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Abstract: Among various algorithms for protein and nucleotide alignment, Needleman-Wunsch algorithm is widely accepted as it can divide the 
problem into sub-problems. We present two parallel approaches of Needleman-Wunsch algorithm with single kernel and multi-kernel invocation 
using skewing transformation which is used for traversing and calculation of dynamic programming matrix. We also compare these with 
traditional CPU sequential approach which resulted in six fold performance improvement. Furthermore, we present same single kernel ideology 
on shared memory which resulted in two fold performance improvement over non-shared memory approach. 
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1. INTRODUCTION  

 
Genomics is a course of study in the field of genetics 

which deals with genomes. Advances in genomics can help 
us to understand complex biological phenomenon which in 
turn can help us in prognosis and diagnosis of various 
diseases. Bioinformatics which is a part of genomics 
combines various disciplines such as computer science, 
statistics and mathematics to elucidate and analyze biological 
data. In bioinformatics, sequence alignment is a method 
which compares two or more sequences and finds nearly 
identical areas or identical nucleotide of DNA, RNA or 
Protein to find the similarities or relationship between two 
given sequences. Many bio-informatics tasks like, predicting 
biological function, constructing evolutionary trees, detecting 
point mutations, classifying genes and proteins, secondary 
and tertiary protein structure and other prognosis and 
diagnosis methods depend upon successful alignment. If the 
sequence length is small then it is possible to align sequences 
by human effort. However, for longer sequences, it is 
difficult to align manually. Hence, computational sequence 
alignment algorithms are developed by researcher to deal 
with longer sequences. 

There are three main categories of computational 
sequence alignment algorithms: (1) Global sequence 
alignment [1] (2) Local sequence alignment [2] and (3) 
Hybrid or Semi-Global sequence alignment [3]. Global 
alignment method attempts to align every nucleotide and it is 
usually used when sequence lengths are of approximately 
same length. Local alignment is used when sequences are 
unalike but are supposed to contain similar regions within 
long sequence. On the other hand if end of a sequence 
overlaps with the beginning of other sequence then hybrid 
alignment is used because global alignment method attempts 
to extend the alignment past the overlapping region. 
Whereas, local alignment might fail to cover the whole 
overlapping region. 

Several computational algorithms are developed for the 
sequence alignment problem. They generally use the 
concepts of dynamic programming, heuristic algorithm and 

probabilistic methods. From all the approaches, dynamic 
programming based implementations are more time 
consuming than heuristic based implementations. However, 
dynamic programming based approach provides a more 
accurate solution as compared to heuristic based methods. 
Needleman-Wunsch and Smith-Waterman algorithms are 
two widely used dynamic programming based approaches. 
Needleman-Wunsch is used for global sequence alignment 
and Smith-Waterman is used for local sequence alignment. 
The detailed discussion of the algorithm used for extension 
in shared memory implementation is presented in [5]. We 
summarize the steps of the algorithm which are as follows: 
1. Initialization:  This involves construction of Dynamic 

programming matrix (D) with N + 1 rows and M + 1 
column. Where N and M are lengths of the sequences to 
be aligned. We fill the first row and column initially 
with distance from origin multiplied by GAP value.  

2. Matrix Fill:  Fill all other (i, j) cells from the values of 
(i-1, j), (i, j-1) and (i-1, j-1). Initialize trace-back matrix 
according to the selected value.  

3. Trace-back:  (M, N) cell contains the maximum score 
and it is the cell from where we begin to trace-back. We 
follow arrows determined in trace-back matrix and reach 
the first cell. Hence, we get the path which represents 
the best alignment. We also put the values of the GAP 
according to the direction traversed in the matrix into the 
new sequence that we generate during trace-backing.  
 
