
DOI: http://dx.doi.org/10.26483/ijarcs.v8i9.4936
Volume 8, No. 9, November-December 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 337

ISSN No. 0976-5697

GENERATING QUERIES TO CRAWL HIDDEN WEB USING KEYWORD
SAMPLING AND RANDOM FOREST CLASSIFIER

Sabarni Kundu

Electronics and Communication Engineering
Maharaja Surajmal Institute of Technology

New Delhi

Shwetanshu Rohatgi
Computer Science and Engineering

Maharaja Surajmal Institute of Technology
New Delhi, India

Abstract: One of the most challenging aspects in information retrieval systems is to crawl and index deep web. A deep web is part of World
Wide Web which is not visible publically and therefore can’t be indexed. There is a huge amount of scholarly data, images and videos available
in deep web which if indexed can serve purpose of research and stop illegal activities. We propose an efficient hidden web crawler that uses
Sampling and Associativity Rules in order to find the most important and relevant keywords which are used to generate queries that can extract
information from databases and web forms. Further, we use random forest technique to index out search results. Our web crawler has
capabilities to efficiently overcome various prior challenges that we have stated in this paper.

Keywords: Deep Web; Dark Web; Crawler; Random Forest Classifier; Apriori Intuition; Keyword Sampling; TF-IDF; NLP; Database
Querying

I. INTRODUCTION

WW or World Wide Web is defined as “wide-area
hypermedia information retrieval initiative aiming to
give universal access to large universe of documents”

[1].
Recently, the usage of internet is multiplying rapidly.

WWW has been known for proving a vast source of
information. Due to its rapidly increasing usage we need to
design an effective search engine .Web crawlers are the
intrinsic part of search engine that provides growing of web
pages in methodical and automated manner or in orderly
fashion [2].

Web crawling or spidering is basically a process where
we amass web pages from internet. The basic program of
web crawler is to traverse the internet automatically by
downloading links from one web page to another web page
and so forth. It is the best tool where we can collect the
web pages and index them to and successively keep our
database updated.

Deep web is usually referred as part of WWW that is not
visible publically and hidden under surface web. In deep
web, the pages are not indexed or queued by standard
search engines, therefore the content on hidden web or
deep web is difficult to accessible. The data that we fetch
from hidden web is strutted one and indexing technique
implemented for structured and unstructured data is
completely different [3].

In this paper we will be discussing the basic working
and principles of web crawler and further will be briefing
about deep web and dark web along with their crawlers.
Section 1 is devoted to the architecture of web crawler used
in surface web. Section 2 will consist brief about Deep
web. Section 3 will mainly focus on the Deep web crawler
and its architecture. Section 4 will be about Dark web.
Section 5 will be about searching technique implemented

in Dark web. Section 6 will be about our Challenges faced
by Deep web crawlers by studying previous works. In
section 7 we proposed Hidden web crawler whereas section
8 will demonstrate experimental results. In the last section
we conclude our paper with future scope and references.

II. SURFACE CRAWLING

The main purpose of web crawler is to fetch URL and
download the corresponding pages mention in the
webpage. Web crawlers are essential part of search engine
where they amass the corpus of webpages queued by the
engine itself.
Initially web crawler starts its system by setting of URL
request. All the important URLs that are to be retrieved and
given priority are kept in URL queue and from here the
crawler gets a URL link and download the corresponding
webpage. After page downloading URLs are passed to the
extractor which would extract the required data given by
the users and then data can be organized into groups and
further URL can be pushed back to queue. This process is
repeated over and over again till the URL queue is empty
[1].

W

Sabarni Kundu et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,337-341

© 2015-19, IJARCS All Rights Reserved 338

A. Architecture of Surface Web Crawler

Figure 1. Web Crawler Architecture.

III. DEEP WEB

Deep web is growing exponentially and at a rate that defies
quantification. It’s almost impossible to measure the size of
deep web, recently it has been estimated that its about
4000-5000 times bigger than surface web. The contents of
Deep Web are hidden from standard search engine as they
require a query to produce results. These websites may
have 100 of pages to navigate through but 1000s of pages
can be searched. Let’s take an example of famous news
channel where we can visit the web pages but cannot fetch
the databases.
Deep web is a complex process and it is classified into 2
categories of data [4].
Category 1 involves all the details or web pages that are
difficult to fetch through standard search engine, these
pages can involve Facebook or twitter posts, webpages that
are buried under many layers down in dynamic pages. It
also involves the result that sits so far down the standard
search that normal users will never find them.
Category 2 involves a vast repository of information that is
not accessible to standard search engine. This consist of
information found in webpages, databases and many other
sources. It can be only browsed through custom query,
which cannot be done by the standard search engine used
in surface web.
Deep Web consist of both structured and unstructured
content. This information is compiled by experts,
researchers through automated processing system. Deep
Web connections are anonymous and hard to make a check
of, facilitating access to illegal information and resources
from around the world without government filtering,
"interpretation" or censorship.

