
��������	�
����	��������������

��� ����!��"�����#�������

�$#$��!%�&�&$��

������'���(���������)))��*���������

© 2010, IJARCS All Rights Reserved 329

ISSN No. 0976-5697

Remote Monitoring and Controlling Distributed Real-Time Systems using Multi-

Agents

Anusha Kannan*
School of Information Technology and Engineering

VIT University,

Vellore, India

 anusha.k@vit.ac.in

 Usha Devi.G

School of Information Technology and Engineering

VIT University,

Vellore, India

ushadevi.g@vit.ac.in

Abstract: In recent years, research on software agents has gained tremendous amount of attention. To date, very little of the research has

involved agents that operate within real time systems. An agent system would have certain unique characteristics versus traditional scheduling

algorithms. This stems directly from agents ability to schedule execution times for a given task. The distributed systems are used in various

application areas and their working environment is very complex due to which they face concurrency and synchronization problems. To cope up

with these two problems in this paper we present a novel approach to enhance the efficiency of the distributed systems by implementing agent

architecture and RMA scheduling algorithm. The main work of this article includes designing agent architecture for typical concurrency

embedded system applications, and adapting classic RMA for scheduling tasks which have soft real time requirements.

Keywords: Distributed Real-Time Systems, Agents, RMA scheduling algorithm, Architecture Design.

INTRODUCTION

A distributed system is a collection of independent

computers that appear to the users of the system as a single

coherent system. There is always a need for effective

monitoring, controlling and tracking of system components in

a distributed real-time environment, as the clients are

geographically distributed and are connected to the server

through network. To give priorities to server response for

various client requests in distributed systems agents are used.

Software agent [1] can be defined as a component of

software and/or hardware which is capable of acting

exactingly in order to accomplish tasks on behalf of its user [2]

[3]. An agent is a component of hardware or software which is

capable of acting exactingly in order to accomplish tasks on

behalf of its user. In this issue, agent is deputy for the tasks to

concurrency and synchronization. It rearranges the multi-

access sequence for supporting as many parallel processing

requests,[4] [5] and with specific scheduling algorithm [6] [7]

such as Rate Monotonic Scheduling Algorithm.

Scheduling (RMS) algorithm [8] [9] [10] for satisfying

time constraints of tasks can be used to solve multiple task

scheduling. The indirect coupling architecture of agent can

well adapt to meeting the requirements of parallel processing

for better performance, and it has good extensibility for future

multi-agent applications.

These agents act as an intermediate between clients and

server. The concurrent and synchronized execution of multi-

agents reduces the complexity of accuracy, time delay and

synchronization between the components. Agents are also

helpful in managing the complexity of the system, as by using

them it is easy to define a system in terms of agent-mediated

processes. Multi-agent technology offers a number of

characteristics that make it well suited for distributed process

monitoring and fault diagnosis tasks.

 Scheduling is defined as the way processes are assigned

to run on the CPU. To give priorities to the tasks in the real-

time environment the basic scheduling algorithms like first

come first serve (FCFS), shortest job first (SJF), round

robin(RR) etc. are not efficient, So we haven choosen rate

monotonic scheduling algorithm(RMS) over other scheduling

algorithms. Rate Monotonic Scheduling presents one approach

to addressing the problem of Distributed real-time systems.

Rate Monotonic Scheduling (RMS) can be accomplished

based upon rate monotonic principles. Rate Monotonic refers

to assigning priorities as a monotonic function of the rate

(frequency of occurrence) of those processes.

II. RMA SCHEDULING ALGORITHM

Rate Monotonic Scheduling presents one approach to

addressing the problem of Distributed real-time systems. Rate

Monotonic Scheduling (RMS) can be accomplished based

upon rate monotonic principles. Rate Monotonic refers to

assigning priorities as a monotonic function of the rate

(frequency of occurrence) of those processes. In RMA

scheduling algorithm, task execution is always consistent with

rate monotonic priority: a lower priority task never executes

when a higher priority task is ready i.e tasks with shorter

periods are assigned higher priorities; no other criteria are

considered for priority assignment. RMA is helpful for tasks

that occur at a periodic rate even the task parameters can be

changed quickly and easily to modify the system and the

design of the system has become much easier by using it.

