
DOI: http://dx.doi.org/10.26483/ijarcs.v8i8.4835 
Volume 8, No. 8, September-October 2017 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2015-19, IJARCS All Rights Reserved       649 

    ISSN No. 0976-5697 

AUTOCORRELATION WEIGHTED SUM ENTROPY BASED SOFTWARE 
QUALITY MANAGEMENT FOR OPEN SOURCE APPLICATION 

 
R.Chennappan 

Research Scholar, 
 Department of Computer Science 

Periyar University 
Salem, Tamilnadu,India 

 

Dr.  Vidyaa Thulasiraman 
Head & Assistant Professor 

Department of Computer Science 
 Govt. Arts & Science College for Women, 

Bargur,Krishnagiri, Tamilnadu, India 

Abstract : Software metrics is used to evaluate software systems quality and to improve the software reliability. Recently, few researches have 
been developed for enhancing the quality of open source software using Software metrics. But, the software quality management performance of 
existing works was not efficient while performing multiple software operations which affect the software reliability. To attain higher scalability 
rate with reduced service provisioning time while improving the reliability of software quality, a component model called Autocorrelation 
Weighted Sum Entropy (AWSE) technique is proposed. To minimize software quality degradation while performing multiple software 
operations, a service provisioning time entropy is considered. The AWSE technique initially measures autocorrelation function for consecutive 
versions of same application to find the relationship between a conventional versions and contemporary version.  After that, AWSE technique 
computes autocorrelation for service provisioning time entropy that considers the effect of maintenance operations carried out both on 
contemporary versions and on the conventional versions. Then, AWSE technique measures average time entropy to obtain the time entropy of 
consecutive versions of same application. This in turn helps for reducing the service provisioning time and improving the scalability of software 
quality management.  Finally, AWSE technique used Weighted Sum Entropy (WSE) model that considers the Mean Time between Failure 
(MTF) to improve the software reliability in a specified environment for a given amount of time and to reduce the cost of software quality 
testing.  The AWSE technique conducts the experimental works on parameters such as scalability, service provisioning time and software 
reliability. The experimental result shows that the AWSE technique is able to improve the scalability and also reduces the service provisioning 
time of software quality management when compared to state-of-the-art-works. 

 
Keywords: software quality, open source software, Autocorrelation, software quality management, Weighted Sum Entropy 
 
1. INTRODUCTION 
 
Software quality plays a significant importance in software 
development projects because it affects the every aspect of 
the system such as the functionality, reliability, availability, 
maintainability, and safety. Software development process 
requires information about almost all aspect of the software 
development phase such as objectives, monitoring and 
control of activities, project costs and technical quality. 
Besides, software metrics is employed for evaluating 
software systems quality and improving the software 
reliability. 
Recently, few researches have been developed for 
increasing the quality of software. A systematic framework 
was intended in [1] by using Markov chain for modeling the 
stochastic processes of a quality management system and 
selection of the optimum set of factors impacting software 
quality. Systematic framework improves the software 
reliability. But, scalability of software quality management 
was remained unaddressed. Iterative redundancy method 
was intended in [2] for improving the software system 
reliability. But, reducing the cost of software quality testing 
was remained unsolved. 
An initial design and development of an integrated analyser 
component was intended in [3] for enlarging the 
functionality of the open source framework for software 
quality management. But, multiple software maintenance 
handled over time results in software quality degradation 
and also increases the service provisioning time. A novel 
method was designed in [4] to examine the relationship 

between quality assurance and software ecosystems in 
which set of quality attributes are used to ensure software 
quality assurance. However, software reliability was 
remained unaddressed. 
In [5], reliability metrics are employed for quantitative 
measurement of software reliability and to evaluate of 
reliability of open source software. But, the quantitative 
estimation is not sufficient for software quality 
management. A systematic literature review of open source 
software quality assessment models was presented in [6] to 
find out the important quality attributes with which to 
develop more reliable quality models. However, open source 
software quality evaluation across different domains was 
remained unsolved.  
In [7], the evolution of Mozilla Firefox from a traditional 
release model to a rapid release model was analyzed to 
determine potential changes in field quality (users) and bug 
fixing (developers). A novel approach was designed in [8] 
for evaluating the stability of open-source software systems 
with aid of combination of Bayesian Classifiers. 
In [9], the quality evolution of an open source Java software 
system was examined with aid of metrics in which software 
quality was addressed from an internal point of view. 
However, the number of defects as a quality indicator was 
considered. A novel method was designed in [10] for 
measuring reliability of an open source software using 
computational systems through considering both hardware 
and software failure impacts. But, scalability was remained 
unsolved.   To overcome the above mentioned 
existing issues, an Autocorrelation Weighted Sum Entropy 



