
DOI: http://dx.doi.org/10.26483/ijarcs.v8i9.4940
Volume 8, No. 9, November-December 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 152

ISSN No. 0976-5697

CLASSIFICATION OF SPARQL QUERIES INTO EQUIVALENCE CLASSES OF
RELEVANT QUERIES

Theodore Andronikos

Department of Informatics
Ionian University

Corfu, Greece

Abstract: This paper is inspired by ideas from the field of theoretical Mathematics, used for the partitioning of abstract spaces into equivalence
classes, and applies analogous concepts in order to propose a classification of SPARQL queries into equivalence classes. The novel concepts of
relevant queries and covering query are introduced in a manner appropriate for the study of SPARQL queries. These new definitions shed new
light on the relations among SPARQL queries. They enable the formal identification of similar queries and this leads to the partition of SPARQL
queries into equivalence classes of relevant queries. This work also discusses how the covering query relating two or more relevant queries can
be useful from the perspective of computational cost when evaluating composite queries composed of simpler relevant queries. Hence, the
introduction of the concept of relevance between queries provides not only obvious theoretical advantages, but also concrete practical ones,
which in many cases have the potential to lower the computational cost of query evaluation.

Keywords: RDF graph, SPARQL query, relevant query, classification, equivalence class

1. INTRODUCTION

Today one of the most important areas of research is

undoubtedly the Semantic Web. During the last decade,
Semantic Web, combined with a spectrum of related
technologies, e.g., Linked Open Data [1], has forever
transformed the way we perceive the World Wide Web. One
of the key reasons for the success of Semantic Web is the
fact that it is based on standards. The Resource Description
Framework (RDF) and SPARQL are probably the two most
important standards of the Semantic Web.

The Resource Description Framework is used to store
data in the form of a directed graph [2]. The contents of the
directed graph are viewed as triples (subject, predicate,
object), where the subject is related to the object through the
predicate. SPARQL [3] is the de facto standard language that
is used for querying RDF datasets. Of particular importance
from our viewpoint is the class of Regular Path Queries
(RPQ for short). These are SPARQL queries that concern
pairs of nodes of the RDF graph. An underlying path
consisting of directed edges of the RDF graph begins from
the first node and terminates at the second node. This path
satisfies certain properties and these properties are
formulated in terms of simple regular expressions that are
suitable for this purpose.

In this context, the so called “transitive” predicates play a
particularly important role. A predicate R, which can
conveniently be viewed as a label of one or more directed
edges of the RDF graph, is called transitive if one can validly
infer the triple that (a, R, c) from the existence of the two
triples (a, R, b) and (b, R, c) in the RDF dataset.

SPARQL queries taking advantage and utilizing
transitive predicates are the most suitable examples for
demonstrating the concept of “relevant” queries, which is the
main theme of this paper. This work is inspired by theoretical
ideas from the field of Mathematics which are used in order
to access the similarity between abstract mathematical
notions. We investigate how these ideas can be infused in the

context of SPARQL queries so as to provide a theoretical
partition of the set of SPARQL queries into equivalence
classes, where each class contains “relevant” queries, that is
queries that are connected in a precise formal way.

Contribution. The main contribution of this work lies in
its novelty. This paper advocates the use of mathematical
notions for the classification of SPARQL queries into
equivalence classes. Mathematical ideas have always been
used in a fruitful way to tackle concrete computational
problems. Following this line of thought, this work proposes
the use of abstract mathematical concepts as a tool for the
classification and subsequent evaluation of SPARQL queries.
The idea of relevant SPARQL queries, which is introduced
here, has far-reaching ramifications because it reveals hidden
connections between queries. These connections, apart from
being of interest in their own right, can also be used to
improve the computational cost of evaluating those
composite SPARQL queries that are comprised of relevant
queries. In such composite queries, which are often
encountered in practice, a covering query, that is a query that
establishes the formal connection among the relevant queries,
can be used instead of the individual relevant queries. The
use of a covering query is advantageous because it will
enable the evaluation of the composite query in a more
efficient manner, requiring less computational time.

The paper is organized as follows: Section 2 contains
references to other related works, Section 3 presents the
definitions and the notation used in this work, Section 4 lists
and analyzes the main results, and, finally, Section 5
summarizes conclusions and suggests some possible ideas
for future work.

2. RELATED WORK

The notion of “similar” queries in the general context of

web searching has been studied extensively (see [4] and [5]
for some recent progress and more references on the subject).
However, it should be emphasized that in this context the

Theodore Andronikos, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,152-159

© 2015-19, IJARCS All Rights Reserved 153

query is not a SPARQL query applicable to a RDF dataset,
but just a keyword based query, typically submitted by the
user when searching for some information in the internet.
The present paper focuses on SPARQL queries and
establishes a type of similarity among such queries based
upon a rigorous definition. To avoid any potential confusion,
we shall henceforth use the characterization “relevant” in our
study of SPARQL queries. In the rest of this section we
briefly mention a few other works that are related to the
present article in the sense that they focus on SPARQL and
RDF graphs from a theoretical viewpoint.

