
DOI: http://dx.doi.org/10.26483/ijarcs.v8i9.5053
Volume 8, No. 9, November-December 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 411

ISSN No. 0976-5697

ENHANCING THE SPEED, ACCURACY OF DEEP LEARNING
USING GINI INDEX BASED FUZZY DECISION TREES

S.V.G.Reddy

Associate Professor, Dept. of CSE,
GIT, GITAM University,India

Prof. K.Thammi Reddy
Professor, Dept. of CSE,

GIT, GITAM University,India

Prof. V.Valli Kumari
Professor, Dept. of CS & SE,

college of engineering, Andhra University,India

Abstract: Deep Learning has gained tremendous importance due to its advancement in various fields of text mining, speech recognition,
computer vision, natural language processing etc. The weights of the input layer attributes and the series of hidden layers of deep learning plays
a dominant role in its fast classification and accuracy. The weight adjustment algorithm for the Deep Learning is proposed in this paper.
Generally, the weights can be determined by mathematical techniques, can be suggested by the domain experts or by considering random
weights. In this proposed work, the weights of a neural network are computed mathematically by constructing the fuzzy decision tree. It is
proposed to use the least gini index value of the attribute of the fuzzy decision tree as the weight of the corresponding attribute for the weight
adjustment algorithm to classify using neural networks. Fast classification and accuracy is achieved with the computed gini weights of the deep
learning which outperforms when compared with the fuzzy decision tree classifiers.

Keywords: Deep Learning, Gini index, weight, fuzzy, Decision trees, Classification Accuracy

1. INTRODUCTION

Classification is a very useful and powerful technique with
which the hidden knowledge patterns can be extracted from
data. There are standard ID3, C4.5 algorithms for
classification purpose which uses Entropy as a splitting
criterion, but the SLIQ algorithm which is applied here uses
gini index as split measure. SLIQ is a decision tree classifier
which can deal with both the numeric and categorical
attributes. It uses a pre-sorting technique and enables to scale
for large data sets irrespective of number of classes,
attributes and records thus making it more significant in the
data classification. There is a decision tree classifier
CLOUDS [1] which creates the splitting points for the
numeric attributes.
Crisp decision tree algorithms almost faces the trouble of
arriving at sharp decision boundaries which can be rarely
seen in the real life classification problems and hence the
fuzzy decision trees which are more efficient are used in this
paper. The gini index is used as the best split measure for the
fuzzy decision trees. The problem with the fuzzy decision
trees is, appropriate membership function cannot be
identified. In fact, the previous studies / techniques proves
that the fuzzy decision trees contains gradual transitions
between attribute values when compared with crisp decision
trees. Generally the attributes of the data set are converted in
to fuzzy values using a triangular or trapezoidal membership
function. In this proposed work, the fuzzy values are
computed for the split values of an attribute during decision
tree construction.
One of the approach to build a decision tree is by using the
parameter called gini index [2]. Gini index is calculated for
all the attributes at various split points and the attribute
having least value of gini index is decided as the ROOT

which is considered as the Best classifier attribute. So, lot of
PRIORITY & WEIGHTAGE is given for the Root attribute
for classifying the records. That means the minimum / least
value of gini index of an attribute tells that the records of that
attribute are well distributed and would be classified with
more accuracy and Hence that attribute would be decided as
the ROOT of the decision tree.
On the other hand, Deep Learning is a type of Artificial
neural network which contains more than one hidden layer
and learns to perform the classification tasks directly from
images, text, sound. The weight of an attribute of Deep
Learning model can be computed using few mathematical
techniques or can be suggested by the domain experts or
simply using the Random weights. The proper assigning of
weights of neural network leads to rapid computations and
achieve more classification accuracy. In this work, it is
proposed to assign the weight of attribute of neural network
model mathematically by constructing fuzzy decision tree.
Then the technique of applying the least value of gini index
value of the attribute as the weight [3] [4] of the
corresponding attribute to classify the same data set using
Neural Networks is proposed in this model. Here, the
proposed novel approach aims to fuzzify the decision
boundary at each node of the decision tree and build an
efficient neural networks model with proposed gini weights
to achieve better classification accuracy. The proposed gini
weights are considered and applied on various types of
neural networks such as Deep Learning, Backpropagation,
Multi Layer Feed Forward and good results are observed in
all the cases.
The rest of the paper is structured in the following way.
Section 2 explains the SLIQ & GFDT algorithms and
calculates the split values, fuzzy values & gini values of all
the attributes and section 3 is used for the fuzzy decision tree

