
DOI: http://dx.doi.org/10.26483/ijarcs.v8i8.4776
Volume 8, No. 8, September-October 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 549

 ISSN No. 0976-5697

IMPLEMENTATION OF PROBABILITY-BASED PRIORITY-DRIVEN STRIDE
SCHEDULING IN DISTRIBUTED SYSTEM

Shweta Jain

Research Scholar, Faculty of Computer Science
Pacific Academy of Higher Education

and Research University, Udaipur.

Saurabh Jain
Professor,

 Shri Vaishnav Institute of Computer Applications
Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore.

Abstract: Generally fair share scheduling methods is not suitable for I/O bound and interactive applications whereas priority scheduling supports
to execute variety of processes and applications. Stride scheduling is a deterministically fair share scheduling scheme that defines the share of
processor time allocating to a client. This paper proposes priority-driven stride scheduling using stochastic modeling in distributed system that
improves throughput and reduces response time by applying probabilistic study with the concept of fairness in resource distribution. A model-
based simulation study is performed to analyze the transitions of clients onto the processor of this proposed scheme.

Keywords: Client, Distributed system, Fair-share, Markov Chain Model, Scheduler, Scheduling, Server, Stochastic modeling, Stride.

1. INTRODUCTION

Distributed system of independent computers seems as a
single coherent system [1] in which computing systems put
together composed of large number of computing units
connected by high speed network. They have broad
spectrum of systems including databases, media-based
applications, networks, web-servers etc., which can be
accessed by concurrent clients. Schedulers for distributed
system and multithreaded system usually face insufficiency
of resources in which they are ordered to control and service
wide variety of requests for users and applications. At run
time, multiple clients can request the service at the same
time or quickly one after the other. These clients can come
from the same or different location in the system. Due to
rapid demand of new and efficient applications with multi-
user and multitasking environment are requires developing
new scheduling schemes or enhancing exiting ones that
effects on throughput and response time to provide quality
of service across a wide spectrum of systems.
 A distributed scheduler is a resource management
component of a distributed operating system that focuses on
distributing the load of the system among the individual
computing units to enhance overall performance[2]. [3]
introduced load distribution algorithms with a taxonomy of
approaches to the resource management problem providing
a common terminology and classification mechanism
necessary in addressing this problem. This load distribution
environment arises because of the random arrival of clients
and requires their random processing. So that there is a
possibility of several computing units are likely to be idle or
lightly loaded and some others can be heavily loaded, which
would degrade the overall performance. There is always
another possibility that one server or system is idle while a
client is being waited upon at another server [2]. [4]
presented three different load balancing algorithms for
distributed systems that consist of a number of identical
processors and a CSMA communication system by an
analytic model.

[5] Firstly suggested and introduced Stride scheduling
which is a deterministic proportional-share scheme to
allocate resources for client processes and efficiently
supports the flexible resource management concept to
schedule other resources as per processor time. They also
introduced novel hierarchical stride scheduling algorithm
that achieves better throughput accuracy and lower response
time. This fair-share allocation scheduling deals such type of
workload and executes time-consuming or parallel
applications in background. This scheduling is performed
well enough for compute-bound applications whereas
degraded the response time of interactive and I/O-bound
applications. [6] presented a novel implementation of fair-
share stride scheduling using priority scheduler to support
compute-bound and interactive application. [7] suggested
Virtual-Time Round-Robin (VTRR), a proportional share
scheduler that can provide good proportional sharing
accuracy with scheduling overhead and also discussed about
the problems of achieving perfect fairness due to large
numbers of clients with whatever resources they are
allocated among various servers in distributed system.
 [8] presented an event-based stride scheduling
method for time critical collision detection that meets real-
time constraints by balancing and prioritizing computation
spent on intersection tests without starvation. [9] was
adopted symmetrically initiated algorithm in distributed
system. [10] based on the performance trends of load
sharing algorithms and the recommendations for the
selection of a load distribution algorithm. [11], [12 a], [13 b]
also have studied scheduling policies in distributed systems
to find the ways to distribute client processes among various
processors in order to achieve fairness and performance like
minimizing execution time, minimizing communication,
maximizing resource utilization, minimizing response time,
average completion time per application and multiple
independent tasks with load balancing with other overheads.
 [14] and [15] used a Markov chain model for the
study of transition probabilities with random movement of
scheduler to analyze performance of scheduling schemes
like Round Robin(RR) and Multi-level feedback

