
��������	�
����	��������������

��� ����!��"�����#�������

�$#$��!%�&�&$��

������'���(���������)))��*���������

© 2010, IJARCS All Rights Reserved 117

Performance Analysis of Gaming Application on Multicore Architecture

N. Muhammed Talha*
School of Computing Science and Engineering

VIT University

Vellore, India

thal_n@yahoo.com

M. Rajasekhara Babu
School of Computing Science and Engineering

VIT University

Vellore, India

mrajasekharababu@vit.ac.in

M. Khalid
School of Computing Science and Engineering

VIT University

Vellore, India

mkhalid@vit.ac.in

Abstract: In this paper we are describing the performance of gaming application using a multi-threaded gaming engine (smoke). That is designed

to scale to as many processor cores are available within a system. It does this by executing different functional blocks in parallel so that it can

utilize all available cores/processor. Here we changing configuration files with (no recompilation) to modify the way the existing technology.

The framework is designed to allow the system(AI, Physics) to talk each other in a efficient threaded manner, without writhing custom code.

This project aims to perform parellelizing technique over the gaming code to achieve a higher level of performance.

Keywords: Multithread, Smoke engine, Artificial Intelligence, Physics, and configuration files.

I. INTRODUCTION

Multi-core processors are widely used across many

application including general-purpose, embedded, network,

digital signal processing (DSP), and graphics. Several

business strategies drive the development of dual-core

architectures. For decades, it was possible to improve

performance of a CPU by decreasing the area of the

integrated circuit, which was drive down the cost of the IC

[1]. Alternatively, for the same circuit area, more transistors

could be utilized in the design, which increased

functionality, especially for CISC architectures. Eventually

these techniques reached their limit and were unable to

improve CPU performance. Multiple processors had to be

used to gain speed in computation. Multiple cores were used

on the same chip to improve performance, which could then

lead to better sales of CPU chips which had two or more

cores. Intel has invented a 48-core processor for research in

cloud computing [1]. The largest boost in performance will

likely be noticed in improved response-time while running

CPU-intensive processes, like antivirus scans and more. For

example, if the automatic virus-scan runs while a movie are

being watched, the application running the movie is far less

likely to be starved of processor power, as the antivirus

program will be assigned to a different processor core than

the one running the movie playback [2]. Now we are trying

to implement the gaming application in multicore

architecture. We used a game engine named as smoke on

multi core architecture. Smoke is a tech demo using the

parallel architecture framework. As can be seen this is not a

simple demo, the developers wanted to produce a

framework that can be used for game technologies and can

fully incorporate middleware such as Havoc, FMOD, etc.

Another goal was the need to be partitioned and

configurable, allowing game developers to tweak and adjust

the workload. The primary goals for developing this

framework were:

1. Performance; this example shows an 8-core system, but

the framework was designed from the ground up to expand

beyond 8-threads, to ensure complete loading of all the

CPUs.

2. The framework was developed to allow the exploration

of other game technologies by getting up the data in such as

way to support ease of prototyping and to be able to

incorporate new technologies [1]. Many things can be

threaded, but to be able to plug-in new functionality, the

game framework must be structured in such a way to allow

efficient communications in a threaded environment,

without undue performance bottlenecks.

 The framework is setup to be totally configurable and

partitioned. The framework was designed to allow the

Systems (AI, Physics) to talk each other in a efficient

threaded manner, without writing custom code for

communications between each of the Systems. The

primarily reason the framework was developed was to teach.

The smoke engine are also used multi-threading concepts to

achieve performance over game The developers wanted to

develop a parallel architecture framework that shows

efficient threading and make it easy to prototype and to add

new technologies. From these we understand how change

synchronization is handled in the parallel architecture

framework and how it contributes to the scalable game

framework and Recognize how common interfaces are used

to interact between Systems (AI, Physics, Graphics, etc) [3].