R.Chennappan et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,649-657 

© 2015-19, IJARCS All Rights Reserved       650 

(AWSE) is developed. The research objective of AWSE 
technique is formulated as follows, 
 

 To enhance the scalability and to reduce the service 
provisioning time of software quality management, 
autocorrelation function is used in AWSE 
technique. 

 To improve the software reliability and to reducing 
the total cost during the software quality testing, 
Weighted Sum Entropy model is employed in 
AWSE technique. 

 
The rest of this paper is organized as follows. Section 2 
explains an Autocorrelation Weighted Sum Entropy 
(AWSE) based software quality management with the assist 
of architecture diagram. Section 3 and Section 4 explains the 
experimental settings and details performance analysis with 
the aid of parameters. Section 5 describes the related works.  
Finally, Section 6 concludes this paper. 

 
2. AUTOCORRELATION WEIGHTED SUM 
ENTROPY TECHNIQUE 
 

One of the significant objectives of the software engineering 
is to design techniques for high-quality software solutions. 
Software managers and developers employ software metrics 
to measure and enhance the quality of a software solution 
during the development process. These metrics evaluate the 
quality of open source software attributes like product size 
and complexity. Besides, Software quality management is a 
process which manages the quality of open source software 
to ensure the product which satisfies the user needs. The 
objective of software quality management is to check the 
product meets the quality standards expected by the user.  
Recently, many researches works has been designed for 
improving the reliability of open source software. However, 
the software quality management performance was not 
sufficient while performing multiple software operations 
which lack the reliability of software. In order to improve 
the software quality management performance with higher 
reliability rate and reducing the total cost involved during 
software quality testing, an Autocorrelation Weighted Sum 
Entropy (AWSE) technique is introduced. The overall 
architecture diagram of AWSE technique for software 
quality management is shown in below Figure 1. 

 
 

 
Figure 1 Process of Autocorrelation Weighted Sum Entropy Based Software Quality Management 

 
As shown in Figure 1, AWSE technique takes schoolmate 
dataset as input. Then, AWSE technique used 
Autocorrelation function with objective of increasing the 
scalability and minimizing the service provisioning time of 
software quality management.  After that, AWSE technique 
employed Weighted Sum Entropy model in order to 
improve the software reliability and reducing the total cost 
of software quality testing. As a result, AWSE technique 
improved performance of software quality management. The 
detailed explanation about AWSE technique is described in 
following sections. 
2.1 Autocorrelation Function 

In proposed technique, Autocorrelation Function is used to 
measures the relationship between a contemporary version 
and the conventional versions of same open source 
application. The resulting output of autocorrelation function 
is ranges between  to . An autocorrelation of  signify 
a perfect positive correlation. On the other hand, an 
autocorrelation of negative 1 denotes perfect negative 
correlation. Thus, autocorrelation function over a time is 
measured for consecutive versions of same open source 
application to improve the software reliability. The process 
of autocorrelation function for improving the scalability and 



R.Chennappan et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,649-657 

© 2015-19, IJARCS All Rights Reserved       651 

reducing the service provisioning time of software quality management is shown in below Figure 2. 

 
Figure 2 Process of Autocorrelation Function for Software 

Quality Management 
 

 As shown in Figure 2, the autocorrelation function 
initially measures the correlation between contemporary 
version and the conventional versions  that are both part 
of the same open source application. Besides autocorrelation 
between  and based on the differentiation or lag between 

and .Thus . Therefore, the autocorrelation  
function is defined as the correlation between the versions of 
open source software application separated by lag  which is 
mathematically formulated as below, 
 

                                                                                                  

(1) 
 

 From the equation (1),  represents the sample 
auto covariance function whereas   denotes the variance of 
stochastic process. The sample auto covariance function is 
mathematically expressed as, 
 

                                                                            
(2) 

 
 Thus, for a given different versions of same open 
source software application  at 
time , the autocorrelation function is defined 
as follows, 
 

                                                                               

(3) 
 

 From the equation (3), autocorrelation function for 
consecutive versions of open source application is 
determined. This in turn provides the differentiation 
between the versions of same open source software program 
to enhance the software quality.  
 
