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Abstrac: The malware is a very common term in today’s scenario. It is  very harmful for our device. It is continuously gaining the rise in  its 
quantity. It is proving to be a challenging task to detect the malware because whenever we come to evade a technique for its detection, the 
attackers also evade the new technique to overcome with our detection technique. Presently we have two techniques for the analysis of an 
application to be a malware or a goodware. these are : static analysis and dynamic analysis Mostly anti-virus software uses signature-based 
detection technique but it is inefficient in the today’s scenario because of the rapid increase in the number and variants of malware. The signature 
is a unique identifier for a binary file, which is created by analyzing the binary file using static analysis methods. The dynamic analysis uses the 
actions and behavior during runtime to find out the type of executable (either malware or benign). Both methods have their own benefits as well 
as drawbacks. This paper proposes a new technique which uses HAML(Hybrid Analysis with Machine Learning).Hybrid analysis is the 
combined form of static and dynamic analysis  to analyses the executable file Machine Learning is used to classify an unknown executable file. 
In this method, known type of malware and the benign programs are used as training data. By analysis of  the binary code and dynamic behavior, 
the feature vector is selected. The proposed method utilizes the benefits of both static and dynamic analysis thus the efficiency, and the 
classification result is improved. Our experimental results show an accuracy of 95.87% using static, 97.17% using dynamic and 98.72% using 
the embedded method. As Compare to the standalone dynamic and static methods, our HAML method  gives the more accurate results and is 
proved to be more efficient. 
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1. INTRODUCTION  

 
The Internet is becoming an important part of people’s 
everyday life as the online payments, and online banking 
is being popular nowadays. The users of Internet face 
security threats by malicious software. These malicious 
softwares are known as Malware which is a program that 
is specially developed to harm the user’s device or user’s 
data in a manner such as stealing the private data etc.  
without giving any notification to the user. Depending on 
the behavior and the way they infect, malwares are 
classified as spy-ware, worms, root-kits, viruses, Trojan 
Horses, etc. 
Thousands of new malwares are being developed every 
day, and the existing malwares are also modifying in their 
structure,so it becomes very difficult to detect. 
Due to the vast amount of new samples emerging every 
day, security specialists and antivirus vendors depend on 
automated malware analysis tools and methods in order to 
distinguish malicious from benign code [1]. Mostly anti-
virus products uses signature-based malware classification 
method [1,2,3]. In this method, malware programs are 
determined by making comparison of the unknown 
programs with the known malware programs present in 
the database. The signature is a antique label provided to a 
binary file. It can be also called as unique identification. 
The signature may be created using static, dynamic or 
hybrid methods and stored in signature databases. Because 
new malwares are being created each day, the signature-
based detection approach requires frequent updates of the 
virus signature database which is the main disadvantage of 
the method. Static analysis, extracts the features from the 
binary code of programs and use them to create models. 

These models are then used to classify the program as a 
malware or a legal software. The static analysis fails at 
different code obfuscation techniques[4] used by the virus 
coders and also at polymorphic and metamorphic 
malwares[5]. But there are advantages to static analysis 
that the binary code contains very useful information 
about the malicious behavior of a program in the form op-
code sequence and functions and its parameters. 

 
Fig. 1: Total number of malware samples identified by 

McAfee Labs during 2014 to 2015 
 
On the other hand code obfuscation techniques and 

polymorphic malwares fails at dynamic analysis[6] because it 
analyses the runtime behavior of a program by monitoring the 
program while in execution. The main advantage is that it 
analyses the runtime behavior of a program which is hard to 
obfuscate[7,8]. But there are some limitations to dynamic 
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analysis. Each of the malware samples must be executed within 
a secure environment for a specific time for monitoring the 
behavior. The monitoring process is time-consuming, and it 
must ensure that the execution malware cannot infect the 
platform[9]. The secure environment is quite different from a 
real runtime environment, and the malware may behave in 
different in the two environments, causing an inexact behavior 
log of the malware[3]. In addition, some actions of malware are 
activated or triggered under some certain conditions (system 
date and time or some particular input by the user) may not be 
detected by the secure virtual environment[2]. But dynamic 
analysis is a necessary complement to static approach as it is 
very much preventive against code obfuscations. 
Both static and dynamic methods have their own advantages 
and disadvantages. So a combined method that utilizes both 
static and dynamic features will be promising in the malware 
classification. The proposed method uses both static and 
dynamic features of malwares and by using machine learning 
techniques, provides an efficient automated classification of 
malwares. 
 
