
��������	�
����	��������������

��� ����!��"�����#�������

�$#$��!%�&�&$��

������'���(���������)))��*���������

© 2010, IJARCS All Rights Reserved 406

ISSN No. 0976-5697

Study of Importance of Data Mining on Software Repositories

Rituraj Jain*
Department of Computer Engineering

Dharmsinh Desai University

Nadiad – Gujarat, India

jainrituraj@yahoo.com

C. K. Bhensdadia
Department of Computer Engineering

Dharmsinh Desai University

Nadiad – Gujarat, India

ckbhensdadia@ddu.ac.in

Abstract: During all the phases of software development information collected for those phases as well as information generated from them are

managed as artifacts. Lots of information about defect, release and source code history is gathered and manage as software repository in large

software development. Researchers are trying to find out meaningful information treated as knowledge for the software development by

applying data mining methods on these software repositories. This paper highlights the benefits of software repositories as an active repositories

used by researchers to gain empirically based understanding of software development, and by software practitioners to predict, plan and

understand various aspects of their project.

Keywords: Association Rule Mining, Data Mining, Design Patterns, Mining software Repository, Software Change Repository, Software

Development, Software Maintenance, Software Testing.

I. INTRODUCTION

Due to continuous evolution and changes in software

systems, it is a challenging task to understand, maintain and

enhance them. Managing projects building and maintaining

such systems to satisfy the basic software product quality

factors i.e. reliable product within the time and budget, is

tedious task and it requires use of knowledge build from past

experiences.

Many researchers have developed tools, presented methods,

and proposed theories to support managers and guide

developers as they evolve large software systems [1], [2].
It is always good that group of individuals work effectively

as a team to develop large scale software. All the
communications made in this collaborative work are manage as
documents in software repositories, which are shared among
each other. Repositories built during software evolution possess
wealth of valuable information regarding the evolutionary
history of a software project and can be used by developers to
manage their project [3], [4].

II. EXAMPLE OF SOFTWARE REPOSITORIES

Source control repositories, bug repositories, archived

communications, deployment logs, and code repositories are

examples of software repositories that are commonly available

for most software projects.

Source control repositories contain development history of a

project like changes made to the source code, name of the

developers who is responsible for those changes, the time on

which changes were made, other side effects due to these

changes and describing massages for all the changes. CVS,

subversion, Perforce, ClearCase are examples of source

control repositories. Bug find in the projects and how they are

resolved are maintained in Bug repositories as bug reports. It

also tracks the additional feature requests that are reported by

users and developers of large software system. Bugzilla and

Jira are examples of bug repositories. Discussions made by the

different stake holders about software project throughout its

lifetime are archived in Archived communications

repositories. Mailing lists, emails, IRC chats, and instant

messages are examples of archived communications about a

project. Onsite installation history of software product as

deployment is recorded in Deployment logs repositories. Code

repositories archive the source code for a large number of

projects. Sourceforge.net and Google code are examples of

large code repositories [4].
Many researchers have shown the usefulness of software

repositories during software development. It can be used to
identify hidden code dependencies suggested by Gall et al. [6],
can support management in building reliable software systems
by predicting bugs and effort suggested by Avaya, Graves et al.
[7] and Mockuset et al. [8] and can assist developers in
understanding large systems suggested Chen et al. [5]

III. MINING ON SOFTWARE REPOSITORIES

Developers can used above mentioned repositories by

applying mining techniques on them to automate and improve

the extraction of information to gain knowledge for manage

their projects.

A. Mining Support for Software Requirements

Capturing the traceability information always backed by

software engineering and software assurance but it is still

taking part in to a big discussion and not used meaningfully in

software development due to the constraints of time and error

prone activity. Software development team can get improve

the quality of requirements by requirements assurance and

assurance of the traceability matrix (TM). Finding the

complete and correct relationships and dependencies between

all requirement set (functional or non-functional) is again time

consuming and error prone activity for assurance. Port, D. et

al. [8] used text-mining and statistical methods to reduce this

effort and increase TM assurance. Their method used mixed

model of similarity and dissimilarity in requirements to

generate trial sets which help to identify low risk and problem

area associated with Non functional Requirements –

Functional Requirements - Requirement Traceability Metrics.