IV. DEEP WEB CRAWLER

A. Architecture

Figure. 2. Deep Web Crawler Architecture.

V. DARK WEB

The Surface Web is anything that can be indexed by a
typical search engine like Google, Bing or Yahoo and deep
web is anything that a standard search engine can’t access
or indexed [5]. The Dark Web then is classified as a small
portion of the Deep Web that has been intentionally hidden
and is inaccessible through standard web browsers. The
major portion of the data that makes up the Dark Web
resides on an anonymous Internet known as the TOR
network. The TOR network is an anonymous network that
can only be accessed with a special web browser, called the
TOR browser. This is the portion of the Internet most
widely known for illicit activities because of the anonymity
associated with the TOR network.

VI. CRAWLING HIDDEN WEB

Millions of web pages are crawled and queued daily by
searching through endless hyperlinks. Yet a large amount
of data is hidden behind the web queries. The information
of web content is behind web forms and the client side
scripting is referred to as the hidden web, which is
estimated to consist of many millions of web pages.
Deep web or Hidden Web consist of a dynamically
generated internet pages which is not accessed by standard
search engines, we need to access these by creating a query
in a deep web and thus fetching relevant information. Our
main aim is to crawl relevant parts of the hidden web and
thus fetch information related to our demands and needs.
While crawling deep web we usually take three parameters
as our input parameter and those are set of seed URLs,
User data and Domain specific data as shown in Fig. 2.

Sabarni Kundu et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,337-341

© 2015-19, IJARCS All Rights Reserved 339

Input-classifier then selects the web page elements and
after that a domain filter uses this data and fill up the
html/web forms and thus passes updated result to the
analyser, then the analyser submits the form to the web
server and fetches the nascent web formed and according to
it our database gets edited and in this way this process is
iterated over till crawl capacity.

VII. PRIOIR RESEARCH AND CHALLENGES

A. Various Challenges

In [6] we can see an effective HiWE model where the
crawler first built an internal representation of searches and
then further representation in a vector form. Further the
match algorithm compares the internal form representation
and current contents and hence assigning a value
assignment and then the response is stored in the
repository.

In [7] A. Bergholz, B. Chidlovskii have highlighted a
system for domain specific crawling for the hidden web
buts this crawler is only for full text search form. These
forms searches any web documents only through single
text field which indicate a full text. They generate a
problem of keyword query when it crawl all the contents
behind a web.

In [8] S. Liddle, D. Embley, Del Scott and S. Ho Yau,
proposed a framework to extract data from hidden web
forms. It represents the problem of extracting the full
contents behind a web forms. Due to this problem this
system does not accept forms with the required “textbox”
fields to be filled in.

In [9] the system is very efficient as it automatically
generates new queries from the result of the previous
queries but in this crawler the system is not properly
indexed.

VIII. PROPOSED HIDDEN WEB CRAWLER

A. Proposed Theory

Instead of crawling the full content of the web we can
crawl some selective content that will make our system
more efficient and saves our time. For designing an
effective crawling system we create such an algorithm that
focuses on crawling only the necessary details and then
creating a query based on crawl results.

Step1: Creating a corpus vector
 In this step we extract out the unnecessary contents
such as stopwords, punctuators, various symbols and white
spaces using “tm” function of NLP and thus storing all
these data into a vector.

Step 2: Clustering the different content
 After creating a corpus vector we can then organise
our contents into different clusters. First cluster that consist
of the content of corpus vector and second cluster will
consist of the remaining content of the website.

Step 3: Finding the most frequently occurred word or

Keyword
 We will be applying the sampling function and TF-
IDF [10] function and thus determine the most frequently
occurring word which will be our keyword.