Shweta Jain et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,549-557

© 2015-19, IJARCS All Rights Reserved 550

Queue(MLFQ). The priority-driven stride scheduling system
proposes smaller waiting and response times to give controls
the resource utilization rates of clients that are proportional
to the relative fair shares allocated by server using markov
chain model in distributed system. [16] and [17] studied
brief of stochastic processes and Markov chain Model.

2. STRIDE SCHEDULING

 Stride scheduling is a deterministic fair-share
allocation mechanism of resources in which tickets are used
to define the share of processor time allocating to a client
[6]. Allocation of resources is in discrete time slices referred
as quantum [5]. Resource rights are considered by ticket
that can be subjected in different amounts and conceded
among clients. Throughput rates for lively clients are
directly proportional to their ticket allocations whereas
response times are inversely proportional to ticket
allocation[5]. This scheduling calculates the time interval
that is referred by stride in which a client must remain
among consecutive allocations that means stride field is
inversely proportional to tickets [5][6]. Let stride be Sti and
two consecutive allocations be ta1 and ta2 in a time quantum
so that Sti = ta2 - ta1.
 Clients are scheduled most frequently those having
shortest stride, twice as quickly those having half stride and
twice slowly those having double stride. These strides are
characterized in virtual time units called passes [6]. So each
client is associated with three state variables tickets, stride,
and pass. Since this scheduling is deterministic that clients
have guaranteed to be scheduled at least once every
complete cycle time or stride [19]. Resource allocation is
performed for the client selection having the least pass and
its pass value is incremented by its stride, so that new value
of pass can be Pass1= Pass + Stride. If more than one client
has the same minimum pass value, then anyone can be
selected.
 Overall this is a fair-share scheduling scheme for
resource management and obtaining responsiveness for
probabilities to converge. But to some extent, perfect
fairness and responsiveness is ideal condition that cannot
achieve due to weak service time, poor processing time and
poor response time in distributed system over the world.
Moreover, this scheduling doesn’t support preemption and
having a high overhead.

3. PRIORITY SCHEDULING

 Priority Scheduling features a priority that
characterizes an order of each client. Generally highest
priority clients schedule first rather than depending upon run
time behaviour of client. Scheduler can use several methods
to determine priorities according to different parameters and
different classes of priorities can also be implemented
depending on the type of client processes. This scheme
provides the required controlling for client process
scheduling in order to execute interactive client processes
efficiently and able to improve the overall fairness. [18]
used priorities to control the execution of systems to meet
given requirements for optimal use of resources and
incorporated scheduling policies in distributed system
although implementation may incur considerable overhead
and complicated executing transitions according to a priority

policy for each client process because situation view is
limited to the rest of the system.