2. PROPOSED ALGORITHM 

 
Embedded static and dynamic method 
Mostly the works in malware classification uses either the 
static analysis or the dynamic analysis methods. But, our 
proposed method combines the positive aspects of both the 
methods. We taken the static features from the binary code. 
Then collected the malware executables from the 
VirusShare[10] community website. And collected the 
Printable strings information (PSI) from the binary, which is 
used as a static feature. The tool cuckoo[11] sandbox is used 
for performing Dynamic analysis. Dynamic analysis is mainly 
focused on sequences of the system call. By combining the 
features extracted from the binary code and the behavior of the 
file in execution might be adequate for a better classification 
result. The proposed method uses machine learning for the 
automated classification and detection. 

 
 Architecture of the proposed method 
The architecture of the proposed method is shown in Figure 2. 
The static and dynamic analysis is performed on the dataset 
containing both malicious and benign files. Static analysis is 
done by extracting the PSI features, and dynamic analysis is 
done by extracting API call sequence. The method is explained 
in the following sections. 

 
 
Fig. 2: Architecture of the embedded method 
 

Static analysis and Static features 
Feature extraction process is the major part of any classification 
task. The static features are extracted from the malware binary 

files and given as input to various classification algorithms. In 
this work printable string information (PSI) which is extracted 
from the binary files is used as the static feature. Printable 
strings are the un-encoded strings present in the binary 
executable file. Many literatures show that PSI is one of the 
best features that can be extracted from binary 
executable[2,12]. 
Code obfuscation techniques may insert many unwanted PSI to 
the binary files. So not all the PSI extracted from the binary 
files are significant and used in the classification. The extracted 
PSIs are processed so that the output contains strings that are 
meaningful in the classification. The PSI extracted are sorted 
according to the frequency of occurrence within a file and PSIs 
with a frequency below a particular threshold are eliminated. A 
global list of PSI called feature list is created which contains all 
strings that are selected from each of the executable files in the 
dataset both malware and benign. An entry in the feature list is 
a feature. Each of the malware and benign files is compared 
with the list and then represented by a binary vector denoting 
the strings which the malware sample contains or not, recorded 
as a true/false binary value. 

 
Algorithm 1 shows the process of static feature vector creation. 
The following example clarifies the static feature extraction 
and feature selection process. Consider three files 
corresponding to three binary files after extraction and 
processing: 

 
Data: Dataset : containing malware and benign files fi 

 
Result: Feature vector and classification results 

 
[9] begin 
2 for each fi ∈ do 

 
3 Extract strings from fi 
4 Process the raw data to generate useful PSI; 
5 Create a table of PSI for each fi sorted according to 

the frequency; 
 

6 end 
7 for each fi ∈ do 

 
8 for each PSI in the table do 
9 if frequency of PSI > threshold then 

 
 

10 
Add PSI to the feature 

list; 
 

11 end 
 

12 end 
 

13 end 
 

14 Create a binary feature vector with each PSI in the 
feature list as attributes; 

 
15 for each fi ∈ do 
16 for each PSI ∈ feature list do 
17 if PSI is present in Table associated with fi then 
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18 
Set value of the attribute in the vector 

true; 
19 else 

 

20 
Set value of the attribute in the vector 

false; 
21 end 

 
22 end 

 
23 end 

 
24 Input feature vector to different learning algorithms in 

WEKA; 
 

25 end 
 

 
Algorithm 1: Static feature extraction 
 
File1:{GetProcessWindowStation,FindFirstFile,GetLongPa

thName, HeapReAlloc} 
File2:{FindFirstFile, GetLongPathName, GetProcessHeap, 

GetLastError} 
File3:{GetLastError,FindFirstFile,GetLongPathName, 

GetProcAddress} 
 
The frequency file is created from these files which will 

look like as following: Suppose the threshold is set to 2, 
 
Table 1: List of strings extracted from File1, File2, and File 
 

Printable strings Frequency 
FindFirstFile 3 

GetLongPathName 3 
GetLastError 2 

GetProcessWindowStation 1 
HeapReAlloc 1 

GetProcessHeap 1 
GetProcAddress 1 

 
the features selected will be FindFirstFile, GetLongPathName, 
and GetLastError. Then the feature vector for File1 will be as 
follows: 