II. ELEMENTS OF GAME PERFORMANCE

A game is an interactive real time application which takes

input from the user, performs some computations and

N. Muhammed Talha et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,117-120

© 2010, IJARCS All Rights Reserved 118

displays the game in a fixed time, usually aiming at

rendering at a minimum illusion of a continuous motion. It

used to reduce in order to avoid the frame rate from

dropping below this frequency [5]. Measures of game

performance include i. the fill limit, which indicates how

fast the application can fill polygons to form solid surfaces;

ii. the texel limit, which indicates how fast texel, which are

texture elements, can be mapped onto polygons; iii. the

polygon limit, which indicates how fast the game's

primitives can be processed, including geometry operations

such as scaling, translation, and rotation; iv. depth

complexity, which reflects how many polygons are

positioned one behind the other, causing the Z buffer to

suffer when there are too many polygons behind each other;

v. CPU load composed of scene management, score

accounting, as well as artificial intelligence and physics.

When one or more of the measures exceed a certain limit,

the scene cannot be rendered and transferred to the frame

buffer on time, so a game update is missed and a frame

isdropped. The game engine contains the following loop

While (game has not ended)

 { UpdateGame();

 RenderGame(;

 }

where UpdateGame gets the user inputs, performs the

computations necessary for updating the game's state,

artificial intelligence, physics, and audio, while render

Game focuses on displaying the game, including

geometry/vertex and pixel operations . Typically, to let the

game run adequately on both fast and slower hardware, the

UpdateGame is placed under an inner loop that controls the

game update at a constant rate about 25 times per second,

and RenderGame is called with an interpolation argument

when called between game updates to give the illusion that

the game is running at a high frame rate . This will work

adequately on fast and slower hardware we are trying to

consider measures of game performance FPS and CPU

usage [5].

III. RELATED WORK

In 1980s computers were used to do one thing at a time,

and that was word processing, creating spreadsheets or

more. These days, users expect to run several applications at

a single time. Despite these growing demands, the

programmer’s role has retained the same – to create a single

series of instructions for a system’s processor to execute in

sequential [2]. CPU vendors have tried to meet the

challenges posed by multi-tasking users by producing faster

processors, which have the capability to give the user the

impression that multiple applications are running at once.

What drove the industry to multicore technology wasn’t just

the need for more processing speed, less heat because the

fastest chips were heating up faster than the average fan

could cool them down, and more energy efficiency because

single-core chips rely on tightly packed transistors to get the

job done [3].

 Compared to several single-core chips, a multi-cor e

chip is easier to cool because the CPUs are simpler and use

fewer transistors. It means they use less power and dissipate

less heat overall. As for performance, each multi-core

processor can work on a different task at the same time.

Parallel processing used to require more than one chip or

clever algorithms to simulate parallel processing from the

software side. In a multi-core processor, parallelism is

already built in [3]. The problem is that most

programmers—truly, most humans— think sequentially, so

most codes are written to run sequentially. Parallelizing

them can require heroic effort.

 As a reader of Computer, you probably don’t need the

detailed explanation of why most of the industry has shifted

to multi-core technology. But in all honesty, many

embedded system designers are still struggling to determine

whether multi-core really buys them anything in terms of

performance. Resolving this type, requires a thorough

understanding of the target application problem, the

characteristics of multi-core processors that could be used,

and the amount of time that must be invested to make the

transition [3]. Having reliable performance information

provides a good starting point for analyzing these type of

factors, but. In other words, it’s imperative to take the right

types of benchmarks to accurately predict the performance

of the multi-core processor [2].

Many performance evaluation techniques and tools

have been developed in the past but most performance tools

support single-threaded applications. Recently, Intel started

to offer performance tools that support multi-core and

multithreading, but they require special hardware

performance monitoring support. The complexity of the

systems increased and created significant challenges to the

programmers. To become a good application developer for

Today’s different multi-core systems, one will have to be

familiar with multiple Instruction Set Architectures (ISA’s)

on the processor in the platforms in order to optimize for

application performance [3].

IV. PROPOSED WORK

The steady of symmetric multiprocessing to putting many

functional units on a chip to multi-core has been a long time

approach. Software ran faster year after year, not because

of software innovations, but because chip makers kept

adding transistors to the standard single-processor

architecture. If we want faster speeds, we have to embrace

concurrency and make use of multiple processors on the

chip at once. To ease the complexity on the developer,

performance analysis tools are essential, and they provide

significant help to the developers on exploring and tuning

the application performance [3].