 The determined auto correlation is depends only on 
the lag between  and  where  denotes contemporary 
version and  refers the conventional versions of open 

source software program. Therefore, the lag  
indicates a period of time between contemporary version 
and conventional versions of same open source software. 
Thus, the autocorrelation function of time lag is 
mathematically expressed as, 
 

                                                                                
(4) 

 
 From the equation (4),  denotes mean and  
indicates variance of time. In addition, autocorrelation for 
service provisioning time entropy is evaluated that considers 
the effect of maintenance operations carried out for both 
contemporary versions and the conventional versions. 
Hence, the autocorrelation for service provisioning time 
entropy computes the amount of time taken for creating the 
contemporary version of open source application with the 
conventional versions. Thus, the autocorrelation for service 
provisioning time entropy of different versions is measured 
using following mathematical expression, 
 

                                                              

(5) 
 

 From the equation (5), the autocorrelation for 
service provisioning time entropy is estimated in which  
represents the entropy that denotes the maximum time at 
which the conventional versions of open source software is 
updated into the contemporary version. Then the modern 
version of open source software is provided to the user. 
Furthermore, Average time entropy is estimated for 
consecutive versions of same open source software 
application by using following mathematical representation, 
 

                                                             
(6) 

 
 From the equation (6), average time entropy is 
arrived at with which the time entropy of different versions 
is obtained for consecutive versions of same open source 
software application, reducing the service provisioning time 
and improving the scalability. The scalability is measured in 
terms of number of versions is adoptable for a given open 
source software program to increase the open source 
software quality or reliability. The algorithmic process 
autocorrelation function for software quality management to 
improve the software quality is shown in below algorithm 1. 
 
Input: schoolmate dataset 
Output: Improved Scalability with Reduced Service 
provisioning time  
Step 1: Begin 
Step 2:      For each open source software program 
Step 3:             Measure auto correlation function for 
consecutive versions of same  
                        application using (3) 
Step 4:            Compute autocorrelation function of time lag 
using (4) 



R.Chennappan et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,649-657 

© 2015-19, IJARCS All Rights Reserved       652 

Step 5:           Measure autocorrelation for service 
provisioning time entropy using  (5) 
Step 6:            Compute Average time entropy using (6) 
Step 7:     End for 
Step 8:End      
  

 Algorithm 1 Autocorrelation Function Based 
Software Quality Management 

By using the above algorithmic process, AWSE techniques 
initially determines the correlation among the different 
versions for each open source software program. After that, 
AWSE techniques estimate a period of time between 
contemporary version and conventional versions of open 
source software. Subsequently, AWSE techniques computes 
service provisioning time entropy to find out the amount of 
time necessitated for constructing the contemporary version 
of open source application with the conventional versions. 
Finally, AWSE techniques calculate the average time 
entropy to get the entropy of consecutive versions of same 
open source software application. As a result, an AWSE 
technique increases the scalability and reduces the service 
provisioning time of software quality management in an 
effective manner. 
 

2.2 Weighted Sum Entropy modelIn AWSE techniques, a 
Weighted Sum Entropy model is used to reduce the total 
cost involved along with improving the reliability for open 
source software program in a given amount of time during 
software quality testing. The Weighted Sum Entropy model 
considers the Mean Time between Failure (MTF) to enhance 
the software reliability in a specified environment for a 
given amount of time. MTF measures the reliability of given 
open source software to improve its quality and also helps to 
identify many defects in the software design and 
functionality. Besides, Weighted Sum Entropy model 
considers the two objectives namely cost minimization and 
testing time minimization with objective of reducing the 
total cost involved while improving the reliability of 
software quality.  The process of Weighted Sum Entropy 
model for improving the software reliability is shown in 
below Figure 3. 