At the end reverse both sequences to get final aligned 

sequences. 
With the advent of Compute Unified Device Architecture 

[4] which is programming interface provided by Nvidia, use 
of GPUs for general purpose programming has increased. 
Here we try to utilize computing capabilities of GPU for non-
graphics bioinformatics application. Our work focuses on 
parallelization of Needleman-Wunsch algorithm using 
skewing transformation on CUDA enabled GPU. We also 
present implementation of same approach using shared-
memory. 
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Global memory in GPU is an off-chip device memory 
which is usually larger in size with life until the application 
closes or it is freed explicitly. It is visible to all the threads 
and blocks which have a pointer to the memory region. 
Shared memory on the other hand is on-chip memory. Due to 
high capabilities, it is usually smaller in size depending on 
the device. The visibility of shared memory is restricted to 
only threads within the same block. Shared memory is 
magnitudes faster to access than global memory and acts like 
a local cache shared among the threads of a block. Here we 
devise a method to effectively utilize the shared memory for 
our approach. 

In section 2, we describe the approach for parallelizing 
the algorithm using skewing transformation. In section 3, we 
describe how to use CUDA enabled GPU to improve 
performance and reduce the time for execution. In section 4, 
we compare the performance of sequential CPU based 
implementation with two parallel GPU based 
implementations and shared memory implementation. We 
show the effectiveness of our implementations in section 4.  
In this paper we present a shared memory based approach. 
The related work is presented in section 5 and then we 
summarize our work. 

 
2. PARALLEL APPROACH 

 
Each value (i, j) in the dynamic programming matrix (D) 

is dependent on three values: (i-1, j), (i, j-1) and (i-1, j-1). 
The dependence relation of the matrix is shown in the Figure 
1 and to execute this in parallel we need to calculate the 
values in anti-diagonal order. 

The row major order of calculation in each iteration is 
shown in Table I. In first iteration only (1, 1) will be 
calculated, in second iteration (1, 2) and (2, 1) will be 
calculated in parallel, in third iteration (1, 3), (2, 2) and (3, 1) 
will be calculated in parallel and so on. There is no scope for 
(1, 1) and (8, 8) to be executed in parallel, as the value of   
(8, 8) depends on (8, 7) and (7, 8). 

It is evident from Table I that in the eighth iteration 
maximum parallelism can be achieved. To calculate all the 
values, we apply skewing transformation on the original 
iteration space. After applying skewing transformation, the 
original iteration space as shown in Figure 1(a), gets 
transformed to the one shown in Figure 1(b). Each iteration 
with same numbers indicates the elements which can be 
executed in parallel. However, each parallel section 
separated by dotted lines indicates requirement of 
synchronization of the iteration space. The concept of loop 
skewing and block synchronization  is as discussed in  [5]. 

 
Figure 1.  Original and Transformed iteration space 

 

A. Impementation Approaches 
The parallel approach is implemented using both, lock-

based and lock-free mechanism as shown in Figure 2. We 
briefly discuss the approaches in the following subsection.  

1) Lock Based Approach: In lock-based synchronization 
approach a global mutex variable is created to count the 
number of thread blocks that reach synchronization point. 
Mutex is incremented by 1 each time a block completes its 
execution. Then the value of mutex is compared with the 
target value repeatedly. After synchronizing each thread 
block, execution can move to next phase. Here the value of 
goal is set to number of blocks in the kernel when the barrier 
is invoked first. This value is then incremented by N each 
time barrier is invoked. This approach is easier and efficient 
than resetting mutex each time after completion of a barrier 
invocation because it reduces the number of instructions and 
prevents conditional branching. 

 
Table I: Initial Matrix 

1 1,1        
2 1,2 2,1       
3 1,3 2,2 3,1      
4 1,4 2,3 3,2 4,1     
5 1,5 2,4 3,3 4,2 5,1    
6 1,6 2,5 3,4 4,3 5,2 6,1   
7 1,7 2,6 3,5 4,4 5,3 6,2 7,1  
8 1,8 2,7 3,6 4,5 5,4 6,3 7,2 8,1 
9 2,8 3,7 4,6 5,5 6,4 7,3 8,2  
10 3,8 4,7 5,6 6,5 7,4 8,3   
11 4,8 5,7 6,6 7,5 8,4    
12 5,8 6,7 7,6 8,5     
13 6,8 7,7 8,6      
14 7,8 8,7       
15 8,8        

 
2) Lock Free Approach: In lock-free approach, the 

mutex is incremented by an atomic function. This serializes 
the incrementation of mutex variable, despite the fact that all 
the operations are performed in separate blocks. Here we 
implement lock-free synchronization without having atomic 
operations. The concept behind this method is to dedicate a 
sync variable to each individual thread block, so that each 
block can track its sync status without committing the global 
mutex variable, thus preventing dead lock. 