In [6] Schmidt et al. study equivalences in the context of
SPARQL algebra. The main theme of their work is the
classification of SPARQL fragments in complexity classes.
They extensively use SPARQL set algebra and study both set
and bag semantics. Our work is different from theirs in that
we give a totally different and completely new definition for
the equivalence of SPARQL queries, introducing at the same
time the novel concept of covering query, and we also avoid
the use SPARQL algebra.

Zhang et al. [7] proposed an extension of navigational
path queries using elements from the theory of context-free
languages. Since context-free constructs are more expressive
than regular expressions, this approach enhances the
expressive power of SPARQL queries. The resulting
language is named cfSPARQL and, as the name suggests,
endows standard SPARQL with context-free grammars.
cfSPARQL enables the user to formulate more powerful and
complex queries that SPARQL. The authors claim that the
increased expressive power does not come up with an
increased computational cost, i.e., in most practical examples
query evaluation in cfSPARQL remains efficient.

An important theoretical work by Sistla et al. [8]
demonstrated the relationship of database queries with finite
automata. In [8] the authors developed a technique by which
database queries, e.g., nearest neighbor queries, are
expressed using an automata-theoretic approach. Ideas and
methods from the theory of finite automata motivated Wang
et al. in [9] to devise an algorithm suitable for evaluating
RDF queries. They also presented experimental results that
confirm that the methodology they propose is capable of
handling efficiently certain categories of regular path queries
on large scale RDF graphs.

Another theoretical work that investigated the correlation
of queries on RDF datasets to certain types of finite automata
appeared in [10]. There the emphasis was on the practically
infinite nature of Linked Data apothecaries, which is a
reasonable abstraction if one takes into account their ever
increasing size. This line of thought was further pursued in
[11], where a connection between SPARQL queries
involving transitive predicates and ω-regular languages, i.e.,
the analog of regular languages in case of infinite words, and
finite automata accepting infinite inputs is established. Tools
and techniques from the theory of probabilistic automata can
also be used when dealing with data characterized by a
certain degree of uncertainty, e.g., biomedical data, as was
demonstrated in [12].

All the previous references serve to indicate that ideas
and methods originating from theoretical disciplines can be
successfully adopted to more concrete and practical
environments, such as evaluation of SPARQL queries. It is
this point of view that characterizes this paper, where the
inspiration comes from the field of mathematics and leads to

the introduction of novel notion like relevant queries and
covering query.

3. DEFINITIONS AND NOTATION

SPARQL queries return information stored in a RDF

graph. The underlying syntax is rather user-friendly and
enables the user to retrieve data that match a certain pattern.
In this work we shall use the notation designated in the
following definition for the answer set returned by a query q
when applied on the dataset D. The examples used to
demonstrate the concept of relevant queries will rely on the
use of so called transitive predicates and will take advantage
of the new navigational capabilities of SPARQL 1.1 [2].

Definition 1. Let q(x1, …, xn) be a SPARQL query

involving the n projection variables ?x1, …, ?xn in the
SELECT clause of the query, and let D be a RDF dataset.
The result of applying q(x1, …, xn) on D will be called the
answer set of q over D and will be denoted by q(x1, …,
xn)[D].

Consider a simple SPARQL query Q(x1, x2) like the one

shown in Figure 1a.

SELECT ?x1 ?x2
WHERE {
 ?x1 IsConnectedTo ?x2 .
}

Figure 1a. The above SPARQL query lists the
ordered pairs (x1, x2) such that there is an edge from x1
to x2 labeled by the predicate IsConnectedTo.

SELECT ?x1
WHERE {
 ?x1 IsConnectedTo destination .
}

Figure 1b. The above SPARQL query outputs the
nodes x1 connected to destination by the predicate
IsConnectedTo.

SELECT ?x2
WHERE {
 source IsConnectedTo ?x2 .
}

Figure 1c. The above SPARQL query returns the
nodes x2 for which there is an edge from the node
source to x2 labeled by the predicate IsConnectedTo.

If the projection variable x2 is removed from the SELECT

clause of Q(x1, x2) and all other occurrences of x2 are
replaced by the constant destination, then the result would be
another query Q´(x1), shown in Figure 1b, containing the
single projection variable x1. Symmetrically, if the projection
variable x1 is removed from the SELECT clause of Q(x1, x2)
and all other occurrences of x1 are replaced by the constant
source, then the result would be the query Q´´(x2), shown in
Figure 1c, containing the single projection variable x2. It will

Theodore Andronikos, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,152-159

© 2015-19, IJARCS All Rights Reserved 154

be convenient to introduce the following notation to describe
such substitutions of variables by constants.

Definition 2. Let q(x1, …, xn) be a SPARQL query

involving the n projection variables ?x1, …, ?xn in the
SELECT clause of the query. We write q(x1, …, xn){xi1|c1,
…, xim|cm} to denote the query q´ arising from q, if all the m
projection variables ?xi1, …, ?xim are removed from the
SELECT clause of q(x1, …, xn) and all remaining occurrences
of ?xi1, …, ?xim are replaced by the m constants c1, …, cm,
respectively. Obviously, m ≤ n.

