
DOI: http://dx.doi.org/10.26483/ijarcs.v8i9.4781
Volume 8, No. 9, November-December 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 14

ISSN No. 0976-5697

ANDROID MALWARE DETECTION USING HAML

Mahima Choudhary
(M.tech Scholar)

Department of Computer Science Engineering
Apex Institute of engineering and Technology

Jaipur, India

Brij Kishore
(Assistant professor)

Department of Computer Science Engineering
Apex Institute of engineering and Technology

Jaipur, India

Abstrac: The malware is a very common term in today’s scenario. It is very harmful for our device. It is continuously gaining the rise in its
quantity. It is proving to be a challenging task to detect the malware because whenever we come to evade a technique for its detection, the
attackers also evade the new technique to overcome with our detection technique. Presently we have two techniques for the analysis of an
application to be a malware or a goodware. these are : static analysis and dynamic analysis Mostly anti-virus software uses signature-based
detection technique but it is inefficient in the today’s scenario because of the rapid increase in the number and variants of malware. The signature
is a unique identifier for a binary file, which is created by analyzing the binary file using static analysis methods. The dynamic analysis uses the
actions and behavior during runtime to find out the type of executable (either malware or benign). Both methods have their own benefits as well
as drawbacks. This paper proposes a new technique which uses HAML(Hybrid Analysis with Machine Learning).Hybrid analysis is the
combined form of static and dynamic analysis to analyses the executable file Machine Learning is used to classify an unknown executable file.
In this method, known type of malware and the benign programs are used as training data. By analysis of the binary code and dynamic behavior,
the feature vector is selected. The proposed method utilizes the benefits of both static and dynamic analysis thus the efficiency, and the
classification result is improved. Our experimental results show an accuracy of 95.87% using static, 97.17% using dynamic and 98.72% using
the embedded method. As Compare to the standalone dynamic and static methods, our HAML method gives the more accurate results and is
proved to be more efficient.

Keywords: Malware detection; static analysis; dynamic analysis; machine learning

1. INTRODUCTION

The Internet is becoming an important part of people’s
everyday life as the online payments, and online banking
is being popular nowadays. The users of Internet face
security threats by malicious software. These malicious
softwares are known as Malware which is a program that
is specially developed to harm the user’s device or user’s
data in a manner such as stealing the private data etc.
without giving any notification to the user. Depending on
the behavior and the way they infect, malwares are
classified as spy-ware, worms, root-kits, viruses, Trojan
Horses, etc.
Thousands of new malwares are being developed every
day, and the existing malwares are also modifying in their
structure,so it becomes very difficult to detect.
Due to the vast amount of new samples emerging every
day, security specialists and antivirus vendors depend on
automated malware analysis tools and methods in order to
distinguish malicious from benign code [1]. Mostly anti-
virus products uses signature-based malware classification
method [1,2,3]. In this method, malware programs are
determined by making comparison of the unknown
programs with the known malware programs present in
the database. The signature is a antique label provided to a
binary file. It can be also called as unique identification.
The signature may be created using static, dynamic or
hybrid methods and stored in signature databases. Because
new malwares are being created each day, the signature-
based detection approach requires frequent updates of the
virus signature database which is the main disadvantage of
the method. Static analysis, extracts the features from the
binary code of programs and use them to create models.

These models are then used to classify the program as a
malware or a legal software. The static analysis fails at
different code obfuscation techniques[4] used by the virus
coders and also at polymorphic and metamorphic
malwares[5]. But there are advantages to static analysis
that the binary code contains very useful information
about the malicious behavior of a program in the form op-
code sequence and functions and its parameters.