B. Mining in Software Design and Coding

Architectural design is a base to get quality in software

systems. Experiences of experts from past projects and

Rituraj Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 406-408

© 2010, IJARCS All Rights Reserved 407

practices are captured as design patterns. Design patterns are

micro architectures that have proved to be reliable, easy-to

implement and robust. Design patterns can be use as

supportive knowledge in similar type problems where expert

can reuse their experiences in software system design. Mining

design pattern instances from system design and source code

can greatly help to understand the systems and change them in

the future. It also helps to trace back to the original

architectural design decisions which are generally lost in

system source code [14] [15] [16].

Z. Zhang, et al. [15] proposed the concept to describe

structures (mainly the class diagram) of system design and

design pattern by using extended graph. Extended graph are

used to describe class diagrams, where the vertices can be

mapped onto the classes. The instances of design pattern can

be discovered by finding the sub-graph isomorphism.

Extended graphs represent relations more clearly by handling

the inheritance and aggregation relations and also they are

easier to manipulate.

Basu, N. et al. [16] discovered design patterns in the source

code which provides information regarding how the patterns

work by describing basic object oriented structural

information. They define the notion of Extensible Pattern

Markup Language (XPML) to describe mined design patterns.

Their process started from analysis of source code using

reverse engineering engine (REE) and build semantic graph in

XML is followed by loading of XPML pattern description file

into a standard XMLDOM tree and compared with the

Semantic Graph. They search the candidate classes by filtering

the source classes with appropriate properties and then

selected source classes bound with pattern classes. Selected

classes have been tested with all the possible combination to

see if they form a pattern. Found combinations were checked

again to see that they possess call delegations, object creations

and whether they redefine/override the appropriate operations

or not. Bound source class come through the last check were

define as design patterns instance.

Maqbool, O. et al. [17] use data mining for software reverse

engineering by applying association rule mining algorithm and

using tools on source files of a software system to gain

knowledge about that software system. Their method

comprises of two steps: item selection and identification of

association rule on these items. They used functions and

global variables along with used defined type as items. Their

results show that by using association rule mining to find

interesting association between functions, types and global

variables within the source files one can gain deeper

understanding of the code, and may be used to restructure the

code for maintainability. In some cases, the associations found

can be helpful in remodularizing the code, e.g. in converting a

structured design to an object-oriented design.

C. Mining in Software Testing

Test case design in Software testing is an art and the design

of software tests is mostly based on the testers’ expertise.

Manual approaches to software testing require a complete

knowledge of the facts collected as requirements during

requirement analysis. Mark Last et al. [11] applied mining

algorithms called Info-Fuzzy Network (IFN) for automated

induction of functional requirements from execution data.

Their algorithm is trained on inputs provided by Random Tests

Generator (RTG) and outputs obtained from a legacy system.

IFN algorithm works on the training given by RTG module

and the outputs produced by the Legacy System for each test

case and the descriptions of variables from Specification of

Application Inputs and Outputs module. The generated data

mining models can be utilized for recovering specifications,

regression tests, and for testing new system to evaluating the

correctness of software outputs.

D. Mining in Software Maintenace

Software maintenance is the final phase of software

development. After the product is releases primary

modification whenever is required in the product will be done

through this phase only. Modifications are required due to

resolve the faults found after delivery, to addition of new

product attributes, or to give support with new changing

environment.

