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Abstract: In recent years, the rapid increase in the demand for street floor information has drawn remarkable interest to the use of laser scanner 
data. It provides highly dense point cloud data with three dimensional (3D) position, intensity and range from the sensor to target. The street 
floor detection in urban areas is difficult task due to the complicated patterns and many contextual objects. In present study an automated method 
for detection of street floor using the Terrestrial Laser Scanner (TLS) point cloud dataset has been proposed. Proposed method includes ground 
point filtering, rough street floor classification, edge detection and point in polygon test, in order to detect the street floor. Proposed method has 
been tested at a captured TLS point cloud. Completeness and correctness of the proposed method are 95.14% and 97.42% respectively. 
Automatically detecting a highly detailed street floor helps in maintaining the pavement by estimating the road surface conditions. 
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I. INTRODUCTION 

Roads are the crucial geospatial feature and play vital role 
in national development and growth. They are the major 
component of nation infrastructure and economy of nation is 
also dependent at them. Therefore, modeling, management 
planning and condition assessment of road network are the 
major field of concern. Geographical Information System 
(GIS) with various surveying techniques is generally used in 
order to carry out these tasks. 

Several traditional methods like ground surveying, Global 
Positioning System (GPS), photogrammetry and Distance 
Measurement Instruments (DMI) can be used but they are 
time consuming, labour intensive and costly. To overcome 
these complexities, Light Detection and Ranging (LiDAR) can 
be used. There are different platforms associated with it 
namely terrestrial, airborne and space borne (satellites). 
LiDAR is a remote sensing device which measures range and 
scan angle of the target by analyzing the amplitude and 
orientation of reflected light. A very viable and efficient 
survey method to evaluate road surface along with its 
parameters is a Terrestrial Laser Scanner (TLS). There is a 
rapid growth in the utilization of TLS systems in many road 
corridor applications. This increase is due to the continuous 
development in terms of data capture speed, accuracy and 
density of point data obtained from these systems. These 
systems capture huge point clouds that describe very highly 
detailed road scenes. It also supports survey on demand by 
extracting desired features and attributes from the point cloud, 
removing the need to return to the field for measurements.  

Various benefits of using TLS are lower safety risks 
associated, day or night data collection, very high point 
density, fast collection rates, reduced time usage, provision for 
linking additional sensors, high resolution capabilities,  
 
 

 
reduced number of field visits (collect once, use many times), 
multiple end users and opportunities to share data. An inherent 
feature of LiDAR data is that it is acquired, processed and 
delivered in a digital format, making it very easy to work with 
and to create data products that meet a wide range of needs. 
Some of the drawbacks associated with TLS are that the initial 
setup cost is high, points require processing to be classified 
which is generally a semi-automatic process, skilled workers 
are required, and data acquired can be cumbersome. 

The difficulties in automating the detection of road 
features comes from the complexity of the scene, unorganized 
nature of the point data, no prior information of the position 
and orientation of the road features and combination of 
multiple data sources. These data sources are the position and 
orientation data from the navigation sensors and the point 
cloud data from the laser scanning sensor.  