Fig. 1: Total number of malware samples identified by

McAfee Labs during 2014 to 2015

On the other hand code obfuscation techniques and

polymorphic malwares fails at dynamic analysis[6] because it
analyses the runtime behavior of a program by monitoring the
program while in execution. The main advantage is that it
analyses the runtime behavior of a program which is hard to
obfuscate[7,8]. But there are some limitations to dynamic

Mahima Choudhary et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,14-19

© 2015-19, IJARCS All Rights Reserved 15

analysis. Each of the malware samples must be executed within
a secure environment for a specific time for monitoring the
behavior. The monitoring process is time-consuming, and it
must ensure that the execution malware cannot infect the
platform[9]. The secure environment is quite different from a
real runtime environment, and the malware may behave in
different in the two environments, causing an inexact behavior
log of the malware[3]. In addition, some actions of malware are
activated or triggered under some certain conditions (system
date and time or some particular input by the user) may not be
detected by the secure virtual environment[2]. But dynamic
analysis is a necessary complement to static approach as it is
very much preventive against code obfuscations.
Both static and dynamic methods have their own advantages
and disadvantages. So a combined method that utilizes both
static and dynamic features will be promising in the malware
classification. The proposed method uses both static and
dynamic features of malwares and by using machine learning
techniques, provides an efficient automated classification of
malwares.

2. PROPOSED ALGORITHM

Embedded static and dynamic method
Mostly the works in malware classification uses either the
static analysis or the dynamic analysis methods. But, our
proposed method combines the positive aspects of both the
methods. We taken the static features from the binary code.
Then collected the malware executables from the
VirusShare[10] community website. And collected the
Printable strings information (PSI) from the binary, which is
used as a static feature. The tool cuckoo[11] sandbox is used
for performing Dynamic analysis. Dynamic analysis is mainly
focused on sequences of the system call. By combining the
features extracted from the binary code and the behavior of the
file in execution might be adequate for a better classification
result. The proposed method uses machine learning for the
automated classification and detection.

 Architecture of the proposed method
The architecture of the proposed method is shown in Figure 2.
The static and dynamic analysis is performed on the dataset
containing both malicious and benign files. Static analysis is
done by extracting the PSI features, and dynamic analysis is
done by extracting API call sequence. The method is explained
in the following sections.

Fig. 2: Architecture of the embedded method

Static analysis and Static features
Feature extraction process is the major part of any classification
task. The static features are extracted from the malware binary

files and given as input to various classification algorithms. In
this work printable string information (PSI) which is extracted
from the binary files is used as the static feature. Printable
strings are the un-encoded strings present in the binary
executable file. Many literatures show that PSI is one of the
best features that can be extracted from binary
executable[2,12].
Code obfuscation techniques may insert many unwanted PSI to
the binary files. So not all the PSI extracted from the binary
files are significant and used in the classification. The extracted
PSIs are processed so that the output contains strings that are
meaningful in the classification. The PSI extracted are sorted
according to the frequency of occurrence within a file and PSIs
with a frequency below a particular threshold are eliminated. A
global list of PSI called feature list is created which contains all
strings that are selected from each of the executable files in the
dataset both malware and benign. An entry in the feature list is
a feature. Each of the malware and benign files is compared
with the list and then represented by a binary vector denoting
the strings which the malware sample contains or not, recorded
as a true/false binary value.

Algorithm 1 shows the process of static feature vector creation.
The following example clarifies the static feature extraction
and feature selection process. Consider three files
corresponding to three binary files after extraction and
processing:

Data: Dataset : containing malware and benign files fi

Result: Feature vector and classification results

[9] begin
2 for each fi ∈ do

3 Extract strings from fi
4 Process the raw data to generate useful PSI;
5 Create a table of PSI for each fi sorted according to

the frequency;

6 end
7 for each fi ∈ do

8 for each PSI in the table do
9 if frequency of PSI > threshold then

10
Add PSI to the feature

list;

11 end

12 end

13 end

14 Create a binary feature vector with each PSI in the
feature list as attributes;

15 for each fi ∈ do
16 for each PSI ∈ feature list do
17 if PSI is present in Table associated with fi then