 Faster processors won’t give faster games unless

complex code can be broken down into smaller blocks.

Having reliable performance information provides a good

starting point for analyzing these factors, but “reliable” is

the operative word. In other words, it’s imperative to select

the right types of benchmarks to accurately predict the

performance of the multi-core processor.

 Performance evaluation is key to many computer

applications. Many techniques and profiling tools are

available for measuring performance, but most of them

depend on the hardware and the software on which they run.

For a new platform, or a platform which is not popular,

programmers usually suffer from few analyses tools, which

has been a critical problem for application development on

many systems. Thus, a performance analysis tool with the

software mechanism is quite important for developing

applications

 During the past two decades,

exercised

sufficient. In fact, these

depending

benchmarks can

Performance is measured

iteration is the sequential execution

compiler also plays a

In fact, we’ve seen as much as 70

difference

benchmark results

OpenMP applications programming interface provides

various comp

environment variable which provide capability to parallelize

a serial program. So by using OpenMP API we can

parallelize execution of program between two or more cores

in dual or multi

performance in games

much accelerated schedule and was intended to assess the

programmability of the multi

the team started with an established code base that included

a general

resulted in a quick difference between the single and multi

core code base. In order to create a stable, robust reference

system, the team decided

core

architecture requires that programmers design for one of

key architectural features [4].

possible, given the time constraints of the project. We

focused our efforts on

bulk of the workload

heavily on rigid body dynamics to provide interesting game

play. Either task

been employed across the architecture.

N. Muhammed Talha

software mechanism is quite important for developing

applications [5].

During the past two decades,

exercised a processor core’s internal workings

sufficient. In fact, these

depending on the processor

benchmarks can run on top of the operating systems.

Performance is measured

iteration is the sequential execution

compiler also plays a

In fact, we’ve seen as much as 70

difference depending on the compiler used to

benchmark results [4]

V.

OpenMP applications programming interface provides

various compiler directives, runtime routines and

environment variable which provide capability to parallelize

a serial program. So by using OpenMP API we can

parallelize execution of program between two or more cores

in dual or multi-core machines respectively and i

performance in games

much accelerated schedule and was intended to assess the

rammability of the multi

the team started with an established code base that included

a general game database, game engine

resulted in a quick difference between the single and multi

code base. In order to create a stable, robust reference

system, the team decided

core first. Implemen

architecture requires that programmers design for one of

key architectural features [4].

possible, given the time constraints of the project. We

focused our efforts on

bulk of the workload

heavily on rigid body dynamics to provide interesting game

play. Either task-level or data

been employed across the architecture.

N. Muhammed Talha et al

software mechanism is quite important for developing

During the past two decades,

a processor core’s internal workings

sufficient. In fact, these benchmarks are still

on the processor characteristics.

run on top of the operating systems.

Performance is measured in iterations per second, where

iteration is the sequential execution

compiler also plays a big role in this type of benchmarking.

In fact, we’ve seen as much as 70

depending on the compiler used to

[4].

V. IMPLEMENTATION

OpenMP applications programming interface provides

iler directives, runtime routines and

environment variable which provide capability to parallelize

a serial program. So by using OpenMP API we can

parallelize execution of program between two or more cores

core machines respectively and i

performance in games [2]. This project was executed on a

much accelerated schedule and was intended to assess the

rammability of the multi-core

the team started with an established code base that included

game database, game engine

resulted in a quick difference between the single and multi

code base. In order to create a stable, robust reference

system, the team decided to develop the game on a single

first. Implementing an application for the multi

architecture requires that programmers design for one of

key architectural features [4].

possible, given the time constraints of the project. We

focused our efforts on porting the code that repre

bulk of the workload. Because the application relied

heavily on rigid body dynamics to provide interesting game

level or data-level parallelism could ha

been employed across the architecture.