With the above notation, the queries Q´(x1) and Q´´(x2),

depicted in Figure 1b and Figure 1c, respectively, can be
written as Q(x1, x2){x2|destination} and Q(x1, x2){x1|source},
which immediately reveals that are special instances of the
more general query Q(x1, x2) of Figure 1a. In the sequel, we
will often refer to such an action as the application of a
substitution to a given query, e.g., applying the substitution
{x2|destination} to Q(x1, x2), will give rise to the Q´(x1).

Remark 1. If a query q´(y1, …, yn) containing exactly n

projection variables, results from the query q(x1, …, xn), also
containing exactly n projection variables, by renaming all
occurrences of x1, …, xn to y1, …, y, respectively, then the
queries q and q´ will be considered identical. In other words,
consistent renaming of the projection variables in a query
leaves the query unchanged and so q(x1, …, xn) and q´(y1, …,
yn) are in fact the same query.

Consider two SPARQL queries q1 and q2 and let us

further assume that both queries involve n projection
variables. We call q1 and q2 relevant if they can be related by
another query Q that utilizes at least n variables. Formally,
the following definition captures the notion of relevance
between queries.

Definition 3. Let q1(x1, …, xn) and q2(x1, …, xn) be two

queries with exactly n projection variables. The query q1(x1,
…, xn) is relevant to the query q2(x1, …, xn), if there exists a
query Q(x1, …, xn, xn+1, …, xn+m), where m ≥ 0, such that for
every RDF dataset D:

(1) q1(x1, …, xn)[D] = Q1(xi1, …, xin)[D], where Q1(xi1, …,
xin) = Q(x1, …, xn, xn+1, …, xn+m){xj1|c1, …, xjm|cm}, and

(2) q2(x1, …, xn)[D] = Q2(xk1, …, xkn)[D], where Q2(xk1,
…, xkn) = Q(x1, …, xn, xn+1, …, xn+m){xr1|c1, …, xrm|cm}.

The query Q(x1, …, xn, xn+1, …, xn+m) is a covering
query for both q1(x1, …, xn) and q2(x1, …, xn).

We write q1 ~ q2 to denote that q1 and q2 are relevant.

Some clarifications are perhaps necessary in order to

better understand the above definition.
• First, we emphasize that the covering query Q

involves n+m, where m ≥ 0, projection variables, whereas
each of the two relevant queries q1 and q2 involve exactly n
projection variables.

• In writing Q1(xi1, …, xin) and Q2(xk1, …, xkn), the
meaning is that both Q1(xi1, …, xin) and Q2(xk1, …, xkn) result
from the covering query Q(x1, …, xn, xn+1, …, xn+m) by
substituting the m remaining projection variables by m
constants. In the first case the m constants are c1, …, cm and
in the second case the m constants are d1, …, dm.

• The resulting query Q1(xi1, …, xin) involves the n
projection variables xi1, …, xin. Likewise, Q2(xk1, …, xkn)
involves the n projection variables xk1, …, xkn. These n
projection variables are in general different and are also
different from the n initial variables x1, …, xn of the covering
query Q.

• The answer sets Q1(xi1, …, xin)[D] and Q2(xk1, …,
xkn)[D] are sets of n tuples, as required to achieve the equality
with the answer sets q1(x1, …, xn)[D] and q2(x1, …, xn)[D],
respectively.

• The constants c1, …, cm and d1, …, dm correspond to
URIs appearing in D and will also in general be different.

The following example will hopefully serve as a useful

introduction to the notion of relevant queries.

Example 1. Consider the SPARQL query q1 shown in

Figure 2a. This query when applied to a RDF graph that
contains the transitive predicate P will return all those nodes
that are connected to the node destination through one or
more edges labeled by the same transitive predicate P.

Let us emphasize that in this query we regard predicate P
as transitive in sense that if (a, P, b) and (b, P, c) are two
triples stored in the RDF dataset, then, on a semantic level,
we may infer that (a, P, c). Moreover, q1 utilizes the
capabilities of SPARQL 1.1 [3], the syntax of which enables
us to define and process path properties. The special symbol
+ is interpreted as asserting the existence of one or more
edges labeled by the transitive predicate P.

SELECT ?x
WHERE {
 ?x P+ destination .
}

Figure 2a. The SPARQL query q1 lists the nodes that
are connected to the node destination through one or
more edges labeled by the transitive predicate P.

SELECT ?x1
WHERE {
 source P+ ?x .
}

Figure 2b. The SPARQL query q2 outputs the nodes
that are connected to the initial node source via one or
more edges labeled by the transitive predicate P.

SELECT ?x1 ?x2
WHERE {
 ?x1 P+ ?x2 .
}

Figure 2c. The SPARQL query Q returns the pairs of
nodes that are connected by a path consisting of one
or more edges labeled by the transitive predicate P.

Let us consider now the SPARQL query q2 shown in

Figure 2b. This query when applied to an appropriate RDF
graph will return all those nodes that can be reached from the
node source through one or more edges labeled by P.