S.V.G.Reddy et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,411-417

© 2015-19, IJARCS All Rights Reserved 412

construction. And section 4 stresses on the proposed
methodology and illustrates the usage of gini values for the
nodes of fuzzy decision tree as the weights and narrates the
classification process using neural networks. Section 5
emphasizes on the various implementations using decision
tree and different types of neural networks such as Deep
Learning, Backpropagation, Multi Layer Feed Forward and
compare the classification accuracy by giving various types
of inputs.

2. SLIQ & GFDT ALGORITHM

In this approach, Fuzzified decision tree would be
constructed with gini index as best split measure. So, the
concept of split point, fuzzy value and gini index would be
explained here. In this proposed work, the Wisconsin data set
is used which contains 699 tuples. The data set consists of id,
9 attributes and a class label. There are some missing values
and the preprocessing is done to obtain the complete data.
The 3-fold cross validation is performed on the data set and
three pairs of training and testing sets were prepared. For
easy understanding, a sample data of 20 records is taken
which contains attributes a1, a2, a3, class label (refer table
1).
Every attribute may contain several split points and the gini
index is computed for all the attributes at all the split points.
Firstly, to compute the split point, attribute, class label from
the sample data is taken. And the attribute is sorted in
ascending order, then due to sorting of the attribute, class
label records would also be altered correspondingly. There
are only two class labels 1 & 2 in the data set. Then after
sorting, the class label is verified from top to bottom in each
attribute list. If there is a change observed in the class label
from “1 to 2” or “2 to 1”, then the corresponding attribute
values related to class label 1 and class label 2(or class label
2 & class label 1) are taken and average them and their
average value would be preserved as split point respectively.

Table 1 – sample data set

The split points would be computed for all the attributes
(refer table 2). let’s consider attribute a2 which is computed
in the following way. Column a2 is sorted, and the
corresponding class label have altered. And the change in
class label from “1 to 2” or “2 to 1” is verified and we can

notice two split points at (58,66) and (66,68). Randomly,
let’s calculate the split point of attribute a2 at (66,68).

Here the split point would be average of 66, 68 which comes
to 67.And the membership value for each record µ by default
is taken as 1/c (c is the number of class labels used which are
2) which comes to 0.5. Then the standard deviation is
calculated for the attribute a2 which comes to 3.451087.
Table 2 – Data set, split points & fuzzy values

// The attributes sno, a1,a2,…a9, class. , m – number of
attributes, n – number of records, sp - split point
Function Split()
{
for(I = 1 to m)
{
sort a i
for(j = 1 to n)
{
if ((class label [j] ==1 && class label [j+1] ==2) ||(
class label [j] ==2 && class label [j+1] ==1))
sp [j] = (aj + a(j+1)) / 2
} } }

//c - number of class labels , n – number of records
Function Fuzzyvalue()
{
µ = 1/c
for (i = 1 to sp)
{
x1 [i] = 1- 1/(1+exp(-(σ) * (x - split point)))
x2[i] = x1 [i] * µ
}
for (i = sp to n)
{
x3 [i] = 1 / (1+exp(-(σ) * (x - split point)))
x4[i] = x3 [i] * µ
} }

