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Abstract: Generally fair share scheduling methods is not suitable for I/O bound and interactive applications whereas priority scheduling supports 
to execute variety of processes and applications. Stride scheduling is a deterministically fair share scheduling scheme that defines the share of 
processor time allocating to a client. This paper proposes priority-driven stride scheduling using stochastic modeling in distributed system that 
improves throughput and reduces response time by applying probabilistic study with the concept of fairness in resource distribution. A model-
based simulation study is performed to analyze the transitions of clients onto the processor of this proposed scheme. 
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1. INTRODUCTION 

 
Distributed system of independent computers seems as a 
single coherent system [1] in which computing systems put 
together composed of large number of computing units 
connected by high speed network. They have broad 
spectrum of systems including databases, media-based 
applications, networks, web-servers etc., which can be 
accessed by concurrent clients. Schedulers for distributed 
system and multithreaded system usually face insufficiency 
of resources in which they are ordered to control and service 
wide variety of requests for users and applications. At run 
time, multiple clients can request the service at the same 
time or quickly one after the other. These clients can come 
from the same or different location in the system. Due to 
rapid demand of new and efficient applications with multi-
user and multitasking environment are requires developing 
new scheduling schemes or enhancing exiting ones that 
effects on throughput and response time to provide quality 
of service across a wide spectrum of systems.  
 A distributed scheduler is a resource management 
component of a distributed operating system that focuses on 
distributing the load of the system among the individual 
computing units to enhance overall performance[2]. [3] 
introduced load distribution algorithms with a taxonomy of 
approaches to the resource management problem providing 
a common terminology and classification mechanism 
necessary in addressing this problem. This load distribution 
environment arises because of the random arrival of clients 
and requires their random processing. So that there is a 
possibility of several computing units are likely to be idle or 
lightly loaded and some others can be heavily loaded, which 
would degrade the overall performance. There is always 
another possibility that one server or system is idle while a 
client is being waited upon at another server [2]. [4] 
presented three different load balancing algorithms for 
distributed systems that consist of a number of identical 
processors and a CSMA communication system by an 
analytic model.  

[5] Firstly suggested and introduced Stride scheduling 
which is a deterministic proportional-share scheme to 
allocate resources for client processes and efficiently 
supports the flexible resource management concept to 
schedule other resources as per processor time. They also 
introduced novel hierarchical stride scheduling algorithm 
that achieves better throughput accuracy and lower response 
time. This fair-share allocation scheduling deals such type of 
workload and executes time-consuming or parallel 
applications in background. This scheduling is performed 
well enough for compute-bound applications whereas 
degraded the response time of interactive and I/O-bound 
applications. [6] presented a novel implementation of fair-
share stride scheduling using priority scheduler to support 
compute-bound and interactive application. [7] suggested 
Virtual-Time Round-Robin (VTRR), a proportional share 
scheduler that can provide good proportional sharing 
accuracy with scheduling overhead and also discussed about 
the problems of achieving perfect fairness due to large 
numbers of clients with whatever resources they are 
allocated among various servers in distributed system.  
 [8] presented an event-based stride scheduling 
method for time critical collision detection that meets real-
time constraints by balancing and prioritizing computation 
spent on intersection tests without starvation. [9] was 
adopted symmetrically initiated algorithm in distributed 
system. [10] based on the performance trends of load 
sharing algorithms and the recommendations for the 
selection of a load distribution algorithm. [11], [12 a], [13 b] 
also have studied scheduling policies in distributed systems 
to find the ways to distribute client processes among various 
processors in order to achieve fairness and performance like 
minimizing execution time, minimizing communication, 
maximizing resource utilization, minimizing response time, 
average completion time per application and multiple 
independent tasks with load balancing with other overheads.  
 [14] and [15] used a Markov chain model for the 
study of transition probabilities with random movement of 
scheduler to analyze performance of scheduling schemes 
like Round Robin(RR) and Multi-level feedback 
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Queue(MLFQ). The priority-driven stride scheduling system 
proposes smaller waiting and response times to give controls 
the resource utilization rates of clients that are proportional 
to the relative fair shares allocated by server using markov 
chain model in distributed system. [16] and [17] studied 
brief of stochastic processes and Markov chain Model. 