 
Figure 3 Weighted Sum Entropy Model for Software 

Reliability 
 

Figure 3 shows the block diagram of Weighted 
Sum Entropy model for improving the reliability of open 
source software program during software quality 
management. Software reliability determines the probability 
that open source software will work properly in a specified 
environment and for a given amount of time. Software 
reliability increases when the faults are removed from the 
program. By using the following mathematical formula, the 
mean time between failures (MTF) is measured that find 
outs the probability of failures in given open source 
software. 

  (7) 
 

From the equation (7), MTTF denotes the 
differentiation of time between two consecutive failures and 
MTTR represents the time required to resolve the failure in 
open source software. Besides, the probability of failures i.e. 
number of defects in given open source software program is 
identified by using following equation, 

 
                    

(8) 
 

From the equation (8), number of defects in given 
open source software is identified. After identifying the 
number of faults in open source software, The WSE model 
considers the two objectives namely cost minimization and 
testing time minimization in order to reduce the total cost 
involved while improving the reliability of software quality.  
These two objectives is mathematically formulated as, 

 
                                                                    

(9) 
 

From the equation (9),  denotes cost required 
for improving the software quality whereas  refers the 
time required for testing the overall open source software 
system.  The cost for improving the software quality 
measures the cost incurred while sharing information 
between users that include source code, test cases and 
operational knowledge. The cost is measured in terms of 
amount of memory utilized for storing the source code, test 
cases and operational knowledge. Thus, cost of software 
quality improvement is mathematically formulated as, 

 
                                                  

(10) 
 

From the equation (10),  indicates the amount 
of memory utilized for storing the given open source 
software code and  denotes the memory consumed for 



R.Chennappan et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,649-657 

© 2015-19, IJARCS All Rights Reserved       653 

test cases to test the software reliability whereas  refers 
the memory taken for storing the operational knowledge of 
software system. Second objective is reducing the time for 
overall test system infrastructure that include the test cases 
testing time and other test related information between users 
which is measured by using following formula, 

 
          

(11) 
 

  From the equation (11), the amount of time needed 
for testing the overall open source software system is 
determined in which  indicates the number of test cases 
used. Thus, the Weighted Sum Entropy model for two 
objectives i.e. cost minimization and testing time 
minimization is mathematically represented as, 
 

                                                                             
(12) 

 
 From the equation (12),   are weights 

corresponding to objective functions which 
satisfy the following conditions, 
 

                                                      
(13) 

 
 The Weighted Sum entropy Model is widely used 
for multi-objective optimization problems. It integrates the 
diverse objectives and weights corresponding to those 
objectives to construct a single objective for each alternative 
to make them comparable. Therefore, Weighted Sum 
entropy Model combines two objectives i.e., cost 
minimization and time for test system infrastructure into a 
single objective by multiplying each objective with a weight 
to lessen the total cost involved while improving the 
reliability of software quality which is formulated as, 
 

                                                                 
(14) 

 
From the equation (14),   and  is the assigned 

weights whereas  indicates cost required for improving 
the software quality whereas  represents the time 
required for testing the overall software system. The 
variable  and  are related based on the following 
expression, 

                                                                                        
(15) 

 
 By using these weights, the significance of the 
objective function can be tuned according to system 
requirement to enhance its reliability. Therefore, WSE 
model reduces the total cost involved along with improving 
the reliability for a given amount of time during software 
quality testing.  The algorithmic process of Weighted Sum 
Entropy model for improving the reliability of open source 
software program during the software quality management 
is shown in below algorithm 2.  
 
Input: schoolmate dataset 
Output: Improved software reliability with reduced total 
cost 
Step 1: Begin 
Step 2:     For each open source software program 
Step 3:            Find number of faults using (8) 
Step 4:            Measure mean time between failures using 
(7) 
Step 5:            Compute cost required for improving the 
software quality using (10) 
Step 6:            Evaluate amount time required for testing the 
given open source software  
                        program using (11) 
Step 7:           Combines two objectives into a single 
objectives to reduce the total cost  
                       involved during software quality testing  
using (14)  
Step 7:    End for 
Step 8: End         
 

Algorithm 2 Weighted Sum Entropy model 
 
By using the above algorithmic process, AWSE technique 
initially identifies the number of faults in each open source 
software program. Then, an AWSE technique computes the 
mean time between failures to find out the amount of time 
required for finding and resolving the faults in given open 
source software program. Subsequently, AWSE techniques 
calculates the cost required and amount of testing time 
required for improving the software quality. Finally, AWSE 
technique combines two objectives into a single objective to 
reduce the total cost involved during software quality 
testing. This in turn helps for improving the reliability of 
open source software program. 

