version 4.0

dated 28 Feb 2012[6], by enhancing the SDR in deployment,

management, interconnection, and intercommunication of

software components in embedded, distributed-computing

communication systems. Now a days the Joint Tactical

Networking Centre(JTNC, part of US DoD) is managing the

SCA. This revision supports lightweight, disadvantaged

platforms like handheld radios. But the backward

compatibility with products compliant with SCA ver 2.2.2

N Thinakaran et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,753-759

© 2015-19, IJARCS All Rights Reserved 754

waveforms was missing. This was not fully addressed in

SCA version 4.0 which was released in 28 Feb 2012. We

would like to address these backward compatibility

problems in SDRs.

 Our scope in SDR is limited to the framework of

Software Communication Architecture (SCA) which is

prevailing in the world and imbibed by SDR Forum, in

collaboration with IEEE P1900.1 Working Group. Initially

the US DoD has introduced the SCA framework through

SDR forum, to resolve the interoperability of radio among

military, which is now re-coined as Wireless Innovation

Forum (WInnF). We have recommended the backward

compatibility issue between SCA 2.2.2 waveforms and

devices to run on current SCA versions 4.X. In the Section 2,

we have briefly introduced the concepts of SCA alongwith

interoperability problem of SDR. In the Section 3, we have

explored the likely solutions to SCA standards in the form of

modifications in Base Component, Device Component,

Application Manager Component, Application Factory

Component and Device Manager Component..

2. CONCEPTS OF SCA

A. Interoperability Problem of SDR in existing SCA

Standards

Due to advancements in waveform signal processing and

hardware processing capacity, radio communication systems

are becoming more of software processing and controlling.

Each radio is becoming more of mission specific and is not

able to communicate with joint forces in military tactical

operation or disaster relief. Hence there was a need for

creating an unified communication architecture called

Software Communication Architecture (SCA). Dept of

Defence (DoD) in USA initiated a program in mid 1990s

called Joint Tactical Radio System (JTRS) Program

Office(JPO) to pursue the development of future

communication systems, with benefits of advance

technology. This type of radio was to enhance

interoperability, reduce development & deployment cost,

upgradeable (modular), scalable, backwards-compatible and

reconfigurable. This software programmable radio will also

enhance real-time information exchange among friendly

forces such as ground troops to combat fighter aircraft.. This

will have combat edge among all fighting elements. Such

radio is called Software Defined Radio (SDR) which can

accommodate multi-service and multi-national capabilities.

Such radio is easily upgradeable with latest versions through

the standard Application Program Interface (API). Hence

SCA was created. Till 2015 SCA version 4.1 has been

released for the public to adhere while buying / developing

SCA compliant SDR. After thirty years of Evolution, SDR

is now a dominant industry standard in radio domain, from

military-tactical radios to cellular handsets.

 JTRS envisions a radio that will support Operating

frequencies from 2 MHz to 2 GHz, be reconfigurable

through waveform software, support voice, video and data

applications, be scalar in both software & hardware,

leverage COTS components for affordability and be

interoprable with different waveform, with legacy

equipment, and with radios designed for different domains.

JTRS program covers five unique domains such as airborne,

fixed / maritime, vehicular, dismounted, and hand-held.

JTRS is designing its SCA to meet the goals such as

“function as Multiband-Multimode-Radio”, “be

interoperable with all domains”, “be compatible with legacy

system”, “support insertion of new technologies”, “support

advent networking features” and “use primarily COTS

components”.

B. Core Framework (CF)
Role of SCA is to provide common infrastructure for

managing the software and hardware elements present in a

system and ensuring that their requirements and capabilities

are commensurate. SCA accomplishes this function by

defining a set of interfaces that isolate the system

applications from the underlying hardware. This set of

interfaces is referred to as the Core Framework (CF) of

SCA[6]. In a distributed architecture, functionalities such as

deployment, management, interconnection and

intercommunication can be achieved by this core framework

interfaces and services. Portability can be achieved among

SCA compliant radio / platform using CF interfaces with

some limitations.