Extraction of the road surface using the TLS data was the 
area of interest of many researchers, various techniques, 
algorithms and methods were proposed by them. Tsai, et al. 
2013 [1] was proposed a method to measure cross slope using 
terrestrial LiDAR. After LiDAR calibration and data 
acquisition, Region of Interest Interval (ROI) extraction was 
performed on the collected LiDAR point cloud to extract the 
rectangular region within a single lane between the pavement 
markings. Individual cross slope measurement was conducted 
within each ROI. All of the cross slope measurements were 
computed in the tested road section, each measurement from 
the corresponding ROI was represented by a single geo-
referenced point. Since the cross slope was computed based on 
the regression result of the LiDAR point’s elevation, there was 
a trade-off in selecting the ROI interval. Photobus for the fast 
acquisition of road geometry with a real-time data quality 
control for Advanced Driver Assistance Systems (ADAS) was 
used by Gontran, et al. 2005 [2]. It provides early warning and 
lateral control of the vehicle which coupled with Radio 
Direction and Ranging (RADAR) and a Variable Message 
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Signal (VMS) to prompt a driver with reducing speed was also 
used. Thuy and Puente 2010 [3] was devised a method for lane 
detection and tracking based on LiDAR data. The registration 
of the measured LiDAR points with regard to time and space 
was done by calibrating the onboard sensors with respect to 
the ego-car. The obtained ego-position was transformed into 
Universal Transverse Mercator (UTM) coordinates. A 
binarisation was performed to distinguish and improve the 
contrast between road surface and lane markings for pre-
detection of lane. For better lane detection, Canny filter was 
applied. For individual lane detection two vertical detection 
windows within the map was defined, having m rows and n 
columns. If the number of white pixels exceeds a velocity-
dependent threshold, lane detection was assumed. A clothoid 
road model was applied to track the lane, least square method 
or extended Kalman filtering can be used. Wang, et al. 2014 
[4] was presented an automatic approach for the delineation of 
both the direct environment of a road and the road itself into 
local catchments starting from a Laser Mobile Mapping 
System (LMMS) point cloud to estimate the road runoff. A 
uniform voxel size was selected for downsampling procedure 
as the point cloud density was very high. Surface normal was 
estimated during the iterative filtering of the road points. Then 
the largest one dimensional (1D) slope in one of the eight 
adjacent directions was selected to obtain the first 
approximation of the two dimensional (2D) slope in the 
regular grid defined. An algorithm was used for segmenting 
the roadsides points. Using the D8 algorithm, the primary flow 
direction was determined by selecting the direction to the 
neighbor having maximal 2D gradient for each of the query 
point present in the grid. In the succeeding steps, the flow was 
followed. All flow terminates at the pixels in the bottom row. 
An effective path detection and tracking method was designed 
by Lee and Cho 2009 [5]. The designed procedure consists of 
four main processes: initialization, lane segmentation, post-
processing and adaptive parameter updating process. The 
initial Probability Density Functions (PDFs) were estimated 
based on conventional color or edge-based lane segmentation 
method. After initialization, lane pixels were segmented by the 
statistical Bayes decision rule in the lane segmentation process 
and the misclassified lane pixels were excluded using the 
Least Mean Square (LMS) algorithm for the post-processing. 
The LMS algorithm estimates each optimal lane at right and 
left side of the region assuming that lane consists of a set of 
straight lines. Finally, each PDF of color and edge-orientation 
were updated using the current detected lane pixels. The use of 
the Gradient Vector Flow (GVF) snake model for the 
automated extraction of road from terrestrial based terrestrial 
laser scanning system was proposed by Kumar, et al. 2010 [6]. 
The GVF snake model was implemented by deriving its 
energy terms from the LiDAR point data and then initializing 
the snake contour based on the navigation information. To 
calculate the GVF energy from the surface slope, the Digital 
Terrain Model (DTM) of the LiDAR point data is needed. It 
was an iterative process. Point thinning over LiDAR points 
was achieved using the z-mean window filter method. The 
slope was calculated as the rate of change of the surface in the 
horizontal (dz/dx) and vertical (dz/dy) directions from its 
center point to its neighbors by the natural neighborhood 
interpolation method. LiDAR point cloud data and planimetric 
road centerline data were used by Hubo and Rasdorf 2008 [7], 
for modeling road centerlines and predicting their lengths in 
3D. For the 3D modeling Linear Referencing Systems (LRS) 
were used. In LRS a 3D point can be located in a three-
dimensional space via the planimetric distance and the 
associated elevation. The comparison of interpolation and 
snapping method was carried out to get better results. But the 

prime importance was the selection of buffer size. Barbarella, 
et al. 2014 [8] was applied LiDAR to the study of taxiway 
surface evenness and slope. In this study a TLS was used for 
evaluation of the geometry of taxiway. The TLS measures 
points belonging to the pavement with a predefined sampling 
rate in zenith and azimuthal angles. The extremes of line 
segment of predefined width were calculated, which was 
orthogonal to the axis at intervals along the axis line. The 
DEM was then interpolated along those sections obtaining the 
profile. The least square method was used for the estimation of 
the slope. A line was calculated that better interpolate all 
points of every segment. The angular coefficient of the line 
was the slope of the section. Cheng, et al. 2007 [9] was 
developed automatic road vector extraction engine for mobile 
mapping systems. The road information extracted by ARVEE 
(Automated Road Geometry Vectors Extraction Engine) 
includes 3D continuous lane lines, road edges and lane lines 
attributes.  