Theodore Andronikos, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,152-159

© 2015-19, IJARCS All Rights Reserved 155

The two queries q1 and q2 can be regarded as similar in
view of the fact that both return nodes that form a path of
length at least one, which is labeled by the same predicate (in
our case the transitive predicate P). The difference is that in
the first case the path terminates at a specific node, namely
the node destination, whereas in the second case the path
begins at a specific node (the node source).

It should therefore come as no surprise that there is
another SPARQL query Q, the one depicted in Figure 2c,
which is closely related to both queries q1 and q2, or, from
another viewpoint, that relates explicitly q1 and q2. It is rather
straightforward to see that Q returns all the ordered pairs (x1,
x2) such that there exists a path of length at least one from x1
to x2 labeled by the transitive predicate P. This of course
means that all nodes in q1(x)[D] appear as the first element of
an ordered pair of Q(x1, x2)[D] and symmetrically all
elements of q2(x)[D] appear as the second element of an
ordered pair of Q(x1, x2)[D]. Moreover, by substituting the
constant destination for all occurrences of the projection
variable x2 in Q, the resulting query Q1(x1) = Q(x1,
x2){x2|destination} is none other than the query q1(x).
Symmetrically, by substituting the constant source for all
occurrences of the projection variable x1 in Q, the resulting
query Q2(x2) = Q(x1, x2){x1|source} becomes precisely the
query q2(x). Therefore, according to Definition 3, Q(x1, x2) is
indeed a covering query for q1(x) and q2(x) because q1(x)[D]
= Q1(x1)[D] and q2(x)[D] = Q2(x2)[D]. ▲

The previous Example 1 is quite simple, but the

following example will demonstrate that relevant queries can
be significantly more complex. From now for brevity we
shall adopt the following terminology: a path consisting of
edges labeled by the same transitive predicate P will simply
be called a P-path. Whenever we want to express the fact that
x is the first node and y is the terminal node of such a P-path
we shall write x ⇒P y.

SELECT ?x1 ?x2
WHERE {
 ?x1 P+ ?x2 .
 ?x2 R+ destination .
}

Figure 3a. The SPARQL query q1 lists the ordered
pairs (x1, x2) such that x1 is connected to x2 via a P-
path and x2 is connected to the node destination
through an R-path. Both paths are of length at least
one.

SELECT ?x1 ?x3
WHERE {
 ?x1 P+ intermediate .
 intermediate R+ ?x3 .
}

Figure 3b. The SPARQL query q2 outputs the
ordered pairs (x1, x3) such that x1 is connected to the
node intermediate via a P-path and intermediate is
connected to x3 through an R-path. Both paths are of
length at least one.

SELECT ?x2 ?x3
WHERE {
 source P+ ?x2 .
 ?x2 R+ ?x3 .
}

Figure 3c. The SPARQL query q3 returns the ordered
pairs (x2, x3) such that there exists a P-path from
source to x2, and x2, is connected to x3 through an R-
path. Both paths are of length at least one.

SELECT ?x1 ?x2 ?x3
WHERE {
 ?x1 P+ ?x2 .
 ?x2 R+ ?x3 .
}

Figure 3d. The above SPARQL query lists the
ordered triples (x1, x2, x3) such that there exists a P-
path from x1 to x2, and an R- from x2 to x3. Both paths
are of length at least one.

Example 2. In this example, we begin by considering the

SPARQL query q1 shown in Figure 3a. This query contains
not just one but two transitive predicates: P and R and
involves two variables x1 and x2. When applied on a suitable
RDF graph it will return all those ordered pairs (x1, x2) such
that x1 is connected to x2 via a P-path of length at least one
and x2 is connected to the node destination through an R-path
of length at least one.

The SPARQL query q2 shown in Figure 3b will list all
ordered pairs (x1, x3) such that x1 is connected to the node
intermediate via a P-path of length at least one and, in turn,
intermediate is connected to x3 through an R-path of length at
least one.

A similar examination of the query q3 of Figure 3c,
shows that q3 outputs all ordered pairs (x2, x3) such that there
exists a P-path of length at least one from the node source to
x2 and there exists also an R-path of length at least one from
the x2 to x3.

The relevance of queries q1, q2 and q3 is rather obvious.
All three of them return nodes that form precisely two paths:
a P-path followed by an R-path. The difference among the
three queries is in the specifics. For the q1 query the R-path
must terminate at the node destination, for the q2 query the
P-path must terminate at the node intermediate and the R-
path must begin at the node intermediate, and for the q3
query the P-path must begin at the node source.

The SPARQL query Q(x1, x2, x3) depicted in Figure 3d is
the covering query for q1, q2 and q3. Q(x1, x2, x3) is more
complex that q1, q2 and q3. While each of q1, q2 and q3
involve two projection variables, Q(x1, x2, x3) involves three
projection variables. As a result Q returns ordered triples (x1,
x2, x3); in each such triple x1 is connected to x2 via a P-path
and x2 is connected to x3 through an R-path. More formally,
by evaluating Q to the dataset D, we get the answer set Q(x1,
x2, x3)[D] = {(x1, x2, x3) : x1 ⇒P x2 and x2 ⇒R x3}.