 
3. EXPERIMENTAL SETTINGS 
 
The proposed Autocorrelation Weighted Sum Entropy 
(AWSE) technique is implemented in Java Language using 
schoolmate data set. The AWSE technique used schoolmate 
data set which includes of numerous PHP open source 
software program for improving reliability of software 
quality. The performance of AWSE technique is measured 
in terms of scalability, service provisioning time and 
software reliability.  

 
 

4. RESULT AND DISCUSSIONS 

 
In this section, the result analysis of AWSE technique is 
estimated. The effectiveness of AWSE technique is 
compared against with two methods namely systematic 
framework [1] and Iterative redundancy method [2] 
respectively. The efficiency of AWSE technique is 
evaluated along with the following metrics with the help of 
tables and graphs. 

 
4.1 Measurement of Scalability 
The scalability measures the capability of AWSE technique 
to handle a huge size of open source software program for 
improving the reliability of software. The scalability is 



R.Chennappan et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,649-657 

© 2015-19, IJARCS All Rights Reserved       654 

measured in terms of percentage (%). While the scalability is higher, the method is said to be more efficient. 
 

Table 1 Tabulation for Scalability 
 

Size of software 
program code (KB) 

Scalability (%) 
Systematic Framework Iterative Redundancy 

Method 
AWSE technique 

10 63.18 71.56 80.23 
20 63.98 74.65 81.95 
30 65.14 75.88 83.26 
40 67.85 77.36 85.92 
50 70.26 79.52 88.16 
60 71.82 80.80 89.90 
70 73.64 81.64 91.03 
80 75.99 82.95 91.89 
90 76.59 83.65 92.65 

100 78.23 85.84 94.42 
 
Table 1 demonstrates the result is obtained for 

scalability with respect to different size of software code in 
the range of 10-100 KB using three methods. The AWSE 
technique considers the framework with diverse size of open 
source software code for improving the reliability of 

software quality. While 50 KB open source software code is 
taken for software quality management, proposed AWSE 
technique achieves the 88.16 % scalability whereas the 
systematic framework [1] and Iterative redundancy method 
[2] achieves the 70.26% and 79.52% respectively.

 
 

 
Figure 4 Measurement of scalability 

 
Figure 4 depicts the impact of scalability versus diverse size 
of software code using three methods. As exposed in figure, 
the proposed AWSE technique provides better scalability for 
improving the performance of software quality management 
when compared to existing systematic framework [1] and 
Iterative redundancy method [2]. In addition, while 
increasing the size of open source software program code, 
the scalability is also increased using all the three methods. 
But comparatively, the scalability using proposed AWSE 
technique is higher. This is due to application of 

autocorrelation function in proposed AWSE technique. With 
aid of autocorrelation function, proposed AWSE technique 
efficiently discovers the relationship between the 
contemporary version and conventional versions of same 
open source software. This in turn helps for updating the 
conventional versions. As a result, the proposed AWSE 
technique improves the scalability of software quality 
management by 25% when compared to systematic 
framework [1] and 11% when compared to Iterative 
redundancy method [2] respectively. 
 
4.2 Measurement of Service provisioning time 
 
In AWSE technique, Service provisioning time (SPT) 
measures the amount of time required to creating the 
contemporary version of open source application with the 
conventional versions to render the user requirements. The 
service provisioning time is measured in terms of 
milliseconds (ms) and mathematically formulated as, 
 

   (16) 
 
 From the equation (16), service provisioning time 
of software quality management is obtained. While the 
service provisioning time is lower, the method is said to be 
more efficient. 
 