 

 
Figure 2.  Block Synchronization with CPU and GPU 

Figure 3.   
3) Shared Memory Approach:  In our shared memory 

approach first, we divide the dynamic programming matrix 
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(D) in chunks and then copy these chunks to shared memory. 
After that skewing transformation is applied so that 
computation can be done in parallel. The computation results 
are then copied back to original dynamic programming 
matrix. Reading and writing overhead is not significant over 
here as shared memory is much faster than global memory. 
We elaborate this approach in next section. 

 
3. IMPLEMENTATION 

 
After applying skewing transformation, we can 

parallelize NW by multiple kernel invocations at the point of 
block synchronization. The alternative is to use the single 
kernel call implementation using block synchronization 
approach. Here, each block in the GPU needs to synchronize 
the threads using syncthreads(). The block synchronization 
within single kernel call can use the methods described in 
subsection 2A. We use Lock-free implementation of the 
block synchronization as it gives better performance than 
lock-based approach. 

 
B. Non Shared (Global) Memory Implementation 

In this implementation, the GPU kernel is launched with 
selected number of threads per block. The number of blocks 
is function of sequence length and number of threads per 
block f(sequence_length, number_of_threads). To simplify 
the process, we launch threads and blocks in only x direction. 
The calculation involves comparison of both sequences; 
hence we pass both the sequences to the kernel at launch 
time. The dynamic programming matrix (D) and trace-back 
matrix (T) is determined using Algorithm 1. It makes 
dependent looping structure easier to parallelize, and hence 
gives performance improvement when implemented on GPU. 

The calculation of the dynamic programming matrix (D) 
in a single block is shown in the Algorithm 2. The same logic 
is applicable to all the blocks in the grid, while applying the 
algorithm for large sequence length. In that case, we require 
the use block_synchronization() instead of 
thread_synchronization(). This block synchronization makes 
use of lock-free approach as discussed in [5]. 

. 
Algorithm 1:  Parallel Needleman-Wunsch Algorithm 

 
Input: Dynamic Programming Matrix (d_mat), Sequence 1 
(d_seq1),  Sequence 2 (d_seq2),  No. of Threads/Block, No. 
of  Blocks 
Output: Updated Dynamic Programming Matrix (d_mat) 
thread_id = calculate_thread_id_in_block( ) 
block_size = calculate_block_dim( ) 
d_mat[thread_id] = thread_id * GAP 
d_mat[thread_id * block_size] = thread_id * GAP 
for i = 0  block_size do 
     row = thread_id 
     col  = i – thread_id     
     if  thread_id ≤ i  and row ≠ 0 and col ≠ 0 then 

   left = d_mat[row * block_size + col  - 1] + GAP 
   top= d_mat[(row-1)*block_size + col] + GAP 
   if d_seq1[row – 1] == d_seq2[col-1] then 
      dia = d_mat[(row-1)*block_size+col–1] + MATCH   
   else 
      dia=d_mat[(row-1)*block_size+col-1] + MISMATCH 
   d_mat[row*block_size + c] = max(t, top, dia) 
thread_synchronization() 

for  j = 0  block_size do 
     row = block_size – 1 – thread_id + j 
     col = thread_id 
     if thread_id  ≤ block_size then 
          left = d_mat[row * block_size + col – 1] + GAP 
          top = d_mat[(row-1)*block_size + col] + GAP 
          if d_seq1[row-1] = d_seq2[col-1] then 
              dia = d_mat[( row - 1) * block_size  +  col – 1]  +    
                        MATCH  

     else 
         dia = d_mat[(row – 1) * block_size + col – 1] +  
                   MISMATCH  
     d_mat[row * block_size + c] = max(left, top, dia) 
  thread_synchronization()  
return 
 

