
��������	�
����	�
�������������

��� ����!��"�����#�������

�$#$��!%�&�&$��

������'���(���������)))��*���������

© 2010, IJARCS All Rights Reserved 63

ISSN No. 0976-5697

Performance of Classification Algorithms in Heart Disease Data

P.Santhi*
Lecturer, Computer Science and engineering

Paavai Engineering College

Namakkal, India

mssanthiboopathicse@gmail.com

Dr..V.Murali Bhaskaran
Principal

Paavai College of Engineering

Namakkal, India

Murali66@gmail.com

__
Abstract: The healthcare industry is one of the world largest and fastest growing industries. In healthcare industries having the large amounts of

data, it maintains general health in populations and communities through the promotion of healthy behavior and prevention of disease. In

healthcare industry the heart disease is most challenging problem. In this paper proposes the classification algorithms to evaluate the

performance of the classifiers by using heart disease prediction data. We evaluate the performance of the classifiers of Bayes (BayesNet, Naïve

Bayes, Naïve Bayes updateable), functions (Logistics, Multilayer Perception, RBF Network, SMO, simple Logistics), Lazy (IB1, IBK, Kstar,

LWL), Meta(AdaBoost, Attribute Selected Classifier, Bagging, CVParameter Selection, Classification via Regression, Decorate, Filtered

Classifier, Grading, LogitBoost, Multi BoostAB, Multiclass Classifier, Multischeme, Ordinal class classifier, Raced Incremental Logit Boost,

Random Committ, Stacking, StackingC), Misc(Hyper Pipes, VFI), Rule(conjunctive rule, Decision Table, JRip, OneR, NNge, PART, Ridor,

ZeroR), trees(Decision stump, J48, NB Tree, REP Tree, Random Forest, Random Tree).The prediction accuracy of the classifiers are evaluated

using 10 folds cross validation. The final result shows the performance of the classifiers based on the prediction Accuracy.

Keywords: Classification, Bayes, Lazy, Rule, Meta, Tree.

I. INTRODAUCTION

In healthcare industry the heart disease is most

challenging problem in the real world [4]. It is having the

large amounts of data. Heart disease is a general name for a

wide variety of diseases, disorders and conditions that affect

the heart and sometimes the blood vessels as well. Heart

disease is the number one killer of women and men.

Symptoms of heart disease vary depending on the specific

type of heart disease. A classic symptom of heart disease is

chest pain. However, with some forms of heart disease, such

as atherosclerosis, there may be no symptoms in some

people until life-threatening complications develop. Any of a

number of conditions that can be affects the heart. Some

examples include coronary heart disease, heart attack,

cardiovascular disease, pulmonary heart disease and high

blood pressure. Heart disease is a big problem in today

society because of lifestyle issues such as poor diet, lack of

exercise and smoking. This paper evaluates the performance

of the classifiers by using the heart disease data [1]. The

performance will be evaluated by using the classifiers of

functions, Lazy, Meta, Rule and Tree. In final, the result

shows the performance of classifiers in increasing data set

size. The prediction accuracy of the classifiers is evaluated

based on the 10 folds cross validation.

II. EVALUATION STEPS

 In this system having the following steps for evaluating

the performance of the classifiers:

 A. Data set Collection

 B. Data Preprocessing

 C. Classification

 D. Performance Evaluation

A. Data Source

 In this paper the performance of the classifiers are

evaluated by using the heart disease data. In this data have

been collected from Knowledge discovery data set in the

Switzerland data base. It contains the 107 Instances and 14

attributes [4]. The following Visualization shows the ranges

of each attributes in heart disease data.

Fig.1. Visualization of Attributes

B. Data Preprocessing

 Data pre-processing is an often neglected but

important step in the data mining process[3]. The phrase

"Garbage In, Garbage Out" is particularly applicable to data

mining and machine learning projects. Data gathering methods

are often loosely controlled, resulting in out-of-range values,

impossible data combinations, missing values, etc. Analyzing

data that has not been carefully screened for such problems

can produce misleading results. Thus, the representation and

quality of data is first and foremost before running an analysis.

If there is much irrelevant and redundant information

present or noisy and unreliable data, then knowledge discovery

during the training phase is more difficult. Data preparation

and filtering steps can take considerable amount of processing

time. Data pre-processing includes cleaning, normalization,

transformation, feature extraction and selection, etc. The

product of data pre-processing is the final training set [1]. In

preprocessing the data cleaning is the process of removing the

noise, irrelevant data and removing the inconsistency. It is also

P.Santhi et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,63-70

© 2010, IJARCS All Rights Reserved 64

having the data integration, data transformation and data

reduction.

C. Classification

The classification is the method of supervised

learning [6]. It is the task of generalizing known structure to

apply to new data [6]. In this classification contains the

classifiers of Bayes, functions, Lazy, Meta, Misc and Tree

classifiers [7].

1. Building Bayes Classifiers Algorithm

a. BayesNet: Bayes Network learning using various searches

algorithms and quality measures.

OPTIONS

BIFFile -- Set the name of a file in BIF XML format. A Bayes

network learned from data can be compared with the Bayes

network represented by the BIF file. Statistics are calculated

the number of missing and extra arcs.

Debug -- If set to true, classifier may output additional info to

the console.

Estimator -- Select Estimator algorithm for finding the

conditional probability tables of the Bayes Network.

Search Algorithm -- Select method used for searching network

structures.