 CF Interface can be grouped into three major types

viz., Base Application Interfaces, Framework Control

Interfaces and file service Interfaces. Base Application

Interfaces provide a common set of interfaces for

developing software application components and

exchanging information between them. They are Port, Life

cycle, Testable Object, Property set, Port Supplier,

Resource factory and Resource, Controllable component.

Framework Control Interfaces provide the means for control

and management of hardware assets, applications and

domain(system). They are further sub-divided as Device

Interfaces, Device management Interfaces, Domain

Management Interfaces. File access services in a radio can

be achieved using File Service Interfaces in Core

Framework of SCA standards. There are three services viz.,

File service, File system interface and File Manager

interface. The CF interface is depicted in the form of

Unified Modeling Language (UML) at figure.1.

Fig 1 . CF Interfaces Top-Level View.

C. Application Architecture
The application architecture of SCA deals with Application-

Layer-Software partitions which gives details about how

waveform might be implemented using the SCA.

Applications such as modem, Link, Network, security & I/O

components perform user level functions. These components

require CF interface & services through MAC API,

N Thinakaran et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,753-759

© 2015-19, IJARCS All Rights Reserved 755

LLC/Network API and I/O API. These applications have

direct OS access limited to SCA POSIX (Portable Operating

System Interface) Profile. The application architecture of

SCA is given below in figure.2.

Fig. 2. Application Use of Operating Environment.

D. SCA Software Architecture
The SCA Software Structure can be broadly divided as

Application Layer and Infrastructure Layer. The software

architecture resides over a hardware. The details of SCA

software architecture are shown in figure.3 given below.

Fig.3. SCA Software Structure.

The interoperability problem between a radio which follows

SCA 4.X standards and another radio which follows SCA

2.2.2 version can be solved by making modification in SCA

4.X Base component. For this, the SCA 2.2.2 Resource

interface and SCA 4.X BaseComponent can be compared

and analysed as shown in figure 4 and 5 respectively[3][6].

While the software development is developing the migratory

version from SCA 2.2.2 to SCA 4.1, the team has to

envisage the changes in interfaces, requirements and

designs. If a comparison is made between BaseComponet of

SCA 4.1 and Resource of SCA 2.2.2 standards, it will be

equivalent. Resource interface is a set of interfaces needed

to initialise, configure, control, and tear-down a component

as given in fig 4. It will have a start function and stop

function for controlling the error which may occur. The

Resource interfaces are depicted with CORBA interface in

Unified Modelling Language in the fig 4 below..

Fig. 4. SCA 2.2.2 Resource relationships in UML.

Fig. 5. SCA 4.X Base Component

3. ENHANCEMENT OF SCA STANDARDS[7][8]

SCA standards are to be enhanced to cater for backward

compatibility by modifying the Base Component, Device

Component, Application Manager Component, Application

Factory Component and Device Manager Component as

shown in the following paras.

E. Modification in Base Component

By analysing the Resource interfaces of SCA 2.2.2,

following changes in Resource, LifeCycle, PropertySet,

PortSupplier, and TestableObject are suggested for

mitigating the backward compatibility problem of SDRs

(figure 6).

Since the componentization is the biggest modification

required for backward compatibility, it is recommended to

create new interface called ComponentIdentifier and

ControllableInterface, in place of Resource. A new started

attribute is recommended for introduction within

ControllableInterface interface. Accordingly the

ControllableInterface is to be inserted in place of Resource

interface.

N Thinakaran et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,753-759

© 2015-19, IJARCS All Rights Reserved 756

Fig. 6. Comparison of Migration of Resource Interface.

LifeCycle and PropertySet interfaces are retained identical.