C. Shared Memory Implementation 
As shared memory is very limited we need to use it 

prudently. First we create a shared memory of 32 x 32 size. 
Then we transfer dynamic programming matrix (D) in 
chunks of 32 x 32 into shared memory. Here we apply the 
single kernel lock free approach as discussed in previous 
section. After computation resulting matrix is transferred 
back to dynamic programming matrix. This process is 
repeated until whole dynamic programming matrix (D) is 
computed  
 

  Figure 3: Original and Transformed Iteration space of 
Shared Memory Approach 

. 
Algorithm 2:  Dynamic Programming Matrix Calculation 
(Shared Memory) 

 
Input: Dynamic Programming Matrix (d_mat), Sequence 1 
(d_seq1),  Sequence 2 (d_seq2),  No. of Threads/Block, No. 
of  Blocks 
Output: Updated Dynamic Programming Matrix (d_mat) 
bx = blocks_in_x_dimension 
tx = threads_in_x_dimensions 
ty = threads_in_y_dimension 
beg = length(d_seq1) * 32 * bx 
end = beg + length(d_seq1) 
step = 32 
for a = beg  end  do 
     _shared_ int  s[32*32], t[32*32] 
     _shared_ char seq1[32], seq2[32]’ 
     sync_threads() 
    /* Copy sequences from global to shared memory*/ 
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     size = blocks_in_x_dim * grids_in_x_dim 
     grid_size = grid_dim_x 
     blk_size = block_dim_x 
     blk_id = block_id_x 
     thread_id = calculate_thread_id_in_block() 
     block_size = calculate_block_dim() 
     s[thread_id] = thread_id * GAP 
     s[thread_id * block_size] = thread_id * GAP 
     for  i =  1 block_size  do  

   row = thread_id 
   col = i – thread_id 
    if thread_id  ≤  i  and  row ≠ 0 and col ≠ 0 then 
       left = s[row * block_size + col – 1] + GAP 
       top = s[(row – 1) * block_size + col] + GAP 
       if  seq1[row – 1] = seq2[col – 1] then 
             dia =s[(row–1)*block_size + col–1] + MATCH 
       else 
            dia=s[(row-1)*block_size+col-1] + MISMATCH 
       s[row * block_size + col] = max(left, top, dia) 
       sync_threads() 
 d_mat[a + length(seq1) * ty + tx] = s[ty * 32 + tx] 
for  w =  0  32  do 
     d_traceback[((n*32) + tx)*length(seq1)+(n*32) + w] =   
                                                                      t[tx * 32 + w] 
return 
 
Shared memory is made up of 32 memory banks and it is 

necessary to perform synchronization. We use a stride to 
copy values in matrix as it does not lead to bank conflicts. 
The algorithm of the same is shown in Algorithm 2. 

As shown in the Figure 3, matrix is divided into sub 
matrices of 32 x 32 and copied to shared memory for 
computation. Arrows indicates the flow of execution. 

 
4. EVALUATION AND DISCUSSION 

 
In this section we present the evaluation results and 

discuss them in detail. The execution of sequential version of 
the code is verified with Intel Core i3 CPU with 6 GB of 
RAM and parallel implementations are verified with Tesla 
C2070 GPU containing 448 CUDA cores and 5376 MB of 
global memory for storage. We also verified our approaches 
with Intel Xeon CPU with 16 GB of RAM and parallel 
versions are verified with Tesla K40c GPU containing 2880 
CUDA cores and 12 GB of global memory storage. The 
execution time of a program on the GPU consists of 3 
different phases:  

1) Time to launch the kernel on the GPU 
2) Computation done on the GPU 
3) Inter block GPU communication using Block  

      Synchronization 
A. Results 

We compared the execution time of this algorithm using 
three different approaches: Sequential (CPU), Parallel GPU 
based implementation with multiple kernel invocation from 
CPU and Parallel GPU based implementation with single 
kernel invocation using lock-free block synchronization. 
Comparison of the time taken for the execution by these 
three methods is shown in Figure 4. Figure 5 shows the 
comparison of time taken with different block size i.e. 128 x 
128, 256 x 256, 512 x 512 and 1024 x 1024. 