Step 4 Apriori intuition
 Association rule learning is a rule-based machine
learning method for discovering interesting relations
between variables in large databases. It is intended to
identify strong rules discovered in databases using some
measures of interestingness. Apriori [8] uses a breadth-first
search strategy to count the support of item sets and uses a
candidate generation function which exploits the
downward closure property of support.
 We will be applying associative rule learning i.e.
Apriori Intuition to our keyword that we have obtained in
the previous steps. By this algorithm we can predict other
contents or topics which will be related to our
keywords and thus providing a user, a wide variety of web
pages related to the searches [11].

Step 5: Generating Query
 After fetching the appropriate keyword we then
generate a query [12]. This will help us parse hidden
databases and web forms and hence we successfully crawl
a Deep web and webpage in an effective way.

B. URL Queuing Technique

Earlier we have used depth first search, breadth first
search and best first search for URL ordering. Among these
DFS is also used in crawling system such as Fish Search
[13]. BSF (Breath first search) is considered as one of the
easiest method for indexing, it worked well. But however
BFS (Breath first Search) didn't produce a satisfactory in
focused crawling [14]. However, Best First Search
overcame these problems. Best First searches uses
technique such as link analysis or text analysis or a
combination of both for an effective result. Now in this text
analysis we uses the concept of similarity scoring where we
use machine learning algorithm. We can use similarity
equation along with the contents and URL of the page. This
procedure is quite effective, but we can produce much
effective process of indexing in a focused crawler by
applying few machine learning algorithm.

Thus for an effective indexing we can use Support
Vector Machines, where with the help of space vector
model and cosine similarity we can index the pages.

Furthermore we can also use genetic algorithm for
URL for topic specific searches. These process are quite
effective in focused crawling, but for correct and much
more accurate results in focused crawling use Random
Forest Intuition.

 Random Forest is also known as Random Decision
Forest and this is a part of ensemble learning which is used
in classifiers and regressors [15]. This algorithm involves
technique of bootstrap aggregating and because of this
special property it produces the most accurate and effective
ordering of pages as it mitigate the variance without
increasing the bias. Further, we can make the uncertainty of
the following prediction by the standard deviation of the
predicted values.

Sabarni Kundu et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,337-341

© 2015-19, IJARCS All Rights Reserved 340

 Dataset of the URLs to be crawled: X = x1…..xn
 Responses: Y = y1……yn
 Number of Samples: B

Our proposed model is used for querying the web links

and the results produced are indexed and classified using
Random Forest.

We use Random Forest primarily because a lot of
Hidden web links and data beneath the hidden web has
been in the form of images and videos than in the form of
text and for images and videos Random forest has been
found to be the most efficient and accurate algorithm.

In above equation we calculate Sigma that will help us
to reduce variance without increasing bias that removes the
problem of over fitting as in case of decision trees and this
is what makes Random forest the go-to technique for
classifying our data and web links.

C. Proposed Architecture for Hidden Web Crawler

Figure 3. Proposed Hidden Web Crawler Architecture

IX. EXPERIMENTAL RESULTS

We ran our proposed web crawler on a set of text and
database that has similar Structured and Unstructured data

in various databases that forms the part of hidden web.
Using R studio and NLP toolkit we analyzed the
performance of our web crawler on database of over
20,000 web forms and database, we segregated over data
into two clusters using ‘tm’ function in NLP library which
produced a corpus vector and a relevant word cloud or
vector. Using relevant words we performed sampling and
TF-IDF [10] which is a general technique in information
retrieval systems, used to find relevant and important
keywords from a document.

Further we applied apriori algorithm to our keywords
vector, which is based on association rule discovery
including support, confidence i.e. “if-then rules”. Our
apriori algorithm gave us set of keywords that were related
to our sampled keywords after TD-IDF step. This largely
improved our word cloud as our crawler will now index
keywords as well as related words similar to keywords
produced by Apriori recommender engine. We limited the
number of relevant keywords in our data set to 500 and we
further produced queries from these keywords.

We ran our produced queries on World Wide Web and
we could come up with 7836 new URLs that had not been
previously crawled by any of the search engine including
Google, Bing and Yahoo. These are hidden web page links.
Our page links were rich in image and video content that
had not been indexed properly. Out of 7836 our 73% links
had no back links meaning they had not been properly
linked via hypertext due to which they were never crawled.