It is clear that by substituting the constant destination for
all occurrences of the projection variable ?x3 in Q, the
resulting query Q1(x1, x2) = Q(x1, x2, x3){x3|destination} is
precisely the query q1(x1, x2). Reasoning in a similar manner,
we see that by substituting the constant intermediate for all

Theodore Andronikos, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,152-159

© 2015-19, IJARCS All Rights Reserved 156

occurrences of the projection variable ?x2 in Q, the resulting
query Q2(x1, x3) = Q(x1, x2, x3){x2|intermediate} is just the
query q2(x1, x3). Finally, by substituting the constant source
for all occurrences of the projection variable ?x1 in Q, the
resulting query Q3(x2, x3) = Q(x1, x2, x3){x1|source} is simply
the query q3(x2, x3).

Obviously, Q(x1, x2, x3) is a covering query for q1, q2 and
q3, since q1(x1, x2)[D] = Q1(x1, x2)[D], q2(x1, x3)[D] = Q2(x1,
x3)[D], and q3(x2, x3)[D] = Q3(x2, x3)[D]. ▲

4. FUNDAMENTAL PROPERTIES OF RELEVANT
QUERIES

From a theoretical point of view, the relevance relation

between queries satisfies certain important properties. This is
expressed in the next proposition.

Proposition 1. The relevance relation ~ between queries

is an equivalence relation.
Proof.
We must check that the relation ~ satisfies the following

three properties that characterize equivalence.
(1) The reflexive property requires to show that for every

query q(x1, …, xn), it holds that q(x1, …, xn) ~ q(x1, …, xn).
This is rather trivial because we can take the query q(x1, …,
xn) itself as the covering query.

(2) Suppose now that q1(x1, …, xn) ~ q2(x1, …, xn). We
have to prove the symmetric property, i.e., that also q2(x1, …,
xn) ~ q1(x1, …, xn). The fact that q1 and q2 are relevant implies
that there exists a covering query Q(x1, …, xn, xn+1, …, xn+m),
where m ≥ 0, and two substitutions θ1 and θ2, which are, in
general, different, for m of the projection variables that
satisfy the requirements of Definition 3. In particular, if Q(x1,
…, xn, xn+1, …, xn+m) θ1 = Q1(xi1, …, xin) and Q(x1, …, xn,
xn+1, …, xn+m) θ2 = Q2(xk1, …, xkn), then q1(x1, …, xn)[D] =
Q1(xi1, …, xin)[D] and q2(x1, …, xn)[D] = Q2(xk1, …, xkn)[D]
for every RDF database D. This immediately gives that q2(x1,
…, xn) ~ q1(x1, …, xn) via the same covering query Q(x1, …,
xn, xn+1, …, xn+m).

(3) Finally, suppose that q1(x1, …, xn) ~ q2(x1, …, xn) and
q2(x1, …, xn) ~ q3(x1, …, xn). To establish the transitive
property, we must that also q1(x1, …, xn) ~ q3(x1, …, xn). The
two hypotheses imply the existence of two covering queries
Q1(x1, …, xn, xn+1, …, xn+m) and Q2(x1, …, xn, xn+1, …, xn+m´),
and four substitutions θ1, θ2, θ3, θ4, such that q1(x1, …, xn)[D]
= U1(xi1, …, xin)[D], q2(x1, …, xn)[D] = U2(xk1, …, xkn)[D],
where U1(xi1, …, xin) = Q1(x1, …, xn, xn+1, …, xn+m) θ1, U2(xk1,
…, xkn) = Q1(x1, …, xn, xn+1, …, xn+m) θ2, and q2(x1, …, xn)[D]
= V1(xr1, …, xrn)[D], q3(x1, …, xn)[D] = V2(xt1, …, xtn)[D],
where V1(xr1, …, xrn) = Q2(x1, …, xn, xn+1, …, xn+m´) θ3, V2(xt1,
…, xtn) = Q2(x1, …, xn, xn+1, …, xn+m´) θ4. We construct a new
query Q that contains as subqueries the queries Q1 and Q2.
We may assume that Q1 and Q2 have no variable names in
common. Even if this is not the case, we may rename the
projection variables of Q2 to ensure that the all variables are
distinct. This renaming does not change the semantics of Q2
(recall Remark 1) and the resulting query is the semantically
equivalent to Q2. The projection variables of Q are comprised
of the projection variables of Q1, the projection variables of
Q2 (after they have been renamed, if necessary), and a new
variable, which we call ?choice. Moreover, we construct a
new substitution θ1´ by augmenting θ1 with substitutions of
the projection variables y1, …, yn, yn+1, …, yn+m´ of Q2 by

constants d1, …, dn, dn+1, …, dn+m´, and the substitution of
choice by a string constant, e.g., “first”. The resulting
substitution θ1´ is θ1∪{y1|d1, …, yn|dn, yn+1|dn+1, ...,
yn+m´|dn+m´, choice|“first”}. The subquery Q1 is also
augmented with a FILTER statement testing whether ?choice
is equal to the string constant used in θ1´, e.g., “first”. This
guarantees that the augmented subquery returns exactly the
same answer set as θ1´ when θ1´ is used and nothing
whenever a different substitution for ?choice is used.
Symmetrically, starting from θ4, we construct the new
substitution θ4´ = θ4∪{x1|c1, …, xn|cn, xn+1|cn+1, ..., xn+m|cn+m,
choice|“second”}. Likewise, Q2 is also augmented with a
FILTER statement involving ?choice that passes the results
only when the substitution θ4´ is used.