4. PRIORITY-DRIVEN STRIDE SCHEDULING

 This paper proposes to combine stride scheduling
with priority scheme in which priority scheme allows
controlling the preemption on awaken of clients and high
load in distributed system. It also provides scheduling a
client with high priority until it is allocated within its
defined share of tickets. But stride scheduling allocates the
fair processor time and allows a strict control of the client.
Taking advantage of priority scheduling and also report for
starvation, we think of a scheme stride scheduling featuring
priority aging wherein the longer waits of clients in the
queue, the higher its priority becomes. Priority aging
reduces the starvation in scheduling of clients. Waiting time
and response time depend on the priority of the client. Stride
scheduling also supports of dynamic client participation,
dynamic modifications to ticket allocations, and non-
uniform quanta [5].
 A distributed system may have a combination of
heavily and lightly loaded systems. So that migrating a
client process to share or balance load can help. Multiple
clients access resources on a random manner in distributed
system assigning by unique client identification. The
outcomes of accuracy in a proportional-share scheduler can
be considered by measuring the difference between the
specified and actual number of allocations that a client
receives during a series of allocations of tickets [5]. So that
it is naturally impractical to attain this ideal condition
exactly due to quantization. Each client is assigned a time
quantum equal to its ticket share. A client with a larger share
of tickets finds a larger quantum than a client with a small
share of tickets. Running all clients with the same frequency
provides proportional sharing but adjusting the size of their
time quantum [7]. So this scheduler assigns a short time
quantum for high priority clients. This paper gives solution
for implementing priorities based on an analysis of the
system using stochastic model study.

5. THE STOCHASTIC MODEL

 A stochastic process has the Markov property if the
probability distribution of Xn is determined by knowing the
probability distribution of Xn-I [17]. A Markov process is a
stochastic model that has the Markov property. It can be
used to model a random system that changes states
according to a transition rule that only depends on the
current state. The state space S is a discrete space then the
Markov process is called a Markov chain [16][17]. Markov
chain model is applied on proposed scheduling using state
transition probabilities obtaining from the clients movement
over states. A stochastic process {Xn} talking values in a
discrete state space S is called a Markov chain or Markov
property if:

6. THE PROPOSED SYSTEM

https://en.wikipedia.org/wiki/Markov_property�

Shweta Jain et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,549-557

© 2015-19, IJARCS All Rights Reserved 551

 Let P be the probability that the system is in a state
in which at least one client is waiting for service and server
is idle according to the utilization of each server. Suppose
the distributed system has m clients at particular time which
is C1, C2, C3, C4... Cm in queue and {X(n), n ≥ 1} b e
significance of a Markov chain among the state space C1,
C2, C3, C4... Cm and a server R where R is a server state that
serves to clients for various conditions like normal, idle,
blocking, any kind of failures, disturbances or errors occur
which depicts in figure 1 where for each allocation, every
client is specified a fair possibility of getting proportional to
its share of the total number of tickets [5]. Since any
changes to relative ticket allocations are instantly replicated
in the next allocation decision [20]. The queue allocates a
random ticket to each of next coming clients. When a client
do not complete within specified quantum, it shifts to the
queue where clients wait for their turn then scheduler
assigns a new ticket to the remaining client process for its
completion.

Each client is set to have a share of tickets equal to the
required proportional share of the scheduled resource [21].
Still a stride value Sti is determined as the inverse of the
number of tickets which is used to perform a lottery method.
Stride is measured in passes to represent the interval
between times quantum the client executes. So the current
pass value for a particular client is pi where passes is a
virtual time unit. The probability P that a client Ci holding ti
tickets in a lottery with in total T tickets will win the lottery
P = ti / T. The algorithm uses a constant stride1 which
represents the stride for a client with one ticket [5]. Few
assumptions are as follows:
• Clients are initiated with Sti = stride1 / ti and Ci = Sti
• The scheduler selects the client with lowest Si (ties come
arbitrarily).
After executing it, Sti is updated to Sti + f Sti, where f is the
fraction of the allocated time quanta that the client actually
used (f > 0).

Figure 1: Priority-driven Sride Scheduling for Client
Processing

Assuming S be a scheduler so that X(n) be the state of
scheduler of the system at the end of nth quantum [15]
where n = 1,2,3… and the transition of scheduler S is
randomized with m+1 states in nth quantum which is shown
in figure 2. The scheduler S provides stochastically a
quantum of time to each client and next quantum is
resoluted by a random assessment. The S begins with the
client Ci and then goes to Cj where i ≠ j = 1, 2, 3...m.
 Suppose S is at any client Ci (i = 1, 2, 3…m)
having least pass/stride at the end of a quantum, then it is on
Ci+1 or Ci-1 (where i >1) in the next quantum with some
assigning priority. The X happens to inactive when there is
no other client in the queue. System may have a long
waiting queue of clients outside from the server R where
clients get various kinds of services and if one client is over
inside, then a new client is waiting outside or moving to
other computing units or server to enter as to retain
remaining m clients. The server fulfils various services and
requirements of clients according to priority assigned. So
that the transition diagram for any three clients Ci-1, Ci, Ci+1
and server R is given in figure 2.