 
2. STRIDE  SCHEDULING 

 
 Stride scheduling is a deterministic fair-share 
allocation mechanism of resources in which tickets are used 
to define the share of processor time allocating to a client 
[6]. Allocation of resources is in discrete time slices referred 
as quantum  [5]. Resource rights are considered by ticket 
that can be subjected in different amounts and conceded 
among clients. Throughput rates for lively clients are 
directly proportional to their ticket allocations whereas 
response times are inversely proportional to ticket 
allocation[5]. This scheduling calculates the time interval 
that is referred by stride in which a client must remain 
among consecutive allocations that means stride field is 
inversely proportional to tickets [5][6]. Let stride be Sti and 
two consecutive allocations be ta1 and ta2 in a time quantum 
so that Sti = ta2 - ta1.  
 Clients are scheduled most frequently those having 
shortest stride, twice as quickly those having half stride and 
twice slowly those having double stride. These strides are 
characterized in virtual time units called passes [6]. So each 
client is associated with three state variables tickets, stride, 
and pass. Since this scheduling is deterministic that clients 
have guaranteed to be scheduled at least once every 
complete cycle time or stride [19]. Resource allocation is 
performed for the client selection having the least pass and 
its pass value is incremented by its stride, so that new value 
of pass can be Pass1= Pass + Stride. If more than one client 
has the same minimum pass value, then anyone can be 
selected.   
 Overall this is a fair-share scheduling scheme for 
resource management and obtaining responsiveness for 
probabilities to converge. But to some extent, perfect 
fairness and responsiveness is ideal condition that cannot 
achieve due to weak service time, poor processing time and 
poor response time in distributed system over the world. 
Moreover, this scheduling doesn’t support preemption and 
having a high overhead. 
 

3. PRIORITY SCHEDULING 
 

 Priority Scheduling features a priority that 
characterizes an order of each client. Generally highest 
priority clients schedule first rather than depending upon run 
time behaviour of client. Scheduler can use several methods 
to determine priorities according to different parameters and 
different classes of priorities can also be implemented 
depending on the type of client processes. This scheme 
provides the required controlling for client process 
scheduling in order to execute interactive client processes 
efficiently and able to improve the overall fairness. [18] 
used priorities to control the execution of systems to meet 
given requirements for optimal use of resources and 
incorporated scheduling policies in distributed system 
although implementation may incur considerable overhead 
and complicated executing transitions according to a priority 

policy for each client process because situation view is 
limited  to the rest of the system. 

 
4. PRIORITY-DRIVEN STRIDE SCHEDULING 

 
 This paper proposes to combine stride scheduling 
with priority scheme in which priority scheme allows 
controlling the preemption on awaken of clients and high 
load in distributed system. It also provides scheduling a 
client with high priority until it is allocated within its 
defined share of tickets. But stride scheduling allocates the 
fair processor time and allows a strict control of the client. 
Taking advantage of priority scheduling and also report for 
starvation, we think of a scheme stride scheduling featuring 
priority aging wherein the longer waits of clients in the 
queue, the higher its priority becomes. Priority aging 
reduces the starvation in scheduling of clients. Waiting time 
and response time depend on the priority of the client. Stride 
scheduling also supports of dynamic client participation, 
dynamic modifications to ticket allocations, and non-
uniform quanta [5].  
 A distributed system may have a combination of 
heavily and lightly loaded systems. So that migrating a 
client process to share or balance load can help. Multiple 
clients access resources on a random manner in distributed 
system assigning by unique client identification. The 
outcomes of accuracy in a proportional-share scheduler can 
be considered by measuring the difference between the 
specified and actual number of allocations that a client 
receives during a series of allocations of tickets [5]. So that 
it is naturally impractical to attain this ideal condition 
exactly due to quantization. Each client is assigned a time 
quantum equal to its ticket share. A client with a larger share 
of tickets finds a larger quantum than a client with a small 
share of tickets. Running all clients with the same frequency 
provides proportional sharing but adjusting the size of their 
time quantum [7]. So this scheduler assigns a short time 
quantum for high priority clients. This paper gives solution 
for implementing priorities based on an analysis of the 
system using stochastic model study.  
 