From total budget of the any software product development

maximum cost is incurred on removing the errors in

maintenance phase only. Meanwhile the system is unavailable

and it will lead to increase the cost of maintenance. To come

with models and the factors which affect the outcome and

quality of software maintenance tasks, so many researches are

going on. Uzma Raja, Marietta J. Tretter [13] defined a model

using Data Mining (DM) techniques applied on maintenance

data of Open Source Software and identifies the factors

affecting maintenance outcomes. They measure the

maintenance quality of an OSS project by Mean Time to

Repair (MTTR) factor of an error. Its low value suggests that

developing team and product is of good quality while its high

value suggests that team is not responding quickly to errors.

Text miner they used to categorized project into different

clusters. By Combining cluster information with other

variables they build a model using Data Mining. The model

was evaluated performing diagnostic testing and Logistics

Regression evaluation criteria. They suggested some factors

like errors reported by users, number of download have a

positive impact while use of mail and age of the project have a

negative impact on maintenance quality. They also suggest

that projects having higher users’ interactions for error

identification have a greater probability of having low MTTR

and high quality. Number of downloads can be used as an

indicator of the popularity of the project.

E. Mining on Software Change Repositories

The revision history of a software system shows how and

why the system evolved in time and who is responsible for the

new changes. The revision history can also show relationship

exists between the parts of the software system. So the

knowledge gained by applying mining to version histories

guide programmers for change propagation. It suggests and

predicts likely further changes required due to changes done

earlier, shows item coupling which is actually undetectable by

program analysis, and can prevent errors due to incomplete

changes.

Ying et al. developed an approach that uses association

rule mining on CVS version archives [1] to find out change

patterns. Their method finds dependencies between the codes

and assists the developer for co changes required. In their

approach they applied association rule mining on the data

items selected form software configuration management.

Change patterns generated from the rule mining suggest the

file in which the modification is required.

Xing and Stroulia [9] also propose a method for recovering

the relationships between the system classes by applying

Rituraj Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 406-408

© 2010, IJARCS All Rights Reserved 408

apriori association rule mining on versions of UML diagrams

to detect class co-evolution. They define UMLDiff algorithm

which takes two UML class models represented in XMI as

input and parsing the input into two labeled tree structures and

identify difference between the two tree structures. The results

are represented as change trees in an XML-based syntax.

Hassan and Holt [10] proposed a model to investigated

heuristics to predict change propagation. Their model

repeatedly works onto identify the changes requires base d on

the initial entity for change suggested by developers. The goal

of change propagation is to ensure the consistency of

assumptions among these interdependent entities. Model

define by them can also use expertise of senior developer, or

software development tool, or even a suite of tests. Based on

this model they concluded heuristics for predicting change

propagation few of them are Developer Based Co-changes

(DEV), Entity Based Historical Co-change (HIS), Entity

Based Code Structure using Call, Use, and Define (CUD), and

Entity Based Code Structure using Code Layout (FIL).

Sunghun Kim et al. [13] have been define change

classification technique to locate the latent software bugs in

changes and classify them as a buggy change or clean change.

Their classifier is trained using features extracted by using the

information collected from configuration management

repository. They suggest that their method helps developers by

prompting prediction of buggy changes when editing of the

source code is going on or right after a change submission.

Huzefa Kagdi et al. [12] presented a method to

recover/discover traceability links between software artifacts.

They applied sequential-pattern mining on software

repositories and identified the set of artifacts having

dependencies in changes in specific order which is basically

generates traceability links’ direction. This order is They

applied their approach on open-source software system KDE

(K Desktop Environment) and uncovered traceability links

between various types of software artifacts (e.g., source code

files, change logs, user documentation, and build files) with

high accuracy.

IV. CONCLUSION

Software repositories could be mined to uncover useful

patterns and actionable information about software systems

and projects. So many researchers have defined theories and

techniques for mining the different repositories in order to

solve important and challenging problems, such as identifying

bugs, and reusing code, which practitioners must face and

solve on a daily basis.