 

 
 
 
 
 
 
 
 
 



R.Chennappan et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,649-657 

© 2015-19, IJARCS All Rights Reserved       655 

 
Table 2 Tabulation for Service provisioning time 

 
Size of software 

program code (KB) 
Service provisioning time (ms) 

Systematic Framework Iterative Redundancy 
Method 

AWSE technique 

10 27.8 19.6 11.2 
20 30.2 25.3 14.5 
30 35.4 29.7 19.3 
40 38.9 33.1 22.7 
50 41.5 36.4 25.8 
60 44.7 42.5 28.3 
70 49.3 45.8 30.4 
80 55.8 50.2 35.1 
90 59.2 56.7 39.9 

100 65.5 62.9 45.3 
 
Table 2 illustrates the comparative result analysis 

of service provisioning time based on diverse size of 
software program code using three methods. While 30 KB 
open source software code is taken for software quality 
management, proposed AWSE technique acquires the 19.3 
ms service provisioning time whereas the systematic 
framework [1] and Iterative redundancy method [2] acquires 
35.4ms and 29.7ms respectively. 

 

 
 

Figure 5 Measurement of Service provisioning time 
 

Figure 5 portrays the impact of service provisioning time 
versus different size of software code using three methods. 

As demonstrated in figure, the proposed AWSE technique 
provides better service provisioning time for improving the 
reliability of software quality in software quality 
management when compared to existing systematic 
framework [1] and Iterative redundancy method [2]. As 
well, while increasing the size of open source software 
program code, the service provisioning time is also 
increased using all the three methods. But comparatively, 
the service provisioning time using proposed AWSE 
technique is lower. This is because of application of 
autocorrelation function in which association between the 
contemporary version and conventional versions of same 
open source software is efficiently determined for updating 
the conventional versions. Furthermore, autocorrelation for 
service provisioning time entropy is estimated to find out the 
amount of time required for constructing the contemporary 
version of open source application with the conventional 
versions. This in turn helps for reducing the service 
provisioning time of software quality management. Thus, 
the proposed AWSE technique reduces the service 
provisioning time by 41% as compared to systematic 
framework [1] and 11% as compared to Iterative 
redundancy method [2] respectively. 

 
4.3 Measurement of Software reliability 
 
In AWSE technique, Software reliability measures 
possibility of failure-free software operation using equation 
(8) in software program code. The Software reliability is 
measured in terms of percentage (%). While the software 
reliability is higher, the method is said to be more efficient. 

 
 
 
 
 
 
 
 
 
 
 
 



R.Chennappan et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,649-657 

© 2015-19, IJARCS All Rights Reserved       656 

 
 
 
 

Table 3 Tabulation for Software reliability 
 

Size of software 
program code (KB) 

Software reliability (%) 
Systematic Framework Iterative Redundancy 

Method 
AWSE technique 

10 64.89 70.12 85.36 
20 65.22 70.95 86.25 
30 65.91 73.62 86.91 
40 68.21 74.48 88.15 
50 68.95 75.86 88.89 
60 70.88 77.65 89.65 
70 71.25 78.21 90.50 
80 72.93 78.90 91.42 
90 75.16 79.46 92.80 

100 76.38 81.20 93.95 
 

The software reliability result is obtained with respect to 
different size of software program code using three methods 
is presented in Table 3. While 80 KB open source software 
code is taken for improving software quality, proposed 
AWSE technique obtains the 91.42 % software reliability 
whereas the systematic framework [1] and Iterative 
redundancy method [2] obtains 72.93% and 78.90% 
respectively. 

 

 
Figure 6 Measurement of Software reliability 

 
Figure 6 describes the impact of software reliability 

versus diverse size of software code using three methods. As 
revealed in figure, the proposed AWSE technique provides 
better software reliability when compared to existing. 
Further, while increasing the size of open source software 
program code, the software reliability is also increased using 
all the three methods. But comparatively, the software 
reliability using proposed AWSE technique is higher. This is 
because of application of weighted sum entropy model in 
AWSE technique. The weighted sum entropy model 
efficiently finds the faults of given open source software and 
mean time between the failures with objective of enhancing 
the quality of software.  This in turns assists for improving 
the software reliability. Hence, the proposed AWSE 

technique increases the reliability of open source software 
by 28% as compared to systematic framework [1] and 18% 
as compared to Iterative redundancy method [2] 
respectively. 
 