Figure 2: Transition Diagram for proposed system

Let us defining the transition among the clients by unit-step
transition probabilities for Xn with its respective priorities a,
b, c, d and e are as follows:

So the unit step transition probability matrix (m+1) × (m+1)
to assign priority is:

Shweta Jain et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,549-557

© 2015-19, IJARCS All Rights Reserved 552

with a + b + d + c + e = 1 and (m + 1)(d + e) =1

Let us assume pb be the probability among transition
between server R and clients Ci-1, Ci, Ci+1 .So The state
probabilities for n = 0 are as follows:

The state probabilities after the first quantum are as follows:

Similarly, state probabilities after second quantum are
expressed as follows :

The general expression for n quantum are as follows:

7. SOME RESTRICTED SCHEDULING SCHEMES

 Some restrictions and conditions can be applied of
this proposed scheme as mentioned above that can produce
different scheduling schemes from the general class of expression
in previous section.

SCHEME-A: When a = 0, b = 0, c = 1, d =0, e = 0
 Unit step transition probability matrix (m+1) ×
(m+1) for X(n) of scheme-A which is general class of fair
share stride scheduling scheme according to priority of
clients for all quantum n are as follows:

The initial probabilities at n=0 for scheme-A are:

The state probabilities after the first quantum are:

The generalized expressions of scheme-A for n quantum are:

SCHEME-B: When a = 0, b = 0, e = 0, c + d= 1
 Unit step transition probability matrix (m+1) ×
(m+1) for X(n) of scheme-B which is fair share stride
scheduling scheme according to priority of clients for all
quantum n are as follows:

Such that c + d =1
The initial probabilities at n=0 for scheme-B are:

State probabilities after the first quantum are:

General expressions of scheme-B for nth quantum are:

SCHEME-C: WHEN b = 0, c = 0, d =0, e =0, a = 1

This general class scheduling scheme referred
Priority-driven Stride Scheduling scheme for all quantum n.

Shweta Jain et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,549-557

© 2015-19, IJARCS All Rights Reserved 553

Unit step transition probability matrix to assign priority
(m+1) × (m+1) for X(n) of scheme-C is

The initial probabilities at n=0 for scheme-C are:

The state probabilities after the first quantum are:

The general expressions of scheme-C for n quantum are:

SCHEME-D: When b = 0, c = 0, e = 0, a + d = 1

General class has priority-driven stride scheduling
scheme for all quantum n. Unit step transition probability
matrix to assign priority (m+1) × (m+1) for X(n) of scheme-D
is

Such that a +d =1.
The initial probabilities at n=0 for scheme-D are

The state probabilities after the first quantum are:

The general expressions of scheme-D for nth quantum are:

SCHEME-E: When b = 0, d =0, e=0, a + c = 1

 Unit step transition probability matrix to assign
priority (m+1) × (m+1) for X(n) of scheme-E is

The initial probabilities at n=0 for scheme-E are:

State probabilities after the first quantum are:

General expressions of scheme-E for nth quantum are:

SCHEME-F: When b = 0, e = 0, a + c + d = 1 .
 Unit step transition probability matrix to assign
priority (m+1) × (m+1) for X(n) of scheme-F is

The initial probabilities at n=0 for scheme-F are

State probabilities after the first quantum are:

General expressions of scheme-F for nth quantum are:

Shweta Jain et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,549-557

© 2015-19, IJARCS All Rights Reserved 554

8. SIMULATION STUDY AND GRAPHICAL
ANALYSIS

 We know that P be the probability that the system
is in a state in which at least one client is waiting for service
and server is idle according to the utilization of each server.
We can estimate P using probabilistic analysis and plot a
graph against system utilization. For moderate system
utilization, value of P is high, i.e., at least someone is idle.
Hence, performance can be improved by fair sharing of
resources to the clients. Result from imposing or restricting
priorities between transitions. However for fairly
demanding, the design of the system executes transitions
having a set of priorities according to a priority policy using
Markov chain model. So all the scheduling schemes are
compared and the simulation study is performed on above
mentioned various schemes as follows:

Scheme- A

Here a = b = d = e = 0, c =1, So the transition
probability matrix is:

Let us assume initial probabilities pb1 = 0.2, pb2 = 0.12, pb3
= 0.25 and pb4 = 0.17

Table 1: Transition Probability Matrices of P[
] for scheme–A

Figure 8.1: Transition graph for Scheme-A

Figure 8.1 depicts that variations in the quantum do not
influence the state probabilities Pi. The scheme-A gives fair
chance to process every client as assigning priority.

Scheme- B

Here a = b = e = 0, c + d = 1, d = 0.256 , So the
transition probability matrix is:

Let us assume initial probabilities pb1 = 0.24, pb2 =

0.06, pb3 = 0.14 and pb4 = 0.19

Table 2: Transition Probability Matrices of P[]

for scheme–B

Figure 8.2: Transition graph for Scheme-B

Graph of scheme-B is representing by figure 8.2 which
indicates clients Ci (i = 1, 2, 3) and server R during
processing. The proposed scheduler in the system performs
transition to clients and server. The state probabilities of
client/ clients over a large number of quantum are dropping
quickly and the probability of server is going to
comparatively high. This scheme specifies that the clients
and server take extra time to finish, delay in processing
becomes large enough and not fair enough to use resources.

Scheme- C
 Here a = 1, b = 0, c = 0, d =0, e =0, So the
transition probability matrix is:

Shweta Jain et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,549-557

© 2015-19, IJARCS All Rights Reserved 555

In this scheme, we can consider two cases having different
probabilities, they are as follows:
(a) Let us assume initial probabilities pb1 = 0.19, pb2 = 0.23,
pb3 = 0.06 and pb4 = 0.12.

Table 3(a): Transition Probability Matrices of P[

] for scheme–C(a)

Figure 8.3(a): Transition graph for Scheme-C(a)

In figure 8.3(a) of scheme-C(a), the graph of system follows
the priority-driven stride scheduling scheme where
scheduler can initiate dealing out any client. The transition
probability reaches a maximum at some particular quantum
for an particular client whereas the probability falls down
when quantum increases. So the state probability remains
the identical at regular interval when scheduler transits
among clients and server.
(b) Let us assume initial probabilities pb1 = 1, pb2 = 0, pb3 =
0 and pb4 = 0

Table 3(b): Transition Probability Matrices of P[
] for scheme–C(b)

Figure 8.3(b): Transition graph for Scheme-C(b)

The scheme-C(b) is purely priority-driven stride scheduling
scheme, which starts from the first process, the state
probabilities are in up and down pattern. After a constant
interval of quantum, each client allows processing and
serving to be high probability and similarly also goes low.

Scheme- D
Here b = 0, c = 0, e = 0, a + d = 1, d = 0.256, So the
transition probability matrix is:

Let us assume initial probabilities pb1 = 0.32, pb2 = 0.09, pb3
= 0.16 and pb4 = 0.21.

Table 4: Transition Probability Matrices of P[]

for scheme–D

Shweta Jain et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,549-557

© 2015-19, IJARCS All Rights Reserved 556

Figure 8.4: Transition graph for Scheme-D

In figure 8.4 represents graph for scheme-D where the
scheme is somewhat not exactly fair scheduling because of
weak interactions and services providing by server R to
clients Ci (i = 1, 2, 3) due to move in opposite direction (R is
going high but clients jump to be down) as per the
increasing number of quantum to have indications for the
system to service poor.