Comparing to other scheduling algorithms RMA scheduling

algorithm has less disadvantages so, it is very efficient for

distributed real-time systems.

III. AGENT ARCHITECTURE FOR DISTRIBUTED

REAL-TIME SYSTEMS

 In distributed real-time environment clients are

geographically distributed and connected to the server through

network. The clients give the requests to the server through

agents, then the server processes these requests and send back

the results to the agent. The agent prioritize these results by

Anusha Kannan et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,329-331

© 2010, IJARCS All Rights Reserved 330

using Rate Monotonic Scheduling Algorithm(RMS) and

passes it to the clients.

Figure 1 Agent Architecture in Distributed System

Software agent has evolved from multiagent systems. It

disposes issues such as interaction and communication

between processes, the scheduling and allocation of resources,

negotiation and cooperation. Although multi-thread

programming tool kits can implement such synchronization or

concurrency even with priority support, it is still a tough work

to fulfill parallel tasks spontaneously but at the same time

guaranteeing meeting individual deadline constraints and

integral optimal performance.

Software agent is a more prominent solution for such

problems. According to the research of Steven [4], the

directional kernel communication can be redesigned for an

intermediate scheduling layer for better performance. While

considering the time constraints of parallel processing tasks,

the agent contains a task scheduler for deciding and arranging

tasks activities sequence. Figure 2 illustrates the agent

architecture design, and the agent is responsible for

communication with different parallelizable tasks, allocation

resources and collaboration between tasks.

Agent design is in software level, and would not change

the hardware structure of embedded system. The agent

schedules and synchronizes components that in charge of the

concurrent tasks. Concurrent tasks with synchronization or

real time constraints should register in the agent firstly. Then,

after agent figuring out reasonable execution sequence, it

synchronizes all tasks and schedules them in turn. Further the

agent can avoid the heavy and complicated synchronization

work amongst the processes and lowers shared resources

access collision. The agent needs not to be persistent for

economic resources usage, and it can be triggered by

concurrent tasks request dynamically. When receiving new

service requests, the agent will re-computes possible response

time and decides whether or not they can be merged into

current task group for scheduling.

The proposed system is a desktop search engine which

searches web pages for a given keyword on user’s PC .When

clients send the requests all these requests are received by the

agent, which then calculates the arrival time of each

request(task).Now, these tasks are checked by the agent

whether they are schedulable or not. If at the same time many

tasks arrive then the agent schedules them by calculating the

priority, execution time. If in between any new task arrives

then it calculates the priority and reschedules the task

accordingly. The agent sends all these reschedule tasks as

input to search engine. Now, the search engine searches for

files stored in the hard disk and it fetches the path name of the

files in which the keyword is found in the form of links. These

links can be clicked to open the files and view it. Also the

results include additional information like the total number of

times the keyword has occurred in that particular file. After

every search if the keyword is found in any of the file in the

specified location then the absolute path name of that file is

saved in the database. In this way we create a search engine

index which will be highly useful in optimizing the speed of

the search performed. When a particular keyword is requested

for search for the first time using this search engine then the

algorithm searches the location of the files containing that

particular keyword from the hard disk, next time when the

same keyword is given the results are fetched from the index

and thus saves time. Also any change in the hard disk file is

reflected in the index also.

Figure 2 Architecture of Desktop Search Engine using Agents.

IV. SOFT REAL TIME SCHEDULING

As described above, the software agent should properly

group the peripheral requests and enforce specific scheduling

algorithm for concurrent tasks. Rate Monotonic Scheduling

Algorithm was proposed by Liu [9] is a highly effective and

widely used algorithm for real time application. According to

Liu, supposing system consists of n tasks S = {t1, t2, …, tn}.