Mahima Choudhary et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,14-19

© 2015-19, IJARCS All Rights Reserved 16

18
Set value of the attribute in the vector

true;
19 else

20
Set value of the attribute in the vector

false;
21 end

22 end

23 end

24 Input feature vector to different learning algorithms in

WEKA;

25 end

Algorithm 1: Static feature extraction

File1:{GetProcessWindowStation,FindFirstFile,GetLongPa

thName, HeapReAlloc}
File2:{FindFirstFile, GetLongPathName, GetProcessHeap,

GetLastError}
File3:{GetLastError,FindFirstFile,GetLongPathName,

GetProcAddress}

The frequency file is created from these files which will

look like as following: Suppose the threshold is set to 2,

Table 1: List of strings extracted from File1, File2, and File

Printable strings Frequency
FindFirstFile 3

GetLongPathName 3
GetLastError 2

GetProcessWindowStation 1
HeapReAlloc 1

GetProcessHeap 1
GetProcAddress 1

the features selected will be FindFirstFile, GetLongPathName,
and GetLastError. Then the feature vector for File1 will be as
follows:

Table 2: Static feature vector

File FindFirstFile GetLongPathName GetLastError Class
File1 1 1 0 Benign
File2 1 1 1 Malware
File3 1 1 1 Malware

Dynamic analysis and Dynamic features
API calls are made by a binary file during its execution. For the
extraction of these API calls, Dynamic analysis is performed.
The cuckoo malware analyzer is used in this experiment as the
secure environment, which is installed under Ubuntu 10.04
with VMware virtual machine. Cuckoo is used to execute the
malware files. It analyze the behavior of malware at the of
execution and generate the analysis result based on it. The log
file contains API calls made during execution, registry
modifications and the information such as heap memory
address and process address.

APIs are provided by the operating system to access the

low-level hardware through system calls for the application
programs. The attackers use the same set of API to do
malicious activities. So the presence or absence of an API in
the log is not enough to predict whether the given file is
malware or not. In our work, we consider the API call
sequence. The similarity in the call sequence between files in
the same class must be greater than the similarity between the
files in the different classes. We use the n-gram based method
to analyze the call sequence called API-call-grams. As the size
of the n-gram increases, the number of similar n-grams
between two files within the same class itself is very less. On
the other hand, the analysis based on unigram is same as
checking whether the API is present or not in a file. So in our
work, we consider only 3-API-call-grams and 4-API-call-
rams.

The feature vector is created as shown in the table. The set
of 3 and 4 API-call-grams are generated for each file from the
call sequence log which is processed. For each file, n-gram set
are sorted, and the grams which are below to a threshold are
eliminated. A table for both API-call-grams (3-API-call-grams
and 4-API-call-grams) is created in which the the data are: the
binary file in the dataset and the corresponding API-call-grams
from the n-gram set. Thus the table contains a global list of
API-call-grams which in turn sorted with frequency, and we
eliminate some API-call-grams with low frequency. The
selected API-call-grams constitute the features. Algorithm 2
shows the dynamic feature extraction process. A sample feature
vector created by the algorithm is shown in Table 3.

Data: Dataset : containing malware and benign files fi

Result: Feature vector and classification results

1 begin
2 for each fi ∈ do

3 - Generate dynamic analysis log file.;

4 - Process the log file and extract API call sequence.;

5 - Generate 3-API-call-grams and 4-API-call-grams;

6 - Sort 3-API-call-grams and 4-API-call-grams with frequency of occurrence;

7 end

Mahima Choudhary et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,14-19

© 2015-19, IJARCS All Rights Reserved 17

8 for each fi ∈ do

9 for each 3-API-call-grams and 4-API-call-grams do
[9] if frequency of API-call-gram > threshold then

1
1 Add API-call-gram to the corresponding global list.;
1
2 end
1
3 end
1
4 end
1
5

Sort the global list of both API-call-grams with frequency of
occurrence;

1
6

for each 3-API-call-grams and 4-API-call-
grams do

1
7

if frequency of API-call-gram >
threshold then

1
8

Add API-call-gram to the corresponding
feature list.;