S.V.G.Reddy et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,411-417

© 2015-19, IJARCS All Rights Reserved 413

Crisp decision tree algorithms almost faces the trouble of
arriving at sharp decision boundaries and to overcome those
problems, In this model the fuzzification [5] [6] of decision
boundary at each node of the decision tree is proposed to
provide gradual transitions between attribute values. For the
set of above records above the split point is treated as top
partition, the set of records below the split point is treated as
bottom partition and the fuzzy value is computed for all the
records of both top, bottom partitions.
Fuzzy value (top partition) = 1- 1/(1+exp(-(σ) * (a2-split
point)))
Fuzzy value (bottom partition) = 1/(1+exp(-(σ) * (a2-split
point)))
Now, let’s compute the fuzzy values for attribute a2 (refer
table2). Here, the records from 58 to 66 of attribute a2 would
be treated as top partition and 68 to last 69 as bottom
partition. It means, x1 is computed for attribute a2 from 58 to
66 and other records it is taken as zero value. And x2 is
computed for attribute a2 from 68 to last 69 and other
records it is taken as zero value. And x1*µ, x2*µ are
computed in the similar manner. The final fuzzy value is
computed by merging both x1*µ, x2*µ. Lastly, the “sno” is
sorted to get the records from 1 to the end of training data
set.
Gini index / coefficient tells that “If all persons hold the same
percentage of a resource, inequality is at a minimum, and If a
single person holds all of a given resource, inequality is at a
maximum”. That means the minimum / least value of gini
index of an attribute tells that the records of that attribute are
well distributed and would be classified with more accuracy.

Then the gini index is computed using the final fuzzy value f
as

 Gi (split point) =

Where p is the total number of partitions [7] , c is the total
number of class labels, S is the sum of fuzzy membership
values, Sp is the sum of fuzzy membership values of a
partition, Spc is the sum of fuzzy membership values of a
partition of a class.
From the table 2, the number of class labels c = 2, the
number of partitions p =2, from the column “f”, the sum of
all fuzzy values s= 9.798203799, Above the split point 67,
the sum of fuzzy values Sp= 6.346317672 , and below the
split point 67, the sum of fuzzy values Sp= 3.451886127.
Above the split point 67, the sum of fuzzy values with class
label =1, Sp1 = 4.846317672, with class label 2, Sp2 = 1.5,
below the split point 67, the sum of fuzzy values with class
label=1, Sp1=0, with class label 2 , Sp2= 3.451886127.

Now,gi(67)=(6.346317672/9.798203799)*(1–
(4.846317672/6.346317672)2-(1.5/6.346317672)2)
+(3.451886127/9.798203799)*(1-(0/3.451886127)2-
(3.451886127/3.451886127)2)
= 0.648 * (1- 0.58 – 0.057) + 0.352 * (1 – 0 - 1) = 0.234
For each attribute, at every change in the class label, split
points would be computed and the gini index is calculated for
every split point of all the attributes. Let’s say, there are four

split points for the first attribute a1 and the gini index is
computed for all the four points and pick the attribute with
least value of gini index. Similarly, the gini index is
calculated for all the other attributes and the least gini index
value of all the attributes is picked. It means the least gini
index value from all the attributes is taken and selected as the
best classifier attribute and also as the ROOT of the decision
tree.
In the proposed work, using Wisconsin data set , “a3” at split
point 3.5 and at 311 record with 0.1448 gini index value is
chosen as ROOT which can be observed in fig 1.