VI. PERFORMANCE

Performance

6 FPS

1 thread

CPU 1: 12 %

et al, International Journal of Advanced Re

software mechanism is quite important for developing

During the past two decades, benchmarks that only

a processor core’s internal workings

benchmarks are still

characteristics. Although these

run on top of the operating systems.

in iterations per second, where

iteration is the sequential execution of the benchmark

role in this type of benchmarking.

In fact, we’ve seen as much as 70 percent performance

depending on the compiler used to

MPLEMENTATION

OpenMP applications programming interface provides

iler directives, runtime routines and

environment variable which provide capability to parallelize

a serial program. So by using OpenMP API we can

parallelize execution of program between two or more cores

core machines respectively and i

This project was executed on a

much accelerated schedule and was intended to assess the

core architecture. To that end,

the team started with an established code base that included

game database, game engine. These challenges

resulted in a quick difference between the single and multi

code base. In order to create a stable, robust reference

to develop the game on a single

lication for the multi

architecture requires that programmers design for one of

key architectural features [4]. Practically, this was not

possible, given the time constraints of the project. We

orting the code that repre

Because the application relied

heavily on rigid body dynamics to provide interesting game

level parallelism could ha

been employed across the architecture.

ERFORMANCE

Performance

1 thread

CPU 1: 12 %

, International Journal of Advanced Re

software mechanism is quite important for developing

benchmarks that only

a processor core’s internal workings were

benchmarks are still valid

Although these

run on top of the operating systems.

in iterations per second, where

of the benchmark. The

role in this type of benchmarking.

percent performance

 generate the

OpenMP applications programming interface provides

iler directives, runtime routines and

environment variable which provide capability to parallelize

a serial program. So by using OpenMP API we can

parallelize execution of program between two or more cores

core machines respectively and improve the

This project was executed on a

much accelerated schedule and was intended to assess the

architecture. To that end,

the team started with an established code base that included

. These challenges

resulted in a quick difference between the single and multi-

code base. In order to create a stable, robust reference

to develop the game on a single-

lication for the multi-core

architecture requires that programmers design for one of its

Practically, this was not

possible, given the time constraints of the project. We

orting the code that represented the

Because the application relied

heavily on rigid body dynamics to provide interesting game

level parallelism could have

, International Journal of Advanced Research in Computer Science, 2 (3), May

are mentioning the performance attained by single

processor. These Table 5.1

processor by running the game.

you cannot attain more performanc

below, these are the performance attained by single thread

These graph 5.2

to run the game. Here we used only two threads.

threads you can achieve better performances compare to the

single thread.

the CPU usage as 96%

performance you will get

 This project has described the concept of multi threading

by using multi core processor. Here it is shown that how to

effectively and efficiently implement the gaming

using multi

much as parallelism as possible from the algorithm in

parallel implementation approach. It also includes the

extensive quantitative evaluation of performances both in

sequential and parallel imp

result shows that, multi

using dual core or multi

performances.

search in Computer Science, 2 (3), May

Table :

Performance rely on FPS and CPU usage, Here we

are mentioning the performance attained by single

processor. These Table 5.1

processor by running the game.

you cannot attain more performanc

, these are the performance attained by single thread

Table :

These graph 5.2 obtained by using multi thread processor

to run the game. Here we used only two threads.

threads you can achieve better performances compare to the

single thread. See the graph for the performances

the CPU usage as 96%

performance you will get

Graph: Using Multi

VII.

This project has described the concept of multi threading

by using multi core processor. Here it is shown that how to

effectively and efficiently implement the gaming

using multi-core systems and OpenMP API, extracting as

much as parallelism as possible from the algorithm in

parallel implementation approach. It also includes the

extensive quantitative evaluation of performances both in

sequential and parallel imp

result shows that, multi

using dual core or multi

performances.

search in Computer Science, 2 (3), May-June

CPU 2:86%

Table : Performance using single thread

Graph: Using Single Thread

Performance rely on FPS and CPU usage, Here we

are mentioning the performance attained by single

processor. These Table 5.1 obtained by using single thr

processor by running the game. Using single core processor

you cannot attain more performanc

, these are the performance attained by single thread

Performance

10 FPS

2 thread

CPU 1:94%

CPU 2:98%

Table : Using multithreading

obtained by using multi thread processor

to run the game. Here we used only two threads.

threads you can achieve better performances compare to the

See the graph for the performances

the CPU usage as 96% The more core y

performance you will get.