5. THE STOCHASTIC MODEL 
 

 A stochastic process has the Markov property if the 
probability distribution of Xn is determined by knowing the 
probability distribution of Xn-I [17]. A Markov process is a 
stochastic model that has the Markov property. It can be 
used to model a random system that changes states 
according to a transition rule that only depends on the 
current state. The state space S is a discrete space then the 
Markov process is called a Markov chain [16][17]. Markov 
chain model is applied on proposed scheduling using state 
transition probabilities obtaining from the clients movement 
over states. A stochastic process {Xn} talking values in a 
discrete state space S is called a Markov chain or Markov 
property if: 

 
 
6. THE PROPOSED SYSTEM 

 

https://en.wikipedia.org/wiki/Markov_property�
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 Let P be the probability that the system is in a state 
in which at least one client is waiting for service and server 
is idle according to the utilization of each server. Suppose 
the distributed system has m clients at particular time which 
is C1, C2, C3, C4... Cm in queue and {X(n), n ≥ 1} b e 
significance of a Markov chain among the state space C1, 
C2, C3, C4... Cm and a server R where R is a server state that 
serves to clients for various conditions like normal, idle, 
blocking, any kind of failures, disturbances or errors occur 
which depicts in figure 1 where for each allocation, every 
client is specified a fair possibility of getting proportional to 
its share of the total number of tickets [5]. Since any 
changes to relative ticket allocations are instantly replicated 
in the next allocation decision [20]. The queue allocates a 
random ticket to each of next coming clients. When a client 
do not complete within specified quantum, it shifts to the 
queue where clients wait for their turn  then scheduler 
assigns a new ticket to the remaining client process for its 
completion.  

Each client is set to have a share of tickets equal to the 
required proportional share of the scheduled resource [21]. 
Still a stride value Sti is determined as the inverse of the 
number of tickets which is used to perform a lottery method. 
Stride is measured in passes to represent the interval 
between times quantum the client executes. So the current 
pass value for a particular client is pi where passes is a 
virtual time unit. The probability P  that a client Ci holding ti 
tickets in a lottery with in total T tickets will win the lottery  
P = ti / T. The algorithm uses a constant stride1 which 
represents the stride for a client with one ticket [5]. Few 
assumptions are as follows: 
• Clients are initiated with Sti  = stride1 / ti  and  Ci = Sti 
• The scheduler selects the client with lowest Si (ties come 
arbitrarily). 
After executing it, Sti is updated to Sti + f Sti, where f is the 
fraction of the allocated time quanta that the client actually 
used (f > 0). 

 
 

Figure 1: Priority-driven Sride Scheduling for Client 
Processing 

 
Assuming S be a scheduler so that X(n) be the state of 
scheduler of the system at the  end of nth quantum [15] 
where  n = 1,2,3… and the transition of scheduler S is 
randomized with m+1 states in nth quantum which is shown 
in figure 2. The scheduler S provides stochastically a 
quantum of time to each client and next quantum is 
resoluted by a random assessment. The S begins with the 
client Ci   and then goes to Cj where i ≠ j = 1, 2, 3...m.  
 Suppose S is at any client Ci (i = 1, 2, 3…m) 
having least pass/stride at the end of a quantum, then it is on 
Ci+1 or Ci-1 (where i >1) in the next quantum with some 
assigning priority. The X happens to inactive when there is 
no other client in the queue. System may have a long 
waiting queue of clients outside from the server R where 
clients get various kinds of services and if one client is over 
inside, then a new client is waiting outside or moving to 
other computing units or server to enter as to retain 
remaining m clients. The server fulfils various services and 
requirements of clients according to priority assigned. So 
that the transition diagram for any three clients  Ci-1, Ci, Ci+1 
and server R is given in figure 2. 
 

 
Figure 2: Transition Diagram for proposed system 

 
Let us defining the transition among the clients by unit-step 
transition probabilities for Xn with its respective priorities a, 
b, c, d and e are as follows: 

 
So the unit step transition probability matrix (m+1) × (m+1) 
to assign priority is: 
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with a  +  b  +  d  +  c  +  e  = 1 and (m + 1)(d + e) =1   
 
Let us assume pb be the probability among  transition 
between server R and clients Ci-1, Ci, Ci+1 .So The state 
probabilities for n = 0 are as follows: 

 
The state probabilities after the first quantum are as follows: 

 
Similarly, state probabilities after second quantum are 
expressed as follows : 

 
The general expression for n quantum are as follows: 

 
 
7. SOME RESTRICTED SCHEDULING SCHEMES 

 
 Some restrictions and conditions can be applied of 
this proposed scheme as mentioned above that can produce 
different scheduling schemes from the general class of expression 
in previous section. 
 