V. REFERENCES

[1]. Annie T.T. Ying, Gail C. Murphy, Raymond Ng, Mark C. Chu-

Carroll, "Predicting Source Code Changes by Mining Change

History" IEEE Transactions on Software Engineering, vol. 30,

no. 9, pp. 574-586, Sept. 2004, doi:10.1109/TSE.2004.52

[2]. Ahmed E. Hassan, "Mining Software Repositories to Assist

Developers and Support Managers" ICSM, pp.339-342, 22nd

IEEE International Conference on Software Maintenance

(ICSM'06), 2006

[3]. Prasanth Anbalagan, Mladen Vouk, "On mining data across

software repositories" MSR, pp.171-174, 2009 6th IEEE

International Working Conference on Mining Software

Repositories, 2009

[4]. A. E. Hassan. “The road ahead for mining software repositories”

In Proceedings ICSM, FoSM track, pages 48--57, 2008.

[5]. Annie Chen, Eric Chou, Joshua Wong, Andrew Y. Yao, Qing

Zhang, Shao Zhang, Amir Michail, "CVSSearch: Searching

through Source Code using CVS Comments" ICSM, pp.364,

17th IEEE International Conference on Software Maintenance

(ICSM'01), 2001

[6]. Harald Gall, Karin Hajek, Mehdi Jazayeri, "Detection of Logical

Coupling Based on Product Release History" ICSM, pp.190,

14th IEEE International Conference on Software Maintenance

(ICSM'98), 1998

[7]. Todd L. Graves, Alan F. Karr, J.s. Marron, Harvey Siy,

"Predicting Fault Incidence Using Software Change History"

IEEE Transactions on Software Engineering, vol. 26, no. 7, pp.

653-661, July 2000, doi:10.1109/32.859533

[8]. Port, D.; Nikora, A.; Hayes, J.H.; LiGuo Huang, “Text Mining

Support for Software Requirements: Traceability Assurance”

Proceedings of 43rd IEEE Hawaii International Conference on

System Sciences (HICSS 2011), pp. 1-11

[9]. Z. Xing and E. Stroulia, “Data-Mining in Support of Detecting

Class Co-Evolution” Proceedings 16th International Conference

on Software Engineering and Knowledge Engineering SEKE

’04, pp. 123-128.

[10]. Ahmed E. Hassan, Richard C. Holt, "Predicting Change

Propagation in Software Systems" ICSM, pp.284-293, 20th

IEEE International Conference on Software Maintenance

(ICSM'04), 2004

[11]. Mark Last , Menahem Friedman , Abraham Kandel, “The data

mining approach to automated software testing” Proceedings of

the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining, August 24-27, 2003,

Washington, D.C. [doi>10.1145/956750.956795]

[12]. Huzefa Kagdi, Jonathan I. Maletic, Bonita Sharif, "Mining

Software Repositories for Traceability Links" ICPC, pp.145-

154, 15th IEEE International Conference on Program

Comprehension (ICPC '07), 2007

[13]. Sunghun Kim, E. James Whitehead, Jr., Yi Zhang, "Classifying

Software Changes: Clean or Buggy?" IEEE Transactions on

Software Engineering, vol. 34, no. 2, pp. 181-196, Mar./Apr.

2008, doi:10.1109/TSE.2007.70773

[14]. J. Dong, Y. Zhao, and T. Peng, “A review of design pattern

mining techniques”, International Journal of Software

Engineering and Knowledge Engineering (IJSEKE), 2008.

[15]. Z. Zhang, Q. Li, and K. Ben, “A new method for design pattern

mining” Proceedings of the 3rd International Conference on

Machine Learning and Cybernetics, 2004

[16]. Basu, N. Chatterjee, S. Chaki, N. “Design Pattern Mining from

Source Code for Reverse Engineering” TENCON 2005 pp. 1 - 7

IEEE Region 10 Conference.

[17]. Maqbool, O.; Karim, A.; Babri, H.A.; Sarwar, M. “Reverse

Engineering Using Association Rules” In proceedings of 8th

IEEE International Multitopic Conference - INMIC 2004, pp.

389 - 395