Our crawled links had been majorly dominated by
Images and Videos that has not been labelled and
segmented. We used our Random Forrest Classifier and
various other already used classification techniques like
BFS, DFS SVMs etc. Our model produced the best results
with Random Forest Classifier and produced least
Turnaround time as shown in Fig. 4. Hence we
experimentally infer that Random tree are 2.3 times more
accurate than BFS and DFS techniques and about 70%
more efficient than Support Vector Machine (SVMs)

Figure 4. Performance Comparison for indexing the crawled links.

We also used decision trees but they were vastly slow in

classification of unlabeled images and videos and since our
Hidden web crawled results were primarily as Images and

Sabarni Kundu et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,337-341

© 2015-19, IJARCS All Rights Reserved 341

Videos, we used Random forest classification which works
the best for Images and Videos classification on hidden
web.

X. END SECTION

A. FUTURE SCOPE

These is a lot that needs to be done in order to index
deep web as well as dark web. Deep has opened a wide
range of opportunities for scholars by indexing various
research papers and articles but also forms a part of
illegal activities that happen in the dark web in the form
selling personal information, drugs etc. If this part of the
web is index like surface web by devising dynamic
contiguously converging and efficient web crawling
techniques then such illegal activities can be put to an
end.

B. CONCLUSION

We have demonstrated both theoretically and
experimentally that our proposed crawler has the
capabilities to crawl hidden web and extract data from web
forms effectively by using generated queries and then
indexing them using Random forest classifier. We have
tested our query generator on a dataset of words using NLP
toolkit and our classifier is more efficient in indexing pages
on hidden web for both structured and unstructured data
specially classification of images and videos. Our web
crawler has successfully overcome prior challenges that we
demonstrated in section 7 and we look forward to make
hidden web much more accessible and safe for scholars and
researchers

XI. REFERENCES

[1] A comparative study on web crawling for searching hidden
web by IJCSIT

[2] Trupti V. Udapure, Ravindra D. Kale and Rajesh C.
Dharmik,”Study of web crawler and its Different types”,
IOSR Journal of Computer Engineering (IOSR-JCE) e-

ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 1,
Ver. VI (Feb. 2014), PP 01-05

[3] Ali Mesbah , Arie van Deursen , Stefan Lenselink, Crawling
Ajax-Based Web Applications through Dynamic Analysis of
User Interface State Changes, ACM Transactions on the
Web (TWEB), v.6 n.1, p.1-30, March 2012

[4] BERGMAN, M. 2000. The deep Web: Surfacing the hidden
value. BrightPlanet,
www.completeplanet.com/Tutorials/DeepWeb/index.asp.

[5] BERGMAN, M. 2000. The deep Web: Surfacing the hidden
value. BrightPlanet,
https://brightplanet.com/2014/03/clearing-confusion-deep-
web-vs-dark-web.asp

[6] C. J. Kaufman, Rocky Mountain Research Laboratories,
Boulder, Colo., personal

[7] communication, 1992. (Personal communication)
[8] A. Bergholz, B. Chidlovskii, “Crawling for Domain-

Specific Hidden Web Resources” In the Proc. of the 4th Int.
Conf. on Web Information System Engineering,2003

[9] S. Liddle, D. Embley, Del Scott and S. Ho Yau, ” Extracting
Data Behind Web Forms” In the Proc. of the 28th Int. Conf.
on Very Large Data Bases, China, 2005

[10] S. Raghavan and H. Garcia-Molina. Crawling the hidden
web. In VLDB, 2001.

[11] LUO Xin; XIA De-lin; YAN Pu-liu. Improved feature
selection method and TF-IDF formula based on word
frequency differentia. Computer Applications, 2005, 25(9):
2031-2033.

[12] Markus Hegland. The Apriori Algorithm – a Tutorial. CMA,
Australian National University, WSPC/Lecture Notes
Series, 22-27. March 30, 2005.

[13] L. Barbosa and J. Freire, “Siphoning hidden-web data
through keyword-based interfaces,” in Proceedings of the
19th Brazilian Symposium on Databases SBBD, 2004.

[14] Cho, J., Garcia-Molina, H., & Page, L. (1998). Efficient
crawling through URL ordering. Computer Networks and
ISDN Systems, 30(1–7), 161–172.

[15] De Bra, P.M.E. & Post, R.D.J. (1994). Information retrieval
in the World- Wide Web: Making client-based searching
feasible. In Proceedings of the First World-Wide Web
Conference (pp. 183–192). New York: ACM Press.

[16] L. Breiman. Random forests. Machine learning, 45(1):5–32,
2001.