PortSupplier interfaces are compared and analysed as given

below at figure 7. Following are the changes suggested to

mitigate the interoperability problem. The functionality of

the Port and PortSupplier interfaces is recommended for

merging. Same can be unified as with the new interface

called the PortAccessor interface. Exceptions in

OccupiedPort is suggested for removal. This functionality

can be combined with InvalidPort Exceptions. The new

variable called ConnectionErrorType can contain this

exception for backward compatibility. With this all the port

operations can be called on a single execution for

simultaneous multiple communications of SDR radio.

SCA 2.2.2

interface PortSupplier{

 exception UnknownPort {

};

 Object getPort (in string name)

 Raises

(CF::PortSupplier::UnknownPort);

};

interface Port {

exception InvalidPort {

 unsigned short errorCode;

 string msg;

 };

exception OccupiedPort{

 };

void connectPort (

 in Object connection,

 in string connectionidd)

 raises

(CF::Port::InvalidPort,

CF::Port::OccupiedPort);

 void disconnectPort (

 in string connectionid)

 raises (CF::Port::InvalidPort);

}

SCA 4.X

interface ControllableInterface {

 exception StartError {

 CF::ErrorNumber Type errorNumber,

String msg;

 };

 exception StopError {

 CF::ErrorNumber Type errorNumber,

string msg;

 };

 readonly attribute Boolean started;

 void start()

 raises

(CF::ControllableInterface::StartError)

 void stop()

 raises

(CF::ControllableInterface::StopError)

 };

interface ComponentIdentifier {

 readonly attribute string identifier;

 };

SCA 2.2.2

interface Resource : LifeCycle

TestableObject, PropertySet, PortSupplier

{

 exception StartError {

 CF::ErrorNumberType

errorNumber, String msg;

 };

 exception StopError {

 CF::ErrorNumberType

errorNumber, String msg;

 };

readonly attribute string identifier;

void start()

 raises

(CF::Resource::StartError);

void stop ()

 raises

(CF::Resource::StopError);

 };

N Thinakaran et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,753-759

© 2015-19, IJARCS All Rights Reserved 757

Figure. 7. Port Interfaces Comparison

In TestableObject, replace TestableObject interface with

TestableInterface as given in figure 8 comparison.

Fig. 8. Test Interface Comparison.

Within both SCA 2.2.2 and SCA 4.X support the same core

capabilities of Configuration management, Operations

Management, Life Cycle Support, Connectivity

management and Test management.

F. Modification in Device Component

In order to support the Device Component functionality with

all types of radio, all version will have to possess Capacity,

Configuration, Operations, connectivity and test

management with Life Cycle supports. All the devices such

as Loaded and Executable can be replaced with respective

components such as DeviceComponent,

LoadableDeviceComponent and

ExecuatbleDeviceComponent. With this modification, the

Device Interface and its Device scoped attributes and

exceptions can be eliminated in the newer versions of SCA.

In the exception classes, the Invalidstate can be moved to

the ComponentType. SoftwareProfile in the newer versions

can be moved to ComponentType. Refactor Device Interface

into three new interfaces AdministrableInterface,

CapacityManagement and DeviceAttributes. Accordingly

the names and data types has to be replaced. Device

Component SCA standards is recommended to have UML

as shown in figure 9.

Fig. 9. Proposed Device Component Model.

G. Modification in Application Manager Component

In the older SCA versions, applications are realized through

the Resource Interface. After the removal of the same in the

new SCA versions, it is suggested to rename all the

application components into the ApplicationFactory

SCA 4.X
interface Testableinterface {

 exception UnknownTest {

 };

 void runTest (

 in unsigned long testid,

 inout CF::Properties

testValues)

raises

(CF::TestableInterface::UnknownTest,

CF::UnknownProperties);

 };

SCA 2.2.2

interface TestableObject {

 exception UnknownTest {

 };

 void runTest (

 in unsigned long testid,

 inout CF::Properties

testValues)

raises

(CF::TestableObject::UnknownTest,

CF::UnknownProperties);

 };