Also these tasks should be independent of each other. If this

group of tasks is schedulable, it can satisfy the next equation,

where Ci is the worst time cost and Ti is the period of task i.

Tasks with shorter periods are assigned higher priorities with

RMS algorithm.

Usually, the tasks are not completely independent because

there is synchronization or cooperation. Then, RMS relaxes

the previous constraint and gets the next equation.

where Ci and Ti are the same as that of (1). Bi is the time that

task i blocked by lower priority tasks. Case that lower priority

processes block higher ones is said to priority inverse. Sprunt

and Lehoczky [10] advanced this research to support non-

Anusha Kannan et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,329-331

© 2010, IJARCS All Rights Reserved 331

periodical tasks scheduling. Considering two types of non-

periodical tasks TE and TR, TE is a temporal emergent task,

and its deadline is DE. TR is also non-periodical task but with

little real time constraint. CR is the worst execution time for

non -periodical tasks. In fact, TR is equivalence period for

non-periodical cycle. Then, average response time consists of

the average waiting time Wq and average execution time We

Dq is the time interval between continuous tasks quitting from

queue. � is the tasks occurrence frequency which is used for

evaluating the average CPU occupation. I denotes average

tasks occurrence interval.

V. CONCLUSION

In summary, this paper has presented software agent

architecture managing multi-tasks in typical embedded

systems by designing a software agent architecture it was

applied in internet environment for distribution tasks which

will improve the concurrency and synchronization between the

agents and also maintains the accuracy of data between the

components of distributed embedded system components. The

proposed method gives the best software agent which give

good tracking and controlling of distributed embedded system

components. The future work will focus on individual real

time visualization reports which will be produced

dynamically. In future agents are extended to support different

inputs like Bluetooth, IR etc.

VI. REFERENCES

[1] Hu Jin1, Liang-Yin Chen2, Nian-Wei Chen1, Yang
Lei1,”Software Agent Design with Real Time Scheduling
for Embedded Systems”, Chengdu Univ. of Information
Technology, Chengdu 610041, Sichuan, China, 2009

[2] Nwana, H. S., Wooldridge, M., “Software Agents: An
Overview”, Knowledge Engineering Review, 1996, pp.
16-22.

[3] T.Abdelzaher, J.Stankovic, C.Lu, R.Zhang , and Y.Lu. “
Feedback Performnace control in software services”.
IEEE Control Systems, 23(3), June 2003.

 [4] Edward A. L. Stephen, N., “Actor-oriented Design of
Embedded Hardware and Software Systems”, Journal of
Circuits, Systems, and Computers, Vol.2, No.3 2003,
pp. 231-260.

[5] Robert P. Dick, Niraj K., “CORDS: hardware-software co-
synthesis of reconfigurable real-time distributed
embedded systems”, IEEE/ACM International Conference
on Computer Aided Design, 1998, pp. 62-68.

[6] James D. Monte and Krishna R., “Scheduling

 Parallelizable Tasks to Minimize Make-Span and
Weighted Response Time”, IEEE Trans. on Systems,
Man, and Cybernetics – Part A: Ststemns and Humans,
2002, Vol. 32, No.3, pp. 335-345.

[7] Vercauteren, S. Lin, B. De Man, H., “A Strategy for Real-
Time Kernel Support in Application-Specific HW/SW
Embedded Architectures”, in Proc. of the 33rd
International Conference on Design Automation, Las
Vegas, NV, USA, 1996, pp. 678-683.

[8] Fowler, P. Levine, L., “Technology Transition Push: A
Case Study of Rate Monotonic Analysis (Part 1)”,
Technical Report CMU/SEI-93-TR-29 ESC-TR-93-203,
1993.

[9] Liu, C.L James W., “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time
Environment”,Journal of the ACM, 1973, 20(1), pp. 46-61

[10] Lehoczky, J. Sha, L and Ye, D., “The Rate Monotonic
Scheduling Algorithm: Exact Characterization and
Average Case Behavior”, In Proc. IEEE 10th Real-Time
Systems

.