3. FUZZY DECISION TREE CONSTRUCTION

The ROOT is chosen and it is required to determine the other
nodes of the decision tree [8] [9] [10]. The crucial part is,
how to compute the left subtree, right subtree of the Root in
order to build the decision tree.
Now, from table 2, observe the values of the x1*µ, x2*µ.
Firstly, lets modify the x1*µ records. Here, the values of
x1*µ from 58 to 66 of a2 attribute remain the same , but
from 68 to 69 of a2 attribute, the records would be replaced
by (0.5- x2*µ) that is, at 68 of a2 attribute (sno 14), the x1*µ
is replaced with (0.5- 0.4846318) = 0.015 and it is calculated
for the other records in the similar manner.
 similarly , lets modify the x2*µ records. Here the values of
x2*µ from 58 to 66 of a2 attribute would be replaced by
(0.5- x1*µ) , but from 68 to 69 of a2 attribute, the records
remain the same. That is, at 58 of a2 attribute (sno 3), the
x2*µ is replaced with (0.5- 0.5) = 0, at 66 of a2 attribute (sno
7), the x2*µ is replaced with (0.5- 0.48463177) = 0.015 and
it is repeated for the other records.
Now the x1*µ and x2*µ list of values were updated. Then
the updated x1*µ values are taken as the fuzzy values to
compute the left node for the ROOT a3. Now, the gini index
is calculated for all the attributes a1 to a9 at various split
points excluding a3 (As a3 is the ROOT). Now, the attribute
having least value of gini index at a split point would become
the left node for ROOT “a3”. That is a6 attribute at split
point 6.5 at 344 record with gini index value as 0.0759 has
become the left node for ROOT a3 which can be observed in
the fig 1.
Similarly, the updated x2*µ values are taken as the fuzzy
values to compute the right node for the ROOT a3. Now, the
gini index is calculated for all the attributes a1 to a9 at
various split points excluding a3 and a6 (As a3 is the ROOT,
a6 is the left child) . Now, the attribute having least value of
gini index at a split point would become the right node for
ROOT “a3”. That is a2 attribute at split point 1.5 with gini
index value as 0.1750 has become the right node for ROOT
a3 which can be observed in the fig 1.
Then the fuzzified decision tree is constructed shown in fig
1, using gini index as the best classifier attribute. The tree
would be , (Root – A3, split point - 3.5, gini index value -
0.1448), (left child - A6, split point - 6.5, gini index value -
0.0759), (right child - A2 ,split point -1.5, gini index value -
0.1750) and so on and the complete decision tree is built in
the same manner.

S.V.G.Reddy et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,411-417

© 2015-19, IJARCS All Rights Reserved 414

Fig 1 – The decision tree with Root, and other nodes with
their gini index values.

4. PROPOSED METHODOLOGY

The KEY point is, the gini index is calculated for all the
attributes at various split points and the least value of gini
index of an attribute is decided as the ROOT which is
considered as the Best classifier attribute for the complete
fuzzified decision tree. Similarly, all the other nodes of the
decision tree is built using the least value of gini index as
explained above in the Fuzzy decision tree section. Now, the
gini index values of the nodes(attributes) of the decision tree
are considered as the weight of that corresponding attributes
in our proposed work.
This point is like a Bridge from Decision tree to Neural
Networks which works collaboratively. That is, the results of
fuzzy decision tree are taken and implemented for the neural
network. That is, the least gini index values of a1,a2,a3, ...a9
attributes which are 0.1140, 0.1750, 0.1448, …0.2422 were
considered as the “weights” of those corresponding attributes
to classify using neural networks.

The Weight Adjustment Algorithm for the complete
proposed methodology is as follows (refer fig 5) :

1. Read the data set, // 9 attributes and a class label
2. Sort an attribute and find the split point,
3. Compute the fuzzy values of attribute above the

split point and below the split point,
4. Calculate the gini value of that attribute using the

fuzzy values,
5. Similarly calculate the gini values for all the

attributes and pick the least gini value,
6. Choose one attribute with least gini index value as

the ROOT of fuzzy decision tree,
7. Similarly compute the other nodes and build the

fuzzy decision tree,
8. Pick the gini values of all the nodes(attributes) of

fuzzy decision tree and assign them as weights to
the corresponding attributes,

9. The data set which is normalized and multiplied
with gini weights are given to the different types of
neural network such as Deep Learning,
Backpropagation, Multi Layer Feed forward, Run

and compute the classification execution time and
accuracy.