Therefore, by the above construction, we conclude that
q1(x1, …, xn)[D] = W1(xi1, …, xin)[D] and q3(y1, …, yn)[D] =
W2(xt1, …, xtn)[D], where W1(xi1, …, xin) = Q(x1, …, xn, xn+1,
…, xn+m, y1, …, yn, yn+1, …, yn+m´, choice) θ1´ and W2(xt1, …,
xtn) = Q(x1, …, xn, xn+1, …, xn+m, y1, …, yn, yn+1, …, yn+m´,
choice) θ4´. This proves that Q is a covering query for q1 and
q3 and, thus, q1 ~ q3. �

Example 3. This example will shed some light on the

construction we used in Proposition 1 in order to establish
the transitive property of the ~ relation.

The queries q1 and q2 shown in Figure 4a are relevant and
the covering query Q1 that establishes this fact is also shown
in Figure 4a. The two substitutions that, when applied to Q1,
establish the relation q1 ~ q2 are {x3|IsSolid} and
{x2|metallicObject} for q1 and q2, respectively.

The queries q2 and q3, shown in Figure 4b, are also
relevant. A covering query for q2 and q3 is the query Q2 also
depicted in Figure 4b. The two substitutions that establish
that q2 ~ q3 are {x2|metallicObject} for q2 and {x1|bolt} for q3,
respectively.

The algorithm described in Proposition 1 results in the
construction of the query Q shown in Figure 4c. To avoid
any clash of names and any possible ambiguity, the
projection variables x1, x2, x3 of Q2 are consistently renamed
to y1, y2, y3. This ensures that there are no variable names in
common between Q1 and Q2. Moreover, this renaming does
not change the semantics of Q2 (recall Remark 1), meaning
that the resulting query is the same as Q2.

SELECT ?x1 ?x2
WHERE {
 ?x1 IsInstanceOf ?x2.
 ?x2 HasProperty IsSolid.
}

(q1)

SELECT ?x1 ?x3
WHERE {
 ?x1 IsInstanceOf metallicObject.
 metallicObject HasProperty ?x3.
}

(q2)

SELECT ?x1 ?x2 ?x3
WHERE {
 ?x1 IsInstanceOf ?x2.
 ?x2 HasProperty ?x3.

(Q1)

Theodore Andronikos, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,152-159

© 2015-19, IJARCS All Rights Reserved 157

}

Figure 4a. The first SPARQL query q1 above is
relevant to the second query q2. The covering query
that establishes that q1 ~ q2 is the query Q1.

SELECT ?x1 ?x3
WHERE {
 ?x1 IsInstanceOf metallicObject.
 metallicObject HasProperty ?x3.
}

(q2)

SELECT ?x2 ?x3
WHERE {
 bolt IsInstanceOf ?x2.
 ?x2 HasProperty ?x3.
}

(q3)

SELECT ?x1 ?x2 ?x3
WHERE {
 ?x1 IsInstanceOf ?x2.
 ?x2 HasProperty ?x3.
}

(Q2)

Figure 4b. Similarly, q2 ~ q3 and Q2 is a covering
query for q2 and q3.

SELECT ?x1 ?x2 ?x3 ?y1 ?y2 ?y3 ?choice
WHERE {
 {
 SELECT ?x1 ?x2 ?x3
 WHERE {
 ?x1 IsInstanceOf ?x2 .
 ?x2 HasProperty ?x3 .
 FILTER (?choice = “first”)
 }
 }
 {
 SELECT ?y1 ?y2 ?y3
 WHERE {
 ?y1 IsInstanceOf ?y2 .
 ?y2 HasProperty ?y3 .
 FILTER (?choice = “second”)
 }
 }
}

Figure 4c. The above query Q is a covering query for
q1 and q3.

Hence, the variables appearing in the SELECT clause of

Q are the variables x1, x2, x3 of Q1, the variables y1, y2, y3 of
Q2, and a new projection variable ?choice, which will be
used to filter the results returned by the two subqueries.

SELECT ?x1 ?x2
WHERE {
 {
 SELECT ?x1 ?x2
 WHERE {

 ?x1 IsInstanceOf ?x2 .
 ?x2 HasProperty IsSolid .
 FILTER (“first” = “first”)
 }
 }
 {
 SELECT
 WHERE {
 d1 IsInstanceOf d2 .
 d2 HasProperty d3 .
 FILTER (“first” = “second”)
 }
 }
 }

Figure 5a. The above SPARQL query W1(x1, x2)
arises from the query Q(x1, x2, x3, y1, y2, y3, choice) of
Figure 4c with the substitution {x3|IsSolid, y1|d1, y2|d2,
y3|d3, choice|“first”}, where d1, d2, d3 are arbitrary
constants. The FILTER statements in the two
subqueries guarantee that W1 returns all ordered pairs
(x1, x2) from subquery Q1 but none from subquery Q2.