B. Discussion 
As shown in Figure 4, it is evident that both parallel 

implementation with single kernel invocation and multiple 
kernel invocation perform better than the CPU based 
sequential implementation. These results are compared with 
different input sequence lengths. It is observed from the 
graph that with the increase in sequence length the speedup 
of both the parallel approaches increases. 

Figure 5 shows the execution time comparison of GPU 
implementation with different block sizes. From the figure it 
is clear that if we increase the block size the performance 
drops slightly. Non-coalesced memory access and increase in 
page faults contributes in reduction of performance with the 
increase in number of threads per block. The device 
coalesced global memory loads the values into DRAM in 
row-wise or column-wise manner and as we are accessing 
the values anti-diagonally it results in increase in page faults 
and mismatches during memory access. This leads to 
performance drop and thus we obtain maximum performance 
with block size of 128 x 128. This also depends on the GPU 
architecture and memory access mechanism of the GPU, 
causing different optimum block sizes for different GPUs. 

Figure 6 shows the speed-up of parallel GPU based single 
kernel invocation and multiple kernel invocation with respect 
to sequential method on CPU with icc and Figure 7 shows 
the speed-up of parallel GPU based single kernel invocation 
and multiple kernel invocation over sequential 
implementation compiled with g++ on CPU. GPU based 
single kernel implementation with lock-free synchronization 
gives the same speed-up as multiple kernel invocation with 
CPU based block synchronization. As the sequence length 
increases the speed-up also increases. We obtained speed-up 
of ~5.5 for the sequence  
length of 32k with g++ and 2 for sequence length of 32k with 
icc. One observation which can be made from the 
performance plot is increase in the input sequence length 
results in increase in the speed-up gained. 

As shown in Figure 6 and 7 single-kernel and multi-
kernel invocation give same performance hence we have 
implemented only multi-kernel implementation using shared 
memory. From Figure 9 it is apparent that shared memory 
performs ~9 times better than sequential implementation 
with g++ and of ~3 times better than sequential 
implementation with icc for sequence length of 32k. Figure 8 
shows that our shared memory implementation on GPU is 
2.2 fold faster than non shared memory based 
implementation. 

On GPU device shared memory has bandwidth of 1.5 
TB/s and global memory has bandwidth of 150 GB/s. 
Theoretically this means that shared memory should perform 
10 times faster but due to our execution flow it does not yield 
that kind of results in actual scenario. 

Suppose memory operation on global memory takes Tg 
time and on shared memory it takes Ts time hence Tg =10 x 
Ts. Now suppose there is matrix of 64 x 64. So it will require 
64+64 Gap value fills. Now each value is compared for 
match and mismatch. Hence  

Total_Comparisons = 64 x 64 = 4096 
 
As each cell (i, j) is dependent on (i-1, j), (i, j-1) and           

(i-1, j-1).  So, 
Total_reads = 4096 x 3 
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The last total 4096 write operations will be performed to 
fill whole matrix. Therefore incorporating all these results in 
O(20736 x Tg). Now for shared memory we apply it on 
submatrix of 32 x 32. Whole calculation is done as above and 
we will have O(5184 x Ts).  

In addition, we are reading pairs from global to shared 
memory and writing the whole matrix back to global 
memory when computed. Therefore our shared memory 
execution will be O(5184 x Ts + 1088 x Tg). This is for one 
submatrix, to compute whole matrix we have to compute 4 
submatrix, consequently our execution will be O(20736 x Ts 
+ 4352 x Tg). 

Now as we know that Tg =10 x Ts putting these value we 
get shared memory execution complexity as O(64256 x Ts) 
and global memory execution complexity as O(207360 x Ts). 
This means speed up of 3 times in an ideal situation. But due 
to execution dependencies this algorithm does not produce 
realistic results. In skewing transformation as the size 
increases, more parallelization can be exploited which is 
evident from results. Initially speed up is not much but as we 
increase the sequence length it increases and we have got 
speed up of 2.3 for sequence length of 32k. 