SCHEME-A:  When a = 0, b = 0, c = 1, d =0, e = 0 
 Unit step transition probability matrix (m+1) × 
(m+1)   for X(n) of scheme-A which is general class of fair 
share stride scheduling scheme according to priority of 
clients for all quantum n are as follows:          

 
 
The initial probabilities at n=0 for scheme-A are: 

 
The state probabilities after the first quantum are: 

 
The generalized expressions of scheme-A for n quantum are:  

 
 
SCHEME-B:  When a = 0, b = 0, e = 0, c + d= 1  
 Unit step transition probability matrix (m+1) × 
(m+1)   for X(n) of scheme-B which is fair share stride  
scheduling scheme according to priority of clients for all 
quantum n are as follows:  

 

 
 

Such that c + d =1 
The initial probabilities at n=0 for scheme-B are: 

 
State probabilities after the first quantum are: 

 
General expressions of scheme-B for nth quantum are: 

 
 
SCHEME-C:  WHEN b = 0, c = 0, d =0, e =0, a = 1  

This general class scheduling scheme referred 
Priority-driven Stride Scheduling scheme for all quantum n. 
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Unit step transition probability matrix to assign priority 
(m+1) × (m+1) for X(n) of scheme-C is 

 

 
 

The initial probabilities at n=0 for scheme-C are: 

 
The state probabilities after the first quantum are: 

 
The general expressions of scheme-C for n quantum are: 

 
 
SCHEME-D:  When b = 0, c = 0, e = 0, a + d = 1  

General class has priority-driven stride scheduling 
scheme for all quantum n. Unit step transition probability 
matrix to assign priority (m+1) × (m+1) for X(n) of scheme-D 
is 

 
Such that a +d =1. 
The initial probabilities at n=0 for scheme-D are  

 
The state probabilities after the first quantum are: 

 
The general expressions of scheme-D for nth quantum are: 

 
 
SCHEME-E:  When b = 0, d =0, e=0, a + c = 1  

 Unit step transition probability matrix to assign 
priority (m+1) × (m+1) for X(n)  of scheme-E is 
 

 
 
The initial probabilities at n=0 for scheme-E are: 

 
State probabilities after the first quantum are: 

 
General expressions of scheme-E for nth quantum are: 

 
 
SCHEME-F:  When  b = 0, e  = 0,  a + c + d = 1 . 
 Unit step transition probability matrix to assign 
priority (m+1) × (m+1) for X(n)  of  scheme-F is 

 
The initial probabilities at n=0 for scheme-F are  

 
State probabilities after the first quantum are: 

 
General expressions of scheme-F for nth quantum are: 
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8. SIMULATION STUDY  AND GRAPHICAL 
ANALYSIS 

 
 We know that P be the probability that the system 
is in a state in which at least one client is waiting for service 
and server is idle according to the utilization of each server. 
We can estimate P using probabilistic analysis and plot a 
graph against system utilization. For moderate system 
utilization, value of P is high, i.e., at least someone is idle. 
Hence, performance can be improved by fair sharing of 
resources to the clients. Result from imposing or restricting 
priorities between transitions. However for fairly 
demanding, the design of the system executes transitions 
having a set of priorities according to a priority policy using 
Markov chain model. So all the scheduling schemes are 
compared and the simulation study is performed on above 
mentioned various schemes as follows: 
 
Scheme- A 

Here  a = b = d = e = 0, c =1, So the transition 
probability matrix is: 
 

 
Let us assume initial probabilities pb1 = 0.2, pb2 = 0.12, pb3 
= 0.25 and pb4 =  0.17 
 

Table 1: Transition Probability Matrices of P[
] for scheme–A 

 

 
Figure 8.1: Transition graph for Scheme-A 

 

Figure 8.1 depicts that variations in the quantum do not 
influence the state probabilities Pi. The scheme-A gives fair 
chance to process every client as assigning  priority.      
 
Scheme- B 

Here  a = b = e = 0, c + d  = 1, d = 0.256 , So the 
transition probability matrix is: 

 
Let us assume initial probabilities pb1 = 0.24, pb2 = 

0.06, pb3 = 0.14 and pb4 = 0.19 
 
Table 2: Transition Probability Matrices of P[ ] 

for scheme–B 

 
 

 
Figure 8.2: Transition graph for Scheme-B 

 
Graph of scheme-B is representing by figure 8.2 which 
indicates clients Ci (i = 1, 2, 3) and server R during 
processing. The proposed scheduler in the system performs 
transition to clients and server. The state probabilities of 
client/ clients over a large number of quantum are dropping 
quickly and the probability of server is going to 
comparatively high. This scheme specifies that the clients 
and server take extra time to finish, delay in processing 
becomes large enough and not fair enough to use  resources.        
 
Scheme- C    
 Here a = 1, b = 0, c = 0, d =0, e =0,  So the 
transition probability matrix is: 
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In this scheme, we can consider two cases having different 
probabilities, they are as follows: 
(a) Let us assume initial probabilities pb1 = 0.19, pb2 = 0.23, 
pb3 = 0.06 and pb4 = 0.12.  
 