Using the above weights, the testing is done with three types
of input data such as a) Wisconsin data set b) normalized
Wisconsin data set, c) normalized data with gini weights
(gini weighted inputs) and implemented on various types of
neural networks such as Deep Learning, Backpropagation
and Multi Layer Feed Forward and effective results are
observed in all three cases.
Implementation using Deep Learning
Deep Learning [11] [12] [13] [14] is gaining lot of
importance in the recent times. Deep learning has become so
popular in the fields of pattern recognition and computer
vision etc.. Deep learning generally uses two types of
networks such as convolutional neural network and
Autoencoders. The Sparse Autoencoder is used for the
proposed work. The network comprises of input layer, two
hidden layers, softmax layer, output layer. The two hidden
layers are implemented using encoders. First the hidden
layers are trained in an unsupervised fashion and train the
softmax layer and finally join all the hidden and softmax
layers to form a deep network which is trained in a
supervised fashion. The first hidden layer’s encoder reads the
input and extract main features and the second hidden layer’s
encoder reads the features that were extracted by the first
hidden layer (encoder) and still learns the small
representations (micro level features) of the input data.
In fact the deep learning neural networks (refer Fig – 2)
classifies the data in a most efficient way. Hence, the testing
is performed by giving the normalized Wisconsin data set
and gini weighted inputs to the network and verified the total
execution time. It is observed that the classification
efficiency is same for the two cases, but the gini weighted
inputs have executed the code much faster than the
normalized data. The corresponding observations are
presented in Results section.
Implementation using Back Propagation neural networks
Backpropagation [15] [16] is nothing but propagating the
error backward, and after the adjustment of the weights, the
optimal classification is achieved. In this paper, it is proposed
to measure and compare the classification accuracy in three
aspects. They are
1) check the classification accuracy of the data set using
fuzzy decision tree,
2) check the classification accuracy of the data set by
normalizing the data between 0 and 1 using neural networks,
3) check the classification accuracy for the normalized data
set with the multiplied gini weights using neural networks.

//W – weight of attribute , m – number of attributes,
n – number of records
Function Giniweight()
{
for(i = 1 to m)
{
for(j = 1 to n)
{
X I j = (j – j min) / (j max - j min) //
normalize the data between 0 and 1
y I j = X I j * W I //gini weight is
multiplied to the input attribute
} } }

S.V.G.Reddy et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,411-417

© 2015-19, IJARCS All Rights Reserved 415

The first aspect would be, the generation of the fuzzy
decision tree using the train data set. Then the classification
accuracy is measured by applying the test data set for the
fuzzy decision tree. After generating the Rules from the
fuzzy decision tree, then the test data set is given to the Rules
and classification accuracy is measured and it is observed
that the code is run with eight errors out of 232 test records
with this fuzzy decision tree which comes to 96.55%
efficiency.
The second aspect would be, the same data set is taken,
normalize the data set between 0 and 1(refer function
giniweight()) , and then classify the data using neural
networks. It means, the train data, test data, and the neural
network configuration file which contains “Input_Neurons,
Hidden_Neurons, Output_Neurons, Learning Rate,
Momentum, Train_Input_Records, Train_Output_Records,
No_of_Iteration” are given to the neural network code, run it,
and measure the classification accuracy. Regarding the
neural networks, the multi layer(Input layer, hidden layer,
output layer) neural network model(refer fig (3)) with back
propagation is considered. The input layer comprises of 9
neurons, hidden layer of 8 neurons and the output layer with
3 neurons and learning rate of 0.25 ,the momentum of 0.9 is
considered and the training, testing records, number of
iterations are given to the neural network model. The input
layer is given with the 9 attributes of the normalized data set,
and the output layer gives an output of 001(1) or 010(2) to
three neurons where (001)1 is benign and (010)2 is
malignant. The sigmoid Activation function (1/ (1+e(-x)))
is used in our model where x is the linear function of weight,
attribute and the bias. The error is calculated at the output
layer and it is shared back to the neurons of the model using
the concept of back propagation. It is observed that the code
is run with four errors out of 232 test records with the neural
networks which comes to 98.27% accuracy.
The third aspect would be, the same data set is taken,
normalize the data set between 0 and 1 and multiply with the
gini weights (refer function giniweight()), and then classify
the data using neural networks with back propagation as it is
done in the second aspect . It means, the train data, test data,
and the neural network configuration file are given to the
neural network code and measure the classification accuracy.
It is observed that the code is run with three errors out of 232
test records with the neural networks which comes to 98.7%
accuracy which is a biggest improvement of the classification
accuracy .
Implementation using Multi Layer Feed Forward neural
networks
The network which does not contain cycles or the feedback
loops is called a feed forward neural network. Here, the
network comprises of input layer, hidden layer and output
layer. The testing is done using the Wisconsin data set,
normalized Wisconsin data set and gini weighted inputs on
the network comprising of single, two, three and four hidden
layers (refer Fig – 4) and got good results in all the cases.
The gini index is computed using the final fuzzy value [17]
Please refer Results.