Scheme- E

 Here b = 0, d =0, e=0, a + c = 1, a = 0.45 and c =
0.55, So the transition probability matrix is:

Let us assume initial probabilities pb1 = 0.26, pb2 = 0.13,
pb3= 0.09 and pb4= 0.31.

Table 5: Transition Probability Matrices of P[]

for scheme–E

Figure 8.5: Transition graph for Scheme-E

The scheme-E graph is shown in fig 8.5 in which the
quantum distribution takes over the same state or to the next
state depending on the random output sampling. If the
number of quantum grows, then the scheme demonstrates
the state probabilities nearly a constant pattern. This means
every client get almost equal and fair chance of being
processed and serviced. It can be somewhat priority-driven
stride scheduling.

Scheme- F

Here b = 0, e = 0, a + d + c = 1, a = 0.45 ,d =
0.256 . So the transition probability matrix is:

Let us assume initial probabilities pb1 = 0.16, pb2 = 0.07,
pb3= 0.11 and pb4= 0.24.

Table 6: Transition Probability Matrices of P[]

for scheme–F

Figure 8.6: Transition graph for Scheme-F

Scheme-F graph is shown in figure 8.6 in which we found
that with the increasing number of attempts, the state
probabilities of clients Ci (i = 1, 2, 3) are dropping
drastically whereas the state probability of server R is
moving high of system. So it shows poor responsiveness
among clients and server.

Shweta Jain et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,549-557

© 2015-19, IJARCS All Rights Reserved 557

9. CONCLUSION

This study integrates stride scheduling schemes with priority
scheme to analysis and simulate with stochastic Markov
chain model. Firstly observes on graphs of schemes that
scheme-A, scheme-C(a) and (b) and scheme-E looks
different than scheme-B, scheme-D and scheme-F. Perhaps
Scheme-B, scheme-D and scheme-F are performed almost
same where poor responsiveness, weak interaction and not
much fair among clients and server whereas scheme-E
performs better than these mentioned scheme. Although
scheme-A, scheme-C(a) and (b) are extremely well
response, fairness and less overhead to clients with server as
compared to other schemes. The overall performance and
analysis of proposed scheduling scheme indicates that
scheme-C(a) and scheme-C(b) follow purely priority-driven
stride scheduling.

REFERENCES

[1]. Tanenbaum, Andrew S., Steen, Maarten van, Distributed

systems: principles and paradigms, Pearson Prentice Hall Inc.
and Dorling Kindersley Publishing(India) Inc., 2002.

[2]. Shounak Chakraborty and Ajoy Kumar Khan, A Study Of
Load Distribution Algorithms In Distributed Scheduling,
IJRET: International Journal of Research in Engineering and
Technology , Volume: 02 Special Issue: 02, Dec-2011.

[3]. Casavant T.L. and Kuhl J.G., "A taxonomy of scheduling in
general-purpose distributed computing systems", IEEE
Transactions on Software Engineering, pp. 141-154, 1988.

[4]. Livny M. and Melman M., "Load balancing in homogeneous
broadcast distributed systems", Proceedings of the ACM
Computer Network Performance Symposium, Vol. 11, Issue
1, pp. 47-55, 1982.

[5]. Waldspurger, C.A. and Weihl, W.E., "Stride scheduling:
deterministic proportional-share resource management",
Technical Report MIT/LCS/TM-528, Massachusetts Institute
of Technology, MIT Laboratory for Computer Science.,1995.

[6]. Moal D. L., Ikumo M., Tsumura T., Goshima M., Mori S.,
Nakashima Y., Kitamura T. and Tomita S., "Priority enhanced
stride scheduling", IPSJ Transactions on High Performance
Computing Systems, Vol. 43, No. SIG 6(HPS 5), pp. 99-111,
Sept. 2002.