Table 3(a): Transition Probability Matrices of P[

] for scheme–C(a) 

 
 
 

 
Figure 8.3(a): Transition graph for Scheme-C(a) 

 
In figure 8.3(a) of scheme-C(a), the graph of system follows 
the priority-driven stride  scheduling scheme where 
scheduler can initiate dealing out any client. The transition 
probability reaches a maximum at some particular quantum 
for an particular client whereas the probability falls down 
when quantum increases. So the state probability remains 
the identical at regular interval when scheduler transits 
among clients and server.  
(b) Let us assume initial probabilities pb1 = 1, pb2 = 0, pb3 = 
0 and pb4 = 0 
 

 
 
 
 
 
 
 
 
 

Table 3(b): Transition Probability Matrices of P[
] for scheme–C(b) 

 
 

 
Figure 8.3(b): Transition graph for Scheme-C(b) 

 
The scheme-C(b) is purely priority-driven stride scheduling 
scheme, which starts from the first process, the state 
probabilities are in up and down pattern. After a constant 
interval of quantum, each client allows processing and 
serving to be high probability and similarly also goes low. 
 
Scheme- D 
Here  b = 0, c = 0, e = 0, a + d = 1, d = 0.256,  So the 
transition probability matrix is: 
 

 
 

Let us assume initial probabilities pb1 = 0.32, pb2 = 0.09, pb3 
= 0.16 and pb4 = 0.21. 

 
Table 4: Transition Probability Matrices of P[ ] 

for scheme–D 

 
 



Shweta Jain et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,549-557 

© 2015-19, IJARCS All Rights Reserved       556 

 
Figure 8.4: Transition graph for Scheme-D 

 
In figure 8.4 represents graph for scheme-D where the 
scheme is somewhat not exactly fair scheduling because of 
weak interactions and services providing by server R to 
clients Ci (i = 1, 2, 3) due to move in opposite direction (R is 
going high but clients jump to be down) as per the 
increasing number of quantum to have indications for the 
system to service poor. 
 
Scheme- E 

 Here  b = 0, d =0, e=0, a + c = 1, a = 0.45 and  c = 
0.55,  So the transition probability  matrix is: 

 
 

Let us assume initial probabilities pb1 = 0.26, pb2 = 0.13, 
pb3= 0.09 and pb4= 0.31. 

 
Table 5: Transition Probability Matrices of P[ ] 

for scheme–E 

 
 

 
Figure 8.5: Transition graph for Scheme-E 

 
The scheme-E graph is shown in fig 8.5 in which the 
quantum distribution takes over the same state or to the next 
state depending on the random output sampling. If the 
number of quantum grows, then the scheme demonstrates 
the state probabilities nearly a constant pattern. This means 
every client get almost equal and fair chance of being 
processed and serviced. It can be somewhat priority-driven 
stride scheduling.  
 
Scheme- F 

Here  b = 0,  e = 0, a + d + c = 1, a = 0.45 ,d = 
0.256 . So the transition probability matrix is: 

 
 

Let us assume initial probabilities pb1 = 0.16,  pb2 = 0.07,  
pb3= 0.11 and pb4= 0.24. 

 
Table 6: Transition Probability Matrices of P[ ] 

for scheme–F 

 
 

 
Figure 8.6: Transition graph for Scheme-F 

 
Scheme-F graph is shown in figure 8.6  in which we found 
that with the increasing number of attempts, the state 
probabilities of clients Ci (i = 1, 2, 3) are dropping 
drastically whereas the state probability of server R is 
moving high of system. So it shows poor  responsiveness 
among clients and server.  
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9. CONCLUSION 

 
This study integrates stride scheduling schemes with priority 
scheme to analysis and simulate with stochastic Markov 
chain model. Firstly observes on graphs of schemes that 
scheme-A, scheme-C(a) and (b) and scheme-E looks 
different than scheme-B, scheme-D and scheme-F. Perhaps 
Scheme-B, scheme-D and scheme-F are performed almost 
same  where poor responsiveness,  weak interaction and not 
much fair among clients and server whereas scheme-E 
performs better than these mentioned scheme. Although   
scheme-A, scheme-C(a) and (b) are extremely well 
response, fairness and less overhead to clients with server as 
compared to other schemes. The overall performance and 
analysis of proposed scheduling scheme indicates that 
scheme-C(a) and scheme-C(b) follow purely priority-driven 
stride scheduling. 
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