1
9 end
2
0 end
2
1

Create a binary feature vector with both 3-API-call-grams and 4-API-call-grams as
attribute.;

2
2 for each fi ∈ do
2
3

 for each 3-API-call-grams and 4-API-call-grams ∈ feature
list do

2
4

if API-call-gram is present in Table
associated with fi then

2
5

Set value of the attribute in the vector
true;

2
6 else
2
7

Set value of the attribute in the vector
false;

2
8 end
2
9 end
3
0 end
3
1 Input feature vector to different learning algorithms in WEKA;
3
2 end

 Algorithm 2: Dynamic feature extraction

Table 3: A sample dynamic feature vector
Class 3-

gram1

3-
gram2

.. 3-
gramn

4-
gram1

.. 4-
gramn

Malware 1 1 .. 0 0 .. 1
Malware 0 0 .. 0 1 .. 1
Benign 0 1 .. 1 0 .. 1

 The Embedded feature

The proposed method uses the embedded features, which is the
feature vector contains both static features and dynamic
features. The embedded feature vector is used to classify the
binary files. The embedded feature vector will look like as
given in Table 4 which a concatenation of both static PSI
feature and dynamic API call sequence features.

Mahima Choudhary et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,14-19

© 2015-19, IJARCS All Rights Reserved 18

Table 4: The embedded feature vector

Class PS I1 PS I2 ... PS In 3-GRAMS 4-GRAMS
Malware 1 1 ... 0
Malware 1 0 ... 1
Benign 0 1 ... 0

 Machine Learning
Many researchers have already used the machine learning
techniques for classifying the malware [13,14].But, in our
work, static and dynamic features are combined together and
the resultant feature vector fed as input to the machine learning
algo for the purpose of training and classification. Association
vectors, decision tree, support vector machines, and random
forest are the most popular machine learning algorithms, used
for malware classification. But literatures shows that random
forest and support vector machines are more efficient. Hence
we will use random forest and support vector machines.

3. EXPERIMENT AND RESULT

The static analysis is conducted on 997 virus files, and 490
clean files each analyzed using the strings utility. The
experimental environment is set up on an Ubuntu 14.04
machine. In the Ubuntu machine, the strings utility is run for
each of the binary files. The analysis output of each file is
written into a file having the name same as that of the binary
file. We extracted all the strings from the output file
(containing PSI), which having length greater than 8 bytes and
then fed these into the algorithm, as input, to create the feature
set. There are 835 static features are extracted in our analysis.
Dynamic feature extraction is done by executing the same
binary files used in the static analysis in the Cuckoo malware
analysis system. The malware analyzer will provide the log of
sequence of API calls. The environment is set up on Ubuntu
10.04 LTS operating system. The analyzer system is
configured to work with a virtual machine (VMWare
workstation 10.0) inside which we installed three windows XP
operating system as the host machines. These machines are
called analysis host machines. The binary files are executed on
these machines. N-grams are created for API call sequence of
each binary file in the dataset, and the feature vector is created
as explained in the previous section. In our experiment, 573 4-
grams and 262 3-grams features were selected to create the
feature vector. The machine learning tool WEKA[15] is used
for classification.
Table 5 shows the classification results of static, dynamic and
embedded methods using SVM and Random forest
algorithms.

Table 5: Results of Classification through static, dynamic and

embedded methods

Method
 Random Forest

Support Vector
Machine

TPR FPR
Accurac
y (%) TPR FPR

Accuracy
(%)