5. RESULTS

The Results related to the Deep Learning, Backpropagation
and Multi Layer Feed Forward neural networks are
illustrated in the following.

Deep Learning
When the different forms of input data(as explained above)
are given to the Deep Learning, the Results are in the
following manner (Refer table 3, Fig 6) and the execution
speed is increased by 150%.

Fig 2 – Deep Learning

Fig 3 – Backpropagation network

Fig 4 – Multi Layer Feed Forward neural network

S.V.G.Reddy et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,411-417

© 2015-19, IJARCS All Rights Reserved 416

Fig 5 – flow chart for the complete methodology

Table 3 – Execution time of Deep Learning

Implementation

Total time of
Execution(seconds)

Normalized Wisconsin
data set

6.3 ± 0.1

Gini weighted inputs 2.5 ± 0.1

Fig 6 – Deep Learning execution time

Back Propagation neural networks

When the different forms of input data(as explained above)
are given to the Backpropagation neural network, the Results
are in the following manner (refer table 4, Fig 7).

Table 4 – classification accuracy of decision tree & neural
networks

Sno Description of the implementation
Classification

Accuracy

1
Wisconsin Data set using Decision
tree

96.5%

2
Wisconsin Data set which is
normalized and using neural
networks

98.2%

3
Wisconsin Data set which is
normalized and multiplied with
gini weights using neural networks

98.7%

Fig 7 – Backpropagation Neural Network Classification
Accuracy

Multi Layer Feed Forward neural networks
When the different forms of input data(as explained above)
are given to the Multi Layer Feed Forward neural networks
with different number of hidden layers, the Results are in the
following manner. (Refer table 5, Fig 8)

Table 5 – classification accuracy of Multi Layer Feed
Forward neural network

Implementation

Classification Accuracy
Using 1
Hidden
layer

Using 2
Hidden
layers

Using 3
Hidden
layers

Using 4
Hidden
layers

Wisconsin data
set

95.5 95.9 96 96.3

Normalized
Wisconsin data
set

97 97.1 97.2 97.2

Gini weighted
inputs

97.1 97.4 97.7 98

S.V.G.Reddy et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,411-417

© 2015-19, IJARCS All Rights Reserved 417

Fig 8 – Multi Layer Feed Forward Neural Network
Classification Accuracy

6. CONCLUSION

The fuzzy decision tree is constructed using gini index as the
best split measure. To enhance the speed & accuracy of the
classification using neural networks , the least gini index
value of each attribute is taken as the Weight of the
corresponding attribute for the weight adjustment algorithm
and tested using Deep Learning, Backpropagation, Multi
Layer Feed Forward neural networks and achieved very good
results. And as a future work, there are few parameters like
Information gain, HSM which plays a dominant role in the
classification of the data using various supervised learning
algorithms and the values of those parameters can be taken as
the weight and compare all the parameters and choose the
one which would give the best classification accuracy. Even
the genetic algorithm can be applied to suggest the best
optimal parameter to derive the weights.