5. RELATED WORKS 
 
In [11], the impact of different software metrics designed for 
evaluating software quality was analyzed to improve the 
reliability of software system. But, Reducing the time and 
cost of the software project was not considered. Modularity 
Index Metrics was developed in [12] for Java-Based Open 
Source Software Projects to discover strengths and potential 
problems of the project.  
In [13], a collection of metrics was presented to determine 
the impact of metrics in software development environment 
and investigated the open source tools for automation of 
metrics generation process. A review of different techniques 
designed for software quality models to evaluate the 
software products was presented in [14].  
An empirical approach was developed in [15] to learn 
software metrics impacts on different versions of Java based 
open source software’s. However, human and environmental 
factors which affect maintainability of open source 
software’s were remained unaddressed. 
 An analysis of code ownership metrics and their 
relationship with software quality was presented in [16] to 
improve the reliability of open source software projects. 
But, service provisioning time was remained unsolved. 
A survey of different static and dynamic metrics designed 
for Open Source Software was analyzed in [17] to assure 
software code quality, operation, and maintenance. Besides, 
a survey of diverse open source tools developed for 
measuring the internal quality of Java software products was 
examined in [18].  
A fuzzy data mining algorithm was intended in [19] for time 
series data to generate the association rules for evaluating 
the existing trend and regularity in the evolution of open 
source software project. Quality Management for achieving 
higher software quality in the Service Sector was presented 
in [20]. 
 
6. CONCLUSION 



R.Chennappan et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,649-657 

© 2015-19, IJARCS All Rights Reserved       657 

 
An effective component model called Autocorrelation 
Weighted Sum Entropy (AWSE) technique is developed 
with objective of attaining the higher scalability and 
reducing service provisioning time while improving the 
reliability of software quality. The main objective of AWSE 
technique is to improve the software reliability with reduced 
cost of software quality testing. This objective of AWSE 
technique is attained with application of autocorrelation 
function and weighted sum entropy model. At first, AWSE 
technique employed autocorrelation function to find 
correlation among the consecutive version of same open 
source software which in turn helps for enhancing the 
scalability and reducing service provisioning time of 
software quality management.  After that, AWSE technique 
used weighted sum entropy model that measures the Mean 
Time between Failure (MTF) to improve the software 
reliability in a specified environment for a given amount of 
time. Further, AWSE technique integrates the two objectives 
(i.e., cost minimization and testing time minimization) into a 
single objective through multiplying each objective with a 
weight. This in turn helps for reducing the total cost of 
software quality testing. The efficiency of AWSE technique 
is test with the metrics such as scalability, service 
provisioning time and software reliability. With the 
experiments conducted for AWSE technique, it is observed 
that the scalability for improving software system quality 
provided more accurate results as compared to state-of-the-
art works. The experimental results demonstrate that AWSE 
technique is provides better performance with an 
improvement of software reliability and also reduces the 
software reliability when compared to the state-of-the-art 
works. 
 
REFERENCES 
 
[1]  Ivan Janicijevic, Maja Krsmanovic, Nedeljko Zivkovic, Sasa 

Lazarevic, “Software quality improvement: a model based 
on managing factors impacting software quality”, Software 
Quality Journal, Springer, Volume 24, Issue 2, pp 247–270, 
June 2016 

[2]  Yuriy Brun, Jae young Bang, George Edwards, and Nenad 
Medvidovic, “Self-Adapting Reliability in Distributed 
Software Systems”, IEEE Transactions on Software 
Engineering, Volume: 41, Issue 8, Pages 764 – 780, 2015 

[3]  Julio Escribano-Barreno, Javier García-Muñoz and Marisol 
García-Valls, “Integrated Metrics Handling in Open Source 
Software Quality Management Platforms”, Advances in 
Intelligent Systems and Computingm Springer, Pages 509-
518, May 2016 

[4]  Jakob Axelsson, Mats Skoglund, “Quality assurance in 
software ecosystems: A systematic literature mapping and 
research agenda”, The Journal of Systems & Software, 
Elsevier, Volume 114, Pages 69–81, April 2016 

 [5]  Vinay Tiwari, R.K. Pandey, “Open Source Software and 
Reliability Metrics”, International Journal of Advanced 
Research in Computer and Communication Engineering, 
Volume 1, Issue 10, Pages 808-815, December 2012 