 
II. STUDY AREA AND TEST DATA 

For the data collection purpose, FARO Focus3D X 330 
TLS has been used. It is a dynamic 3D TLS mapping system 
that uses the very latest laser scanning technology combined 
with a precise navigation system, advanced data processing 
software and an innovative system design to scan highways, 
infrastructure, buildings and vegetation. In FARO Focus3D X 
330 the onboard navigation system includes a Global 
Positioning Satellite (GPS) receiver. It offers a 360-degree 
field of view, a range from 0.6m up to 330m with distance 
accuracy up to ±2mm, delivering high precision performance 
and coverage. It is easy to use as it has a dedicated touch 
screen Liquid Crystal Display (LCD) display that shows status 
information and allows the data capture parameters to be 
adjusted. It can be used with ease for the road related data 
extraction purpose.  

The test data is captured from the Mahatma Gandhi Marg, 
Civil Lines, Allahabad city, Uttar Pradesh, India (25° 26' 
47.4108'' N, 81° 51' 9.6984'' E), including 7837278 points. 
The maximum elevation difference within the dataset is 23.48 
meter. There are very low slopes along the horizontal streets, 
and in some areas streets are heavily blocked by trees. Overall, 
the data set have an urban as well as nonurban behavior. The 
length of the street is 62.172 meter. Some street floor points of 
captured dataset are missing due to the traffic at the time of 
data capturing. Figure 1, shows the Google Earth image of the 
corresponding location along with side and top view of 
captured dataset. 

 

 
 

Figure 1. Google Earth image of test site along with side and top view of 
captured dataset. 
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Table I. Statistical specification about dataset 
File 
Size 

No. of 
Points 

Street 
Length 
(meter) 

Area (meter2) Point Density 

(per meter2) 

358 
MB 

7837278 62.172 92375.5985 84.841 

III. PROPOSED METHOD 

In present study, a novel method for street floor detection 
using TLS point cloud data is proposed. Method includes five 
steps namely ground filtering, rough street floor points 
classification, depth image generation, street floor edge 
detection and point in polygon testing (Figure 2). All these 
steps are described in subsection of this section. 
 

 
 

Figure 2. Flow chart of proposed method. 
 

A. Ground Filtering 
Initially, the point cloud data is projected at X-Y plane. 

Further, first point of the projected dataset is selected as a seed 
(query) point. Then, K-Nearest Neighbor (K-NN) search 
algorithm is applied to find the K neighbor points of the 
selected seed point. All the K nearest neighbor points are taken 
collectively and their standard deviation of Z coordinate is 
calculated. If the calculated deviation value is less or equal to 
a predefined threshold, then the seed point is labeled as ground 
points (1). Similar procedure is applied for all the points of 
point cloud dataset. 

 

         (1) 
 

Where,  and represent the calculated standard 
deviation and predefined threshold for the standard deviation. 
Kj shows the number neighbors for the jth seed point. Figure 3, 
shows the ground filtered points. 

 

 
 

Figure 3. Filtered ground points. 
 
 

B. Rough Street Floor Point Classification 
Filtered ground points are further used for rough 

classification of street floor. Captured TLS point cloud 
contains both positional (XYZ) and radiometric (Red, Green, 
Blue (RGB)) information. Radiometric information of filtered 
ground point cloud is used for rough street point classification.  

The process of classification of street floor is similar as 
ground point filtering. Likewise of ground filtering first point 
of filtered ground point cloud dataset is selected as a seed 
point. Then, K-Nearest Neighbor (K-NN) search algorithm is 
applied to find the K nearest neighbor points of the selected 
seed point. All the K neighbor points are taken collectively 
and average of their RGB value is calculated. If the calculated 
average value is less or equal to a predefined threshold, then 
these points are labeled as street floor points (2). Similarly, 
one by one the points from the filtered point cloud dataset are 
taken as seed point. 