Table 2: Static feature vector 

File FindFirstFile GetLongPathName GetLastError Class 
File1 1 1 0 Benign 
File2 1 1 1 Malware 
File3 1 1 1 Malware 

 
Dynamic analysis and Dynamic features 
API calls are made by a binary file during its execution. For the 
extraction of these API calls, Dynamic analysis is performed. 
The cuckoo malware analyzer is used in this experiment as the 
secure environment, which is installed under Ubuntu 10.04 
with VMware virtual machine. Cuckoo is used to execute the 
malware files. It analyze the behavior of malware at the of 
execution and generate the analysis result based on it. The log 
file contains API calls made during execution, registry 
modifications and the information such as heap memory 
address and process address. 

 
APIs are provided by the operating system to access the 

low-level hardware through system calls for the application 
programs. The attackers use the same set of API to do 
malicious activities. So the presence or absence of an API in 
the log is not enough to predict whether the given file is 
malware or not. In our work, we consider the API call 
sequence. The similarity in the call sequence between files in 
the same class must be greater than the similarity between the 
files in the different classes. We use the n-gram based method 
to analyze the call sequence called API-call-grams. As the size 
of the n-gram increases, the number of similar n-grams 
between two files within the same class itself is very less. On 
the other hand, the analysis based on unigram is same as 
checking whether the API is present or not in a file. So in our 
work, we consider only 3-API-call-grams and 4-API-call- 
rams. 

The feature vector is created as shown in the table. The set 
of 3 and 4 API-call-grams are generated for each file from the 
call sequence log which is processed. For each file, n-gram set 
are sorted, and the grams which are below to a threshold are 
eliminated. A table for both API-call-grams (3-API-call-grams 
and 4-API-call-grams) is created in which the the data are: the 
binary file in the dataset and the corresponding API-call-grams 
from the n-gram set. Thus the table contains a global list of 
API-call-grams which in turn sorted with frequency, and we 
eliminate some API-call-grams with low frequency. The 
selected API-call-grams constitute the features. Algorithm 2 
shows the dynamic feature extraction process. A sample feature 
vector created by the algorithm is shown in Table 3. 

Data: Dataset : containing malware and benign files fi 
 

Result: Feature vector and classification results 
 

1 begin 
2 for each fi ∈ do 

 
3 - Generate dynamic analysis log file.; 

 
4 - Process the log file and extract API call sequence.; 

 
5 - Generate 3-API-call-grams and 4-API-call-grams; 

 
6 - Sort 3-API-call-grams and 4-API-call-grams with frequency of occurrence; 

 
7 end 
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8 for each fi ∈ do 
 

9 for each 3-API-call-grams and 4-API-call-grams do 
[9] if  frequency of API-call-gram > threshold then 

 
 

1
1     Add API-call-gram to the corresponding global list.;    
1
2    end           
1
3  end           
1
4 end           
1
5 

Sort the global list of both API-call-grams with frequency of 
occurrence;    

1
6 

for each 3-API-call-grams and 4-API-call-
grams do       

1
7  

if  frequency of API-call-gram > 
threshold then       

1
8    

Add API-call-gram to the corresponding 
feature list.;      

1
9  end           
2
0 end           
2
1 

Create a binary feature vector with both 3-API-call-grams and 4-API-call-grams as 
attribute.; 

2
2 for each fi ∈ do           
2
3 

 for each 3-API-call-grams and 4-API-call-grams ∈ feature 
list do 

   
    

2
4    

if API-call-gram is present in Table 
associated with fi then    

2
5     

Set value of the attribute in the vector 
true;      

2
6    else           
2
7     

Set value of the attribute in the vector 
false;      

2
8    end           
2
9  end           
3
0 end           
3
1 Input feature vector to different learning algorithms in WEKA;    
3
2 end           

      
 Algorithm 2: Dynamic feature extraction 
 
  