 
5. RELATED WORK 

 
Needleman-Wunsch [1] and Smith-Waterman [2] are two 

well known dynamic programming based algorithms 
developed in the 70s and early 80s to detect similarity 
between a pair of DNA/protein sequences. BLAST [6] is the 
most commonly used sequence alignment program for a pair 
wise alignment. It is based upon the principle of hashing 
small matching sequences and then extending the hash 
matches to create high-scoring segment pairs until the 
highest possible score is obtained. BLAST is faster than any 
dynamic programming based approach. However, it does not 
guarantee the optimal alignment of the query and database as 
dynamic programming.  

 

 
Figure 4: Execution time of CPU and GPU implementation 

 

 
Figure 5: GPU (Shared Memory Execution time for varying 

block size 
 

 
 

 Figure 6: Speedup of Single Kernel/Multi-Kernel Non-
Shared 

 GPU over CPU (icc)  

 
 

Figure 7: Speedup of Single Kernel/Multi-Kernel Non-
Shared 

 GPU over CPU (g++) 
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Figure 8: Speedup of Shared Memory over Non-Shared 
Memory  

 

 
 
Figure 9: Speedup of  Shared Memory Multi-Kernel  

 
CS-BLAST [7] a protein sequence search tool is an 

extension of BLAST, which is based on context-specific 
mutation probabilities. Several researchers have developed 
parallel versions of the Smith-Waterman algorithm that are 
suitable for Graphics Processing Units (GPUs) [8], [9], [10], 
[11], [12].  Zheng et. Al. [13] introduced a metric based 
approach to estimate the performance of compute-bound 
GPU kernels with control flow divergence. The thread re-
grouping algorithms further make use of the metric based 
value function.  

An efficient GPU based implementation of Multiple 
Sequence Alignment is given by Liu et. al. [14]. They 
reformulated the compute intensive stage of CLUSTAL-W, 
so that it suits the GPU architecture. It involves parallelizing 
the Needleman-Wunsch algorithm.  An efficient 
implementation of Needleman Wunsch algorithm on 
graphics processing unit is also presented in [15]. Our 
approach differs from the one presented in [15] by the use of 
lock free and lock based approaches for block 
synchronization on GPU. Our approach for parallelizing the 
Needleman-Wunsch algorithm differs by using skewing 
transformation on the original data access pattern to exhibit 
the inherent parallelism existing in the code. 

A shared memory implementation of Needleman-
Wunsch is presented in [16] by Shivaram Venkataraman, 

Reza Farivar, Harshit Kharbanda, Roy Campbell for pairwise 
alignment. They have modified the original NW algorithm to 
make it two pass process. In first pass original dynamic 
programming matrix is divided into quadrants by computing 
only boundary values of quadrants using original NW 
algorithm and in second pass all these quadrants are 
processed in shared memory simultaneously. The results are 
very impressive. 

Another shared memory approach presented by 
Siriwardena and Ranasinghe in [17] is improvement over the 
sequential approach up to 4.2 times. It uses blocking strategy 
in minor diagonals which copies minor diagonal blocks in 
shared memory and computes the results and copies back to 
global memory. Here they have used barrier synchronization 
in shared memory for threads. Our approach differs from this 
with skewing transformation which changes iteration space 
to improve performance in parallel. 

 
6. CONCLUSION 

 
In this research, we used CUDA enabled GPU to improve 

the performance of the Needleman-Wunsch algorithm. 
Although, the data level parallelism in Needleman-Wunsch 
algorithm is low, the data dependencies are such that 
skewing transformation technique is used to solve anti-
diagonal dependencies. Using this approach, we achieved a 
speed-up of ~6 using multiple kernel GPU implementation as 
compared to CPU based implementation. The single kernel, 
lock-free block synchronization technique gave a speed-up of 
6 over CPU based implementation. The speed-up increases 
with the increase in the sequence length. Shared memory 
implementation gave speed up almost double of our GPU 
implementation for sequence length more than 12k. Our CPU 
results of Intel C Compiler (icc) gave 3 times speed up 
compared to CPU sequential code. This result clearly 
acknowledges the effective use of GPU hardware for 
computation. 
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