Graph: Using Multi

VII. CONCLUSION

This project has described the concept of multi threading

by using multi core processor. Here it is shown that how to

effectively and efficiently implement the gaming

core systems and OpenMP API, extracting as

much as parallelism as possible from the algorithm in

parallel implementation approach. It also includes the

extensive quantitative evaluation of performances both in

sequential and parallel implementation. Implementation

result shows that, multi-threading using these gaming engine

using dual core or multi-core machines provides more

June, 2011,117-120

CPU 2:86%

Performance using single thread

Graph: Using Single Thread

Performance rely on FPS and CPU usage, Here we

are mentioning the performance attained by single

obtained by using single thr

Using single core processor

you cannot attain more performance. See the graph 5.1

, these are the performance attained by single thread

Performance

CPU 1:94%

CPU 2:98%

Using multithreading

obtained by using multi thread processor

to run the game. Here we used only two threads.

threads you can achieve better performances compare to the

See the graph for the performances

The more core you use, better

Graph: Using Multi-thread

CONCLUSION

This project has described the concept of multi threading

by using multi core processor. Here it is shown that how to

effectively and efficiently implement the gaming

core systems and OpenMP API, extracting as

much as parallelism as possible from the algorithm in

parallel implementation approach. It also includes the

extensive quantitative evaluation of performances both in

lementation. Implementation

threading using these gaming engine

core machines provides more

Performance rely on FPS and CPU usage, Here we

are mentioning the performance attained by single-thread

obtained by using single thread

Using single core processor

See the graph 5.1

, these are the performance attained by single thread.

obtained by using multi thread processor

 Using two

threads you can achieve better performances compare to the

 It showing

ou use, better

This project has described the concept of multi threading

by using multi core processor. Here it is shown that how to

effectively and efficiently implement the gaming engine

core systems and OpenMP API, extracting as

much as parallelism as possible from the algorithm in

parallel implementation approach. It also includes the

extensive quantitative evaluation of performances both in

lementation. Implementation

threading using these gaming engine

core machines provides more

N. Muhammed Talha et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,117-120

© 2010, IJARCS All Rights Reserved 120

In future this project can be extended for quad-core, 8-core

and multi-core processor machines. This project can also be

extended to attain more CPU usage.

VIII. ACKNOWLEDGEMENT

I owe a great many thanks to a great many people who

helped and supported me during the project. My deepest

thanks to professor, [Prof.M.Rajasekhara Babu] the Guide

of the project for guiding and correcting various documents

of mine with attention and care. He has taken pain to go

through the project and make necessary correction as and

when needed. I express my thanks to the Director of SCSE,

VIT UNIVERSITY & VELLORE, for extending his

support. I would also thank my Institution and my faculty

members without whom this project would have been a

distant reality.

IX. REFERENCES

[1] Pam Frost Gorder, “Multicore Processor for science and

 engineering”, Computing in science and engineering,

vol:9, Issue:2, 2007, pp: 3-7.

[2] Sangani.K, “computing-Two good to be true- Multicore

 microprocessor may be great for doing lots of things at

 once,but what about doing one thing more quickly ?”,

 Engineering &Technology, Vol:2, Issue-1, 2007, pp:40-

43

[3] Gal-On, S.; Levy, “Measuring Multi-core performance”,

 Computing in science and engineering, vol:11, Issue:2,

 2007, pp: 2-7.

[4]� D.Amora,B; Nanda,A.; Magerlein,K.; Binstock,

A.;Yee,B “High Performs Server system and the next

generation of online games “, IBM System Journal ,

Vol;45, Issue :1, 2006, pp:103-118.

[5] Sibai F.N, “On making Intelligence Performance

 Inconspicous in 3D games “, Innovation in information

 technology , 20 Nov.2007, pp : 297.