SCA 4.X

interface PortAccessor {

 struct ConnectionidType {

 string connectionid;

 string portName;

 };

 typedef sequence <ConnectionidType>

Disconnections;

 struct ConnectionType {

 ConnectionType portConnectionid;

 Object portReference;

 };

 typedef sequence <ConnectionType>

Connections;

 struct ConnectionErrorType {

 ConnectionType

portConnectionid;

 unsigned short errorCode; };

 exception InvalidPort {

ConnectionErrorType invalidConnections; };

void connectUsesPorts(

in CF::PortAccessor::Connections

portConnections)

 raises(CF::PortAccessor::InvalidPort);

void disconnectPorts(

 in CF::PortAccessor::Disconnections

portDisconnections)

 raises(CF::PortAccessor::InvalidPort);

 void getProvidesPorts(

 inout CF::PortAccessor::Connections

portConnections)

raises(CF::PortAccessor::InvalidPort);

};

N Thinakaran et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,753-759

© 2015-19, IJARCS All Rights Reserved 758

Components. Appropriately the naming conventions can be

modified to suit all the applications envisaged in backward

combatibility. The attributes pertaining to each application

has also to be relocated including Profile,

componentDevices and the process identities.

H. Modification in Application Factory Component

Application Factory undertakes the application deployment,

Component connection, initiation and configuration of

applications. For backward compatibility, the naming

services in the form of identifier and its attributor are to be

removed. Then create the componentization of

ApplicationFactory. The application has to be instantiated

into ApplicationManager through its proxy interface. For

this appropriate entry is to be made in the

ComponentRegistry. In addition, the “create Operation” has

to be modified to hold the ComponentType,

deploymentDependencies and executionAffinityAssignments

parameters. Then the naming service of

ApplicationFactory’s association has to have an entry in the

component registry. In overall the componentRegistry will

act as a central repository for registration of each deployed

components in the radio. All these components are to be

stored with appropriate information inside the

ApplicationFactoryComponent. These are periodically

updated and executed from the radio platform with a passing

reference through a componentRegistry. Update any use of

the ResourceFactory, ExecutableDevice, LoadableDEvice,

Device and Resource interface to refer to a

ComponentFactoryCcomponent,

ExecutableDeviceComponent, LoadableDeviceComponent,

DeviceComponent and ManageableApplicationComponent

references respectively. As and when new events are added,

these are to be notified through an unique id for extending

ApplicationFactoryComponent to the

DomainManagementObject too. With the above mentioned

modifications, all the application can have backward

compatibility.

I. Modification in Device Manager Component
Device Managers assist us in new Device and service

deployment and will manage all the nodes in that

communication network. First and foremost, remove the

DeviceManager interface in lieu of a new interface, which

can be user-defined interface. For inheriting non-CORBA

application interface, few modifications are to be suggested.

As suggested similar to other above components, for Device

Manager too, a new Component Type has to be created.

Then move the deviceConfigurationProfiles inside the

newly created component. Since each device has its file of

its type, it is prudent to move the filesys and identity of each

device to the Component Container. Each device has to be

shutdown and initialized as and when it comes to network or

if its demanded for interface. Hence the shutdown operation

has to be controlled by the ReleasableManager interface.

The attribute pertaining to this operation is to be made

available inside the Component Container Registry.In order

to pave entry for Componetisation, all the Devices and

Services which are likely to be encountered in the Software

Defined Radio network is be removed from registration and

un-registration kind of operations. As soon as the devices

and services are componetised, next is the logic, behind

which these devices and services are to be operated, require

migration into componentRegistry. Accordingly all the

information about the components is to be stored inside the

Component Container, including the DeployementAttributes.

Since the SCA version of 2.2.2 has

getComponentImplementationId, this needs to be removed

for the componentisation of all interfaces within the

ComponentType Container. All the data are to be ensured

for its availability in the container.