SELECT ?y2 ?y3
 WHERE {
 {
 SELECT
 WHERE {
 c1 IsInstanceOf c2 .
 c2 HasProperty c3 .
 FILTER (“second” = “first”)
 }
 }
 {
 SELECT ?y2 ?y3
 WHERE {
 bolt IsInstanceOf ?y2 .
 ?y2 HasProperty ?y3 .
 FILTER (“second” = “second”)
 }
 }
 }

Figure 5b. The above query W2(y2, y3) arises from the
query Q(x1, x2, x3, y1, y2, y3, choice) of Figure 4c with
the substitution {x1|c1, x2|c2, x3|c3, y1|bolt,
choice|“second”}, where c1, c2, c3 are arbitrary
constants. The FILTER statements in the two
subqueries guarantee that W2 returns all ordered pairs
(y2, y3) from subquery Q2 but none from Q1.

Applying the substitution {x3|IsSolid, y1|d1, y2|d2, y3|d3,

choice|“first”}, where d1, d2, d3 are arbitrary constants, to the
query Q(x1, x2, x3, y1, y2, y3, choice), results in the query
W1(x1, x2) depicted in Figure 5a. In view of the fact that the
second FILTER statement will exclude everything, while the
first FILTER statement will allow everything, we conclude
that W1(x1, x2) is equivalent to Q1{x3|IsSolid}. Therefore,
W1(x1, x2)[D] = q1(x1, x2)[D].

Similarly, the query W2(y2, y3) of Figure 5b results from
the application of the substitution {x1|c1, x2|c2, x3|c3, y1|bolt,
choice|“second”}, where c1, c2, c3 are arbitrary constants, to

Theodore Andronikos, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,152-159

© 2015-19, IJARCS All Rights Reserved 158

Q(x1, x2, x3, y1, y2, y3, choice). In this case, the first FILTER
statement will exclude everything, while the second FILTER
statement will allow everything. This implies that W2(y2, y3)
is equivalent to Q2{y1|bolt}, and, therefore, W2(y2, y3)[D] =
q3(y2, y3)[D]. This concludes the proof that Q is a covering
query for q1 and q3 and, thus, q1 ~ q3. ▲

The construction the query Q that establishes the

transitivity of the relevance relation ~ was somewhat
artificial and mechanical. It serves only to complete the
proof. Clearly, there is a high degree of redundancy in Q,
which is not at all optimized. In most practical cases, things
will be much easier. For instance, in Example 3, query Q1
alone suffices to establish that q1 ~ q3. This is achieved with
the substitutions {x3|IsSolid} and {x1|bolt} for q1 and q3,
respectively.

Proposition 1 is important because it means that the set of
SPARQL queries is partitioned into equivalence classes, and
each SPARQL query q belongs to one such class.

Definition 4. Let q be a SPARQL query. The equivalence

class to which q belongs is denoted by [q]. Alternatively, we
say that q is a representative of the class [q].

Having established this theoretical classification of

SPARQL queries into equivalence classes, let us turn our
attention into possible ways to take advantage of this
situation for practical purposes.

Consider a scenario where we have the two relevant
queries q1 and q2. We may further assume that we know a
third query Q that is a covering query for q1 and q2 via the
substitutions θ1 and θ2, respectively. Whenever we are
confronted with the evaluation of a more composite query,
involving q1 and q2, we may use our knowledge of the
covering query Q to our advantage in order to speed up the
computation. Specifically, instead of having to compute two
queries, we can arrive at the same answer set by computing
just one.

This can be achieved by applying the substitution θ =
θ1∪θ2 to Q and then evaluation the resulting query Q´ = Qθ.
Taking into account the properties of the covering queries,
we see that the soundness of this method is immediate.
Furthermore, and more importantly, this approach takes
considerably less time.

Example 4. In this example, we assume that we want to

compute the SPARQL equivalent of the join of the query q1
with the query q3, shown in Figures 3a and 3c, respectively.
We also know that Q, depicted in Figure 3d, is a covering
query for q1 and q3.

We recall that q1 returns the ordered pairs (x1, x2) such
that x1 is connected to x2 via a P-path and x2 is connected to
the node destination through an R-path, while q3 lists the
ordered pairs (x2, x3) such that there exists a P-path from
source to x2 and an R-path from x2 to x3. All paths have
length at least one.

Formally, the answer sets of q1 and q3 on a dataset D are
q1(x1, x2)[D] = {(x1, x2): x1 ⇒P x2 and x2 ⇒R destination} and
q3(x2, x3)[D] = {(x2, x3): source ⇒P x2 and x2 ⇒R x3},
respectively. Therefore the answer set of their join is {x2 :
source ⇒P x2 and x2 ⇒R destination}, that is the nodes x2 for
which there exists a P-path from source to x2 and an R-path
from x2 to destination.