Use ADTree -- When ADTree (the data structure for

increasing speed on counts, not to be confused with the

classifier under the same name) is used learning time goes

down typically. However, because ADTrees are memory

intensive, memory problems may occur. Switching this option

off makes the structure learning algorithms slower, and run

with less memory. By default, ADTrees are used.

b. Naïve Bayes: The Class is used for a Naive Bayes classifier

using estimator classes. Numeric estimator precision values

are chosen based on analysis of the training data. For this

reason, the classifier is not an UpdateableClassifier (which in

typical usage are initialized with zero training instances) -- if

you need the Updateable Classifier functionality, use the

NaiveBayes Updateable classifier [8]. The Naive Bayes

Updateable classifier will use a default precision of 0.1 for

numeric attributes when build Classifier is called with zero

training instances.

OPTIONS

Debug -- If set to true, classifier may output additional info to

the console.

Use Kernel Estimator -- Use a kernel estimator for numeric

attributes rather than a normal distribution.

Use Supervised Discretization -- Use supervised discretization

to convert numeric attributes to nominal ones.

c. Naïve Bayes Uptateable: The Class is used for a Naive

Bayes classifier using estimator classes. This is the updateable

version of Naïve Bayes. This classifier will use a default

precision of 0.1 for numeric attributes when build Classifier is

called with zero training instances.

OPTIONS

Debug -- If set to true, classifier may output additional info to

the console.

Use KernelEstimator -- Use a kernel estimator for numeric

attributes rather than a normal distribution.

Use SupervisedDiscretization -- Use supervised discretization

to convert numeric attributes to nominal ones.

2. Building Function Classifiers Algorithm

a. Logistic: The Class is used for building and using a

multinomial logistic regression model with a ridge estimator.

If there are k classes for n instances with m attributes, the

parameter matrix B to be calculated will be an m*(k-1) matrix.

In order to find the matrix B for which L is minimized, a

Quasi-Newton Method is used to search for the optimized

values of the m*(k-1) variables. Note that before we use the

optimization procedure, we 'squeeze' the matrix B into a m*(k-

1) vector. Although original Logistic Regression does not deal

with instance weights, we modify the algorithm a little bit to

handle the instance weights.

OPTIONS

Debug -- Output debug information to the console.

Max Its -- Maximum number of iterations to perform.

Ridge -- Set the Ridge value in the log-likelihood.

b. Multi Layer Perception : A Classifier uses the back

propagation to classify the instances. It is used for test the

neural network.

c. RBF Network: The Class that implements a normalized

Gaussian radial basis function network. It uses the k-means

clustering algorithm to provide the basis functions and learns

either a logistic regression (discrete class problems) or linear

regression (numeric class problems) on top of that.

d. SMO: It Implements the John Platt's sequential minimal

optimization algorithm for training a support vector classifier.

This implementation globally replaces all missing values and

transforms nominal attributes into binary ones. It also

normalizes all attributes by default. (In that case the

coefficients in the output are based on the normalized data, not

the original data --- this is important for interpreting the

classifier.) Multi-class problems are solved using pair wise

classification.

To obtain proper probability estimates, use the option

that fits logistic regression models to the outputs of the support

vector machine. In the multi-class case the predicted

probabilities are coupled using Hastie and Tibshirani's

pairwise coupling method.

OPTIONS

Build LogisticModels -- Whether to fit logistic models to the

outputs (for proper probability estimates).

c -- The complexity parameter C.

Cache Size -- The size of the kernel cache (should be a prime

number). Use 0 for full cache.

Debug -- If set to true, classifier may output additional info to

the console.

Epsilon -- The epsilon for round-off error (shouldn't be

changed).

Exponent -- The exponent for the polynomial kernel.

Feature Space Normalization -- Whether feature-space

normalization is performed (only available for non-linear

polynomial kernels).

Filter Type -- Determines how/if the data will be transformed.

Gamma -- The value of the gamma parameter for RBF kernels.

Lower Order Terms -- Whether lower order polyomials are

also used (only available for non-linear polynomial kernels).

P.Santhi et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,63-70

© 2010, IJARCS All Rights Reserved 65

Num Folds -- The number of folds for cross-validation used to

generate training data for logistic models (-1 means use

training data).

Random Seed -- Random number seed for the cross-validation.

Tolerance Parameter -- The tolerance parameter (shouldn't be

changed).

Use RBF -- Whether to use an RBF kernel instead of a

polynomial one.

e. Simple Logistic: The Classifier is for building linear logistic

regression models. LogitBoost with simple regression

functions as base learners is used for fitting the logistic

models. The optimal number of LogitBoost iterations to

perform is cross-validated, which leads to automatic attribute

selection.

OPTIONS

Debug -- If set to true, classifier may output additional info to

the console.

Error On Probabilities -- Use error on the probabilties as error

measure when determining the best number of LogitBoost

iterations. If set, the number of Logit Boost iterations is

chosen that minimizes the root mean squared error (either on

the training set or in the cross-validation, depending on

useCrossValidation).

Heuristic Stop -- If heuristicStop > 0, the heuristic for greedy

stopping while cross-validating the number of LogitBoost

iterations is enabled. This means LogitBoost is stopped if no

new error minimum has been reached in the last heuristicStop

iterations. It is recommended to use this heuristic, it gives a

large speed-up especially on small datasets. The default value

is 50.

Max BoostingIterations -- Sets the maximum number of

iterations for LogitBoost. Default value is 500, for very

small/large datasets a lower/higher value might be preferable.

Num BoostingIterations -- Set fixed number of iterations for

LogitBoost. If