7. ACKNOWLEDGEMENT

I am very much thankful to my supervisor Prof.K.Thammi
Reddy, my co supervisor Prof. V.Valli Kumari for their
guidance and constant monitoring of my PhD work.

REFERENCES

[1] Alsabti, K., Ranka, S., & Singh, V. (1998). CLOUDS: A

decision tree classifier for largedatasets. In Knowledge
discovery and data mining (pp. 2–8),

[2] B.chandra, P.Paul Varghese, fuzzifying gini index based
decision trees, Elsevier (Expert systems with applications 36
(2009), pp 8549 - 8559 ,

[3] Chandra, B., & Paul, P. (2007). On improving the efficiency
of SLIQ decision tree algorithm. In Proceedings of IEEE
international joint conference on neural networks, IJCNN –
2007,

[4] Manish Mehta, Rakesh Agrawal and Jorma Rissanen. SLIQ: A
Fast Scalable Classifier for Data Mining, Advances in
Database Technology — EDBT '96. EDBT 1996. Lecture
Notes in Computer Science, vol 1057. Springer, Berlin,
Heidelberg,

[5] Adamo, J. M. (1980). Fuzzy decision trees. Fuzzy Sets and
Systems, 4, 207–219,

[6] Cristina, O., & Wehenkel, L. (2003). A complete fuzzy
decision tree technique. Fuzzy Sets and Systems, 138, 221–
254,

[7] Chengming, Q. (2007). A new partition criterion for fuzzy
decision tree algorithm. In Intelligent information technology
application, workshop on 2–3 December 2007 (pp. 43–46),

[8] Breiman, L., Friedman, J. H., Olshen, J. A., & Stone, C. J.
(1984). Classification and regression trees. Belmont, CA:
Wadsworth International Group, open journal of geology,
2016, vol 6, no 7 ,

[9] Chandra, B., Mazumdar, S., Arena, V., & Parimi, N. (2002).
Elegant decision tree algorithms for classification in data
mining. In Proceedings of the 3rd international
conference on information systems engineering (workshops),
IEEE ,CS (pp. 160–169),

[10] Chandra, B., & Paul, P. (2006). In Robust algorithm for
classification using decision trees CIS-RAM 2006 (pp. 608–
612). IEEE,

[11] Jürgen Schmidhuber, Deep Learning in neural networks: An
Overview, Elsevier(Neural networks), 2015, vol 61, p 85-117,

[12] Victoria j hodge, simon o keefe, jim Austin, Hadoop neural
network for parallel and distributed feature selection,
Elsevier(Neural networks), 2016, vol 78, p 24-35,

[13] Jihun kim, jong hong kim, gil-jin jang, minho lee, fast learning
method for convolutional neural networks using extreme
learning machine and its application to lane detection,
Elsevier(Neural networks), 2017, vol 87, p 109-121,

[14] https://in.mathworks.com/help/nnet/examples/training-a-deep-
neural-network-for-digit-classification.html

[15] M.W.Gardner, S.R.Dorling, Artificial neural networks (the
multilayer perceptron)—a review of applications in the
atmospheric sciences, Elsevier, Atmospheric environment,
1998, pp 2627 – 2636,

[16] Bing Cheng, D.M.Titterington, Neural Networks: A Review
from a Statistical Perspective, Statistical Science Volume 9,
Number 1 (1994), p2-30.

[17] Prakash bethapudi, E. Sreenivas Reddy, Kamadi VSRP Varma,
Classification of Breast Cancer using Gini Index based Fuzzy
Supervised Learning in Quest Decision Tree, IJCA, 2015,