[7]. Nieh J., Vaill C. and Zhong H., "Virtual-time round-robin: an
o(1) proportional share scheduler", Proceedings of the General
Track: 2001 USENIX Annual Technical Conference (The
USENIX Association), pp. 245-259, June 25 - 30 2001.

[8]. Coming D. S. and Staadt O. G., "Stride scheduling for time-
critical collision detection", Proceedings of the ACM

Symposium on Virtual Reality Software and Technology(
VRST-2007), pp. 5-7, Nov. 2007.

[9]. Krueger A. and Livny M., "The diverse objectives of
distributed scheduling policies", proceedings of 7th
international conference of distributed computing systems,
IEEE CS, pp. 242-249, 1987.

[10]. N.G. Shivaratri and M. Singhal. “Advanced Concepts in
Operating Systems”. Tata McGraw Hill Education Pvt. Ltd.,
ed. 30, 2012.

[11]. Karatza, H.D., Simulation Study of Task Scheduling and
Resequencing in a Multiprocessing System. Simulation
Journal, Special Issue: Modelling and Simulation of Computer
Systems and Networks: Part -Two, SCS, Vol. 4, Issue 68, pp.
241-247, 1997.

[12]. Karatza, H.D., Scheduling Strategies for Multitasking in a
Distributed System., Proceedings of the 33rd Annual
Simulation Symposium, IEEE Computer Society, pp. 83-90 ,
16-20 April 2000.

[13]. Karatza, H.D., A Comparative Analysis of Scheduling
Policies in a Distributed System using Simulation,
International Journal of Simulation Systems, Science &
Technology, UK Simulation Society, Vol. 1(1-2), pp. 12-20,
2000.

[14]. Shukla, D., Jain, S. and Singhai, R., "A Markov Chain Model
for the analysis of Round Robin scheduling scheme",
International Journal of Advanced Networking and
Applications, Vol.1, No.1, pp. 1-7, 2009.

[15]. Jain, S. and Jain, S., "Probability-Based Analysis to
Determine the Performance of Multilevel Feedback Queue
Scheduling", International Journal Advanced Networking and
Applications(IJANA), Vol. 08, Issue 03, pp. 3044-3069,
2016.

[16]. Ross S. M., Stochastic Processes, 2nd ed. New York: J. Wiley
and Sons, 1996.

[17]. J. Medhi, Stochastic processes, Ed. 4, Wiley Limited (Fourth
Reprint), New Delhi, 1991.

[18]. Basu A., Bensalem S., Peled D., and Sifakis J., "Priority
Scheduling of Distributed Systems Based on Model
Checking", CAV 2009, pp 79-93, 2009.

[19]. Andrew Wang, Lottery and stride scheduling, July 17, 2011,
available on
“http://www.umbrant.com/blog/2011/lottery_stride_schedulin
g.html”.

[20]. Waldspurger, C.A. and Weihl, W.E., Lottery Scheduling:
Flexible Proportional-Share Resource Management,
Proceedings of the First Symposium on Operating System
Design and Implementation, MIT Laboratory for Computer
Science, November 1994.

[21]. Lindberg M., "A survey of reservation-based scheduling",
Department of Automatic Control, Lund Institute of
Technology, pp. 1-33, October 2007.

	2. STRIDE SCHEDULING
	3. PRIORITY SCHEDULING
	4. PRIORITY-DRIVEN STRIDE SCHEDULING
	5. THE STOCHASTIC MODEL
	7. SOME RESTRICTED SCHEDULING SCHEMES
	8. SIMULATION STUDY AND GRAPHICAL ANALYSIS
	9. CONCLUSION
	This study integrates stride scheduling schemes with priority scheme to analysis and simulate with stochastic Markov chain model. Firstly observes on graphs of schemes that scheme-A, scheme-C(a) and (b) and scheme-E looks different than scheme-B, sche...

	REFERENCES