SELECT ?x2
WHERE {
 source P+ ?x2 .
 ?x2 R+ destination .
 }

Figure 6. The above SPARQL query lists all the
nodes x2 for which there exists a P-path from source
to x2 and an R-path from x2 to destination. Again, both
paths are of length at least one.

The query Q lists the ordered triples (x1, x2, x3) such that

there exists a P-path from x1 to x2 and an R-path from x2 to
x3. More formally, applying Q to the dataset D produces the
answer set Q(x1, x2, x3)[D] = {(x1, x2, x3) : x1 ⇒P x2 and x2 ⇒R
x3}. By simultaneously substituting the constants source and
destination for all occurrences of the projection variables x1
and x3 in Q, we get the resulting query Q´(x2) = Q(x1, x2, x3){
x1|source, x3|destination} shown in Figure 6. It is easy to see
that the answer set of Q´ is precisely {x2 : source ⇒P x2 and
x2 ⇒R destination}.

What this means in terms of efficiency, is that instead of
evaluating two queries, each involving two projection
variables, and then computing their join, we can,
equivalently, evaluate a single query, involving one
projection variable. This approach has the potential to reduce
the computational cost significantly. ▲

It is important to point out that this technique is not only

valid for just two relevant queries but it can be readily
generalized to an arbitrary (finite) number of relevant
queries, due to the transitive nature of the ~ relation.

5. CONCLUSION

In this paper we have analyzed SPARQL queries using

concepts and ideas inspired from the field of abstract
mathematics. This novel approach, besides its theoretical
merits, has the potential to provide important practical
benefits regarding the computational aspects of SPARQL
query evaluation. Quite often in practice we may encounter
composite queries that are comprised of simpler queries that
happen to be relevant. This situation was demonstrated in the
toy scale Example 4, where the evaluation of the conjunction
of two SPARQL queries was considered. The current
approach requires the evaluation of both queries in order to
achieve the evaluation of their conjunction. Knowledge of
the fact that the queries in question happen to be relevant,
along with a covering query establishing their relation, opens
up another possibility. By using only one query, specifically
one arising from the covering query via an appropriate
substitution, the evaluation of the conjunction can be
completed in a more efficient manner, requiring less
computational time.

REFERENCES

[1] LOD Project, 2014. Linking Open (LOD) Data Project,

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProje
cts/LinkingOpenData.

Theodore Andronikos, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,152-159

© 2015-19, IJARCS All Rights Reserved 159

[2] Resource Description Framework (RDF),
http://www.w3.org/standards/techs/rdf#w3c_all.

[3] SPARQL 1.1 Query Language. Tech. rep., W3C (2013),
http://www.w3.org/TR/#tr_SPARQL/.

[4] Wang Y., Liu J., Chen J., Huang Y.: Finding similar queries
based on query representation analysis. World Wide Web, vol.
17, n. 5, pp. 1161–1188, Sep. 2014.

[5] Yanan Li, Bin Wang, Sheng Xu, Peng Li, Jintao Li:
QueryTrans: Finding Similar Queries Based on Query Trace
Graph. In: Proceedings of the 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and
Intelligent Agent Technology, Vol. 01, Washington, DC,
USA, 2009.

[6] Schmidt M., Meier M., Lausen G.: Foundations of SPARQL
Query Optimization. In: Proceedings of the 13th International
Conference on Database Theory (ICDT '10), pp. 4–33,
Lausanne, Switzerland, 2010.

[7] Zhang, X., Feng, Z., Wang, X., Rao, G., Wu, W.: Context-free
path queries on RDF graphs. In: International Semantic Web
Conference. pp. 632–648. Springer (2016).

[8] Sistla, A.P., Hu, T., Chowdhry, V.: Similarity based retrieval
from sequence databases using automata as queries. In:

Proceedings of the eleventh international conference on
Information and knowledge management. pp. 237–244. ACM
(2002).

[9] Wang, X., Ling, J., Wang, J., Wang, K., Feng, Z.: Answering
provenance-aware regular path queries on RDF graphs using
an automata-based algorithm. In: Proceedings of the 23rd
International Conference on World Wide Web. pp. 395–396.
ACM (2014).

[10] Giannakis, K., Andronikos, T.: Querying Linked Data and
B¨uchi automata. In: Semantic and Social Media Adaptation
and Personalization (SMAP), 2014 9th International
Workshop on. pp. 110–114. IEEE (2014).

[11] Giannakis, K., Theocharopoulou, G., Papalitsas, C.,
Andronikos, T., Vlamos, P.: Associating -automata to path
queries on webs of linked data. Engineering Applications of
Artificial Intelligence 51, 115 – 123 (2016).

[12] Andronikos T., Singh A., Giannakis K., Sioutas S.:
Computing probabilistic queries in the presence of uncertainty
via probabilistic automata. In 3rd International Workshop on
Algorithmic Aspects of Cloud Computing (ALGOCLOUD
2017) September 5, 2017, Vienna, Austria.

	1. INTRODUCTION
	2. RELATED WORK
	3. DEFINITIONS AND NOTATION
	4. FUNDAMENTAL PROPERTIES OF RELEVANT QUERIES
	5. CONCLUSION
	REFERENCES