Table 3: A sample dynamic feature vector 
Class 3-

gram1 

3-
gram2 

.. 3-
gramn 

4-
gram1 

.. 4-
gramn 

Malware 1 1 .. 0 0 .. 1 
Malware 0 0 .. 0 1 .. 1 
Benign 0 1 .. 1 0 .. 1 
 
 The Embedded feature 

The proposed method uses the embedded features, which is the 
feature vector contains both static features and dynamic 
features. The embedded feature vector is used to classify the 
binary files. The embedded feature vector will look like as 
given in Table 4 which a concatenation of both static PSI 
feature and dynamic API call sequence features. 
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Table 4: The embedded feature vector 

Class PS I1 PS I2 ... PS In 3-GRAMS 4-GRAMS 
Malware 1 1 ... 0 ... ... 
Malware 1 0 ... 1 ... ... 
Benign 0 1 ... 0 ... ... 

 
 Machine Learning 
Many researchers have already used the machine learning 
techniques for classifying the malware [13,14].But, in our 
work, static and dynamic features are combined together and 
the resultant feature vector fed as input to the machine learning 
algo for the purpose of training and classification. Association 
vectors, decision tree, support vector machines, and random 
forest are the most popular machine learning algorithms, used 
for malware classification. But literatures shows that random 
forest and support vector machines are more efficient. Hence 
we will use random forest and support vector machines. 
 
3. EXPERIMENT AND RESULT 
 
The static analysis is conducted on 997 virus files, and 490 
clean files each analyzed using the strings utility. The 
experimental environment is set up on an Ubuntu 14.04 
machine. In the Ubuntu machine, the strings utility is run for 
each of the binary files. The analysis output of each file is 
written into a file having the name same as that of the binary 
file. We extracted all the strings from the output file 
(containing PSI), which having length greater than 8 bytes and 
then fed these into the algorithm, as input, to create the feature 
set. There are 835 static features are extracted in our analysis. 
Dynamic feature extraction is done by executing the same 
binary files used in the static analysis in the Cuckoo malware 
analysis system. The malware analyzer will provide the log of 
sequence of API calls. The environment is set up on Ubuntu 
10.04 LTS operating system. The analyzer system is 
configured to work with a virtual machine (VMWare 
workstation 10.0) inside which we installed three windows XP 
operating system as the host machines. These machines are 
called analysis host machines. The binary files are executed on 
these machines. N-grams are created for API call sequence of 
each binary file in the dataset, and the feature vector is created 
as explained in the previous section. In our experiment, 573 4-
grams and 262 3-grams features were selected to create the 
feature vector. The machine learning tool WEKA[15]  is used 
for classification. 
Table 5 shows the classification results of static, dynamic and 
embedded methods using SVM and Random forest 
algorithms. 
 
Table 5: Results of Classification through static, dynamic and 

embedded methods 

Method 
 Random Forest 

Support Vector 
Machine 

TPR FPR 
Accurac
y (%) TPR FPR 

Accuracy 
(%)  

Static PSI 
method 0.947 0.152 94.83 0.958 0.079 95.87 

Dynamic API-
call- grams 0.968 0.099 96.66 0.973 0.098 97.17 
Embedded 

method 0.978 0.062 97.69 0.988 0.025 98.72 

 
4. CONCLUSION 

 
In this work, we have presented an embedded approach that 
uses both static and dynamic features for malware detection. 
We have proven our thesis that combined static and dynamic 
features will increase the detection accuracy than stand-alone 
static and dynamic methods. 
The results achieved show that the support vector machine 
technique of machine learning is best equipped to classify our 
data. However with random forest also gives better accuracy 
along with the improvements in the FP and FP rates. From the 
classification results, it is clear that dynamic analysis is better 
than code based static methods. The dynamic method has 
more accuracy than static methods. As with the objective of 
the study, it is clear that the embedded approach increases the 
detection accuracy. The embedded method is found to be 1.5% 
better than dynamic analysis with a 98.72% classification 
accuracy. Also, the results show that the method has higher 
accuracy compared with methods in the literature survey. 
To continue our work, we can extract more features form static 
and dynamic features and reduce the number of features to 
improve the efficiency of the classification. Feature selection 
algorithms can be used to reduce the count of features. 
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