 

         (2)
 

 
Where,  and  represent the calculated average 
and predefined threshold for average. Kj shows the number of 
neighbors for the jth seed point. The roughly classified street 
floor points are shown in Figure 4. 
 

 
 

Figure 4. Roughly street floor classified point. 
 
 

C. Depth Image Generation 
In this step, roughly street floor classified points of 

previous step are mapped into regular standard grids (Figure 
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5). The size of grid is taken m meter in both X and Y 
directions. For each grid, points belonging to the same grid 
are taken collectively and their average of Z coordinate value 
is calculated (7). These values are treated as Digital Number 
(DN) value of depth image for corresponding grid. Each pixel 
of depth image is represented by a particular grid. The 
number of pixels in depth image will depend on the grid size 
(m) (3,4,5,6,8). 

 

 
Figure 5. Roughly street floor classified point. 

 
 

      
        (3) 

              
 

          (4)  
 

                                         (5) 

                                     (6) 
 

Where, Px, Qx, Rx, Sx are the X coordinate value of bounding 
box corner points and Py, Qy, Ry, Sy are the Y coordinate value 
of bounding box corner points. 
 

                                  

                                 
(7) 

  
                       (8)  

 
Where, DNp is Digital Number value for the pth grid, n 
represents the total number of points are present in pth grid, f 
shows the number of rows and g shows the number of 
columns of generated depth image. Figure 6, shows the 
generated depth image. 
 

 

 

 

Figure 6. Generated depth image. 
 

D. Street Floor Edge Detection 
Canny edge detection method has been chosen to detect 

the edges in depth image (Canny, 1986 [10]). The Canny 
edge detection includes noise reduction using Gaussian 
filtering, computing the depth gradient and finding the 
maximum localized edges, and finally tracing the detected 
edges to include the weaker gradients if they exhibit natural 
extension to the strong edges. It finds a lot of edges in depth 
image besides the boundary edges of street floor (Figure 7). 
These boundary edges exist on the sides of the street floor 
which exhibits the highest point density across the whole 
scene. This high density is used to filter out the remaining 
edges (Figure 8).  

 

 
 

Figure 7. Edges of generated depth image. 
 

 
 
Figure 8. Remained edges of depth image after point density analysis. 
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E. Point in Polygon Testing 
After detecting the boundary edges of street floor, point in 
polygon test is applied in order to detect the street floor 
points. Representing the edges as a closed shape around the 
street floor helps the point in polygon test to identify the 
street floor points in the roughly classified street floor.  
After applying the point in polygon test, roughly classified 
street floor points are segment into two classes; the street 
floor (inlier points to the curb polygon) and non-street floor 
(outlier points to the curb polygon). The point in polygon test 
simply classifies every point in either street floor or non-
street floor. The test determines whether a given point lies 
inside, outside or on the boundary of a polygon. In this study, 
point in polygon test counts how many times the query point 
cuts the boundary of polygon (cutting number), if a line is 
drawn from the query point in downward Y direction (Figures 
9, Figure 10). If the cutting number is even, point is outside 
the polygon (Figure 10). Furthermore, if cutting number is 
odd, it means that the point lies inside the polygon or on the 
polygon boundary (Figure 9). 

 
 

Figure 9. Point in polygon test (point inside the polygon). 
 

 
 

 
 

 
Figure 10.  Point in polygon test (point outside the polygon). 

 

IV. RESULT AND DISCUSSIONS 

Proposed method is tested on captured TLS point cloud 
dataset (Figure 1). Statistical specification of the same is 
shown in Table I. The method uses two parameters average of 
RGB value ( ) and standard deviation of Z coordinate 

( ) in two different steps. The threshold (used) values of 
these parameters are shown in Table II.  Apart from positional 

information (X, Y, and Z coordinate) of each terrestrial laser 
scanner point, radiometric information (RGB) is also used by 
the proposed method. So, the proposed method depends on 
this additional information. Proposed method is independent 
of point density.  ethod has been coded at Matlab2013a 
installed on Sony Vaio E Series notebook (OS: Windows7 
64bit, CPU: Intel Core i3@2.4GHz, RAM: 3GB). The 
execution time of the proposed method at standard parameters 
values (Table II) is 451.36 seconds. 
 