Static PSI
method 0.947 0.152 94.83 0.958 0.079 95.87

Dynamic API-
call- grams 0.968 0.099 96.66 0.973 0.098 97.17
Embedded

method 0.978 0.062 97.69 0.988 0.025 98.72

4. CONCLUSION

In this work, we have presented an embedded approach that
uses both static and dynamic features for malware detection.
We have proven our thesis that combined static and dynamic
features will increase the detection accuracy than stand-alone
static and dynamic methods.
The results achieved show that the support vector machine
technique of machine learning is best equipped to classify our
data. However with random forest also gives better accuracy
along with the improvements in the FP and FP rates. From the
classification results, it is clear that dynamic analysis is better
than code based static methods. The dynamic method has
more accuracy than static methods. As with the objective of
the study, it is clear that the embedded approach increases the
detection accuracy. The embedded method is found to be 1.5%
better than dynamic analysis with a 98.72% classification
accuracy. Also, the results show that the method has higher
accuracy compared with methods in the literature survey.
To continue our work, we can extract more features form static
and dynamic features and reduce the number of features to
improve the efficiency of the classification. Feature selection
algorithms can be used to reduce the count of features.

REFERENCES

[1] M. Zolkipli and A. Jantan. Malware behavior analysis: Learning

and understanding current malware threats. Second International
Conference on Network Applications Protocols and Services
(NETAPPS). pp. 218-221, Sept 2010.

[2] R. Islam, R. Tian, L. M. Batten, and S. Versteeg. Classification
of malware based on integrated static and dynamic features.
Journal of Network and Computer Applications. vol. 36, pp.
646-656, 2013.

[3] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A survey on
automated dynamic malware-analysis techniques and tools.
ACM Comput. Surv. vol. 44, pp. 6:1-6:42, Mar. 2008.

[4] I. You and K. Yim. Malware obfuscation techniques: A brief
survey. In International Conference on Broadband, Wireless
Computing, Com-munication and Applications (BWCCA), pp.
297-300, Nov 2010.

[5] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for
malware detection, in Computer Security Applications
Conference, 2007. ACSAC 2007, pp. 421-430, Dec 2007.

[6] H. Zhao, M. Xu, N. Zheng, J. Yao, and Q. Ho. Malicious
executables classification based on behavioural factor analysis.
In International Conference on e-Education, e-Business, e-
Management, and e-Learning, 2010. IC4E 10, pp. 502506, Jan
2010.

[7] M. Ahmadi and A. Sami. Malware detection by behavioral
sequential patterns. Computer fraud and security, 2013.

[8] C. Wang, J. Pang, R. Zhao, W. Fu, and X. Liu. Malware
detection based on suspicious behaviour identification, in First
International Workshop on Education Technology and Computer
Science, 2009. ETCS 09, vol. 2, pp. 198-202, March 2009.

[9] R. Tian, M. Islam, L. Batten, and S. Versteeg. Differentiating
malware from clean ware using behavioral analysis. in 5th
International Confer-ence on Malicious and Unwanted Software
(MALWARE), pp. 23-30, Oct 2010.

[10] VirusShare Malware dataset. http://virusshare.com/
[11] The Cuckoo sandbox. http://www.cuckoosandbox.org
[12] M. Islam, R. Tian, L. Batten, and S. Versteeg. Classification of

malware based on string and function feature selection in
Cybercrime and Trustworthy Computing Workshop (CTC),
2010 , pp. 9-17, July 2010.

Mahima Choudhary et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,14-19

© 2015-19, IJARCS All Rights Reserved 19

[13] Y. H. Choi, B. J. Han, B. C. Bae, H. G. Oh, and K. W. Sohn.
Toward extracting malware features for classification using
static and dynamic analysis, in 8th International Conference on
Computing and Networking Technology (ICCNT), pp. 126-129,
Aug 2012.

[14] I. Firdausi, C. Lim, A. Erwin, and A. Nugroho. Analysis of
machine learning techniques used in behavior-based malware

detection, in Second International Conference on Advances in
Computing, Control and Telecommunication Technologies
(ACT), pp. 201-203, Dec 2010.

[15] Weka 3: Data Mining open source Software. Accessed 2014.
www.cs.waikato.ac.nz/ml/weka/.

	1. INTRODUCTION
	2. PROPOSED ALGORITHM
	3. EXPERIMENT AND RESULT
	4. CONCLUSION
	References