J. Modification in Domain Manager Component
Among the six component modification, Domain manager is

one among them, which needs few changes. Domain

Manager undertakes functions such as Application

installation and management, Component registration and

unregistration, and management of application factories and

all device managers. Like the other modifications, this

domain manger also needs to be componetised. The

DomainManager interface is to be divided into two parts

viz., DomainInstallation and EventChannelRegistry. Similar

to the above modifications, the exceptions envisaged during

registration and un-registration is to be readjusted into

appropriate Component Registry. For identification, the

ComponentIdentifier interface has to be used. In addition,

the installation and un-installations exceptions are to be

moved to the DomainInstallation interface.

By carrying out the above modifications SCA 4.X standard

SDR will have backward compatibility with SCA 2.2.2

standard SDR products. Thus performance of SDR can be

enhanced.

4. CONCLUSION

Backward compatibility Problem is existing in SCA

standards 4.0. Backward compatibility issues are related to

the Base Component, Device Component, Application

Manager Component, Application Factory Component and

Device Manager Component. This has been addressed by us

in the form of modification in the standards. By analysing

the Resource interfaces of SCA 2.2.2, following changes in

Resource, LifeCycle, PropertySet, PortSupplier, and

TestableObject are suggested for mitigating the backward

compatibility problem of SDRs (figures 6 to 8). The other

modifications are suggested in Device Component,

Application Manager Component, Application Factory

Component and Device Manager Component at para 3. By

carrying out the above modifications SCA 4.X standard

SDR will have backward compatibility with SCA 2.2.2

standard SDR products. Thus performance of SDR can be

enhanced.

5. ACKNOWLEDGMENT

We thank the Wireless Innovation Forum (WInnF) for their

great service in standardizing the SCA. Their documents

have helped us to work and enhance the SDR performance

further.

REFERENCES

[1] Joseph Mitola, III, “Software Radio Architechture: Object

Oriented Approaches to Wireless Systems Engineering”, John

Wiley and Sons, 2000.

[2] Jeffrey Reed, ‘Software Radio: A Modern Approach to Radio

Engineering’, Prentice Hall Communications Engineering and

N Thinakaran et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,753-759

© 2015-19, IJARCS All Rights Reserved 759

Emerging Technologies Series, New Jersey 07458, ISBN 0-

13-081158-0, May 1991.

[3] “Software Communication Architecture version MSRC-5000

SRD 2.2” by JTRS Joint Program office, San Diego dated 19

Dec 2001.

[4] “Software Communication Architecture Specification Version

2.2.2” dated 15 May 2006, by Joint Program Office(JPO), San

Diego, for the Joint Tactical Radio System(JTRS).

[5] Michael L Dickens et al., “Design and Implementation of a

Portable Software Radio” Norte Dame, IN, 10 Jun 2008.

[6] “Software Communication Architecture Specification Version

4.0” dated 28 Feb 2012, and its Appendices “A” to “F”

version 4.0.1 dated 01 Oct 2012” by Joint Program

Office(JPO), San Diego, for the Joint Tactical Radio

System(JTRS).

[7] Program Executive Office Command Control Communication

Tactical ‘s Notes , “JTNC SCA 4.1 New Features in JTNC

Standards”, Webinar Series lecture dated 18 Feb 2015.

[8] LeePucker, “SDR 4.1 Draft Specification Release” Webinar

Series lecture by Wireless Innovation Forum dated 18th Feb

2015

	1. INTRODUCTION
	2. CONCEPTS OF SCA
	A. Interoperability Problem of SDR in existing SCA Standards
	B. Core Framework (CF)
	C. Application Architecture
	D. SCA Software Architecture

	3. ENHANCEMENT OF SCA STANDARDS[7][8]
	E. Modification in Base Component
	F. Modification in Device Component
	G. Modification in Application Manager Component
	H. Modification in Application Factory Component
	I. Modification in Device Manager Component
	J. Modification in Domain Manager Component

	4. CONCLUSION
	5. ACKNOWLEDGMENT
	REFERENCES