 

 
 

 
Figure 11.  Detected street points by the proposed method. 

 
Table II. Parameters and their used values 

 

Average of RGB value (  ) 11 

Standard deviation of Z coordinate ( ) 0.3 

 
The street is precisely removed manually from the captured 
TLS point cloud for the generation of reference dataset. 
Cloud Compare open source software is used to carry out this 
task. 
 

Table III. Completeness and correctness statistics 
 

Number of street points in reference 
dataset  

3011262 

Number of points detected by proposed 
method 

2940704  

Number of street points in detected 
dataset 

2864915 

Non street in detected dataset  75789 

Completeness  95.14 %  

Correctness  97.42 %  
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V. CONCLUSIONS AND FUTURE RECOMMENDATIONS 

Present study describes an effective method for the 
classification of street points from TLS point cloud data using 
both the geometric and radiometric information. K-NN search 
algorithm is used in ground filtering and rough street floor 
point classification. Roughly classified street floor points are 
converted in depth image in order to identify the street floor 
edges by Canny edge detection technique. Point in polygon 
test is performed for exact classification of street floor points. 
The results achieved appear encouraging; although, a direct 
comparison could not be made to other published methods that 
use other data sources such as aerial photography. The 
classification is performed on urban area. The algorithm 
presented appears to work well in all areas. The shape of 
polygon generated by the edge detection step is not in 
rectangular form due the occlusion in street floor of captured 
data. Future work is to be focused on the automated obtaining 
of optimal parameters values for good classification results of 
the LiDAR data. 
 

VI. REFERENCES 

[1] A. Tsai, W. Cheng, and Pitts, “A mobile cross slope 
measurement method using lidar,” Transportation Research 

Record: Journal of the Transportation Research Board. Vol. 2, 
2013. 

[2] H. Gontran, Y. Gilliéron, and J. Skaloud, “Precise Road 
Geometry for Integrated Transport Safety Systems,” STRC 05 
Conference Paper, Version 03 / 20.01.05, 2005. 

[3] M. Thuy, and F. Puente León, “Lane detection and tracking 
based on LiDAR data,” Metrol. Meas. Syst., Vol. XVII , ISSN 
0860-8229, No. 3, pp. 311-322, 2010. 

[4] J. Wang, H. González, R. Lindenbergha, and M. Menenti, 
“Geometric road runoff estimation from laser mobile mapping 
data,” ISPRS Annals of the Photogrammetry, Remote Sensing 
and Spatial Information Sciences, Volume II-5, 2014. 

[5] J. Lee, and J. Cho, “Effective lane detection and tracking 
methodusing statistical modeling of color and lane edge-
orientation”, doi: 10.4156/aiss.vol2.issue3.6, 2009. 

[6] Kumar, McCarthy, and McElhinney, “Automated road 
extraction from terrestrial based mobile laser scanning system 
using the GVF snake model”, 2010.   

[7] C. Hubo, and W. Rasdorf, “Modeling Road Centerlines and 
Predicting Lengths in 3-D Using LiDAR Point Cloud Data and 
Planimetric Road Centerline Data,”  Comp.-Aided Civil and 
Infrastruct. Engineering 23(3): 157-173, 2008. 

[8] M. Barbarella, R. Blasiis, M. Fiani, and M. Santoni, “A LiDAR 
application to the study of taxiway surface evenness and slope,” 
ISPRS Annals of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences, Volume II-5, 2014. 

[9] W. Cheng, T. Hassan, N. El-Sheimy, and M. Lavigne, 
“Automated Road Vectors Extraction for mobile mapping 
systems,” Commission III: WG III/5. Vol. XXXVII, Part B3, 
pp. 98, 2007. 

[10] J. Canny, “A computational approach to edge detection, 
Surveying Engineering,” IEEE Trans. Pattern Analysis 
Machine Intelligence PAMI. 8, 679–698, 1986. 

 

 
 
 
 

   


	Introduction
	Study Area and Test Data
	Proposed Method
	Ground Filtering
	Rough Street Floor Point Classification
	Depth Image Generation
	Street Floor Edge Detection
	Point in Polygon Testing

	Result and Discussions
	Conclusions and Future Recommendations
	References