[6]  Adewole Adewumi, Sanjay Misra1, Nicholas Omoregbe, 
Broderick Crawford and Ricardo Soto, “A systematic 

literature review of open source software quality assessment 
models”, Springer, Volume 5, Issue 1, Pages 1-13, 2016  

 [7]  Foutse Khomh, Bram Adams, Tejinder Dhaliwal, Ying Zou, 
“understanding the impact of rapid releases on software 
quality The case of firefox”, Empir Software Engineering, 
Springer, Volume 20, Issue 2, Pages 336–373, May 2014 

[8]  Salah Bouktif, Houari Sahraoui, Faheem Ahmed, “Predicting 
Stability of Open-Source Software Systems Using 
Combination of Bayesian Classifiers”, ACM Transactions on 
Management Information Systems, Volume 5, Issue 1, Pages 
1-25, 2014 

[9]  Nicholas Drouin, Mourad Badri, and Fadel Toure, “Metrics 
and Software Quality Evolution: A Case Study onOpen 
Source Software”, International Journal of Computer Theory 
and Engineering, Volume 5, Issues 3, Pages 523-527, June 
2013 

[10] Shelbi Joseph, Akhil P, Seetha Parameswaran, “Reliability 
Estimation of Open Source Software based Computational 
Systems”, International Journal of Innovative Research in 
Computer and Communication Engineering, Volume 5, Issue 
2, Pages 1310-1317, February 2017 

[11] Mrinal Singh Rawat, Arpita Mittal, Sanjay Kumar Dubey, 
“Survey on Impact of Software Metrics on Software 
Quality”, International Journal of Advanced Computer 
Science and Applications, Volume 3, Issue 1,Pages 137-141, 
2012 

[12]  Andi Wahju Rahardjo Emanuel, Retantyo Wardoyo, Jazi 
Eko Istiyanto, “Modularity Index Metrics for Java-Based 
Open Source Software Projects”, International Journal of 
Advanced Computer Science and Applications, Volume 2, 
Issue 11, Pages 52-58, 2011 

 [13] Shefali Singla, Dheerendra Singh, “Classification of Software 
Metrics and Open Source Tools for Software Development 
Phase”, International Journal of Computer Science & 
Communication, Volume 5, Pages 103-109, 2014 

[14] José P. Miguel, David Mauricio and Glen Rodríguez, “Review 
of Software Quality Models for the Evaluation of Software 
Products”, International Journal of Software Engineering & 
Applications (IJSEA), Volume 5, Issues 6, Pages 31-53, 
November 2014 

[15] Mukti Chauhan, Monika Sharma, Predicting Maintainability 
of Open Source Softwares: An Empirical Approach”, 
International Journal of Engineering Research & Technology 
(IJERT), Volume 2, Issue 6, Pages 3333-3336, June – 2013 

[16]  Matthieu Foucault, Cedric Teyton, David Lo, Xavier Blanc, 
Jean-Reemy Falleri, “On the usefulness of ownership metrics 
in open-source software projects”, Information and Software 
Technology, Volume 64, Pages 102–112, 2015 

[17]  Ankush Vesra, Rahul, “Study of Various Static and Dynamic 
Metrics for Open Source Software”, International Journal of 
Computer Applications (0975 – 8887), Volume 122, Issue 
10, Pages 17-21, July 2015 

[18] P. Tomas, M.J. Escalona, M. Mejias, “Open source tools for 
measuring the Internal Quality of Java software products. A 
survey”, Computer Standards & Interfaces, Elsevier, Volume 
36, Pages 244–255, 2013 

[19] Munish Saini, Sandeep Mehmi, and Kuljit Kaur Chahal, 
“Understanding Open Source Software Evolution Using 
Fuzzy Data Mining Algorithm for Time Series Data”, 
Hindawi Publishing Corporation, Advances in Fuzzy 
Systems, Volume 2016, Article ID 1479692, Pages 1-13, 
2016 

[20] Radoslav Jankal, “Software Support of Quality Management 
in the Service Sector”, Procedia - Social and Behavioral 
Sciences, Elsevier, Volume 149, Pages 443 – 448, 2014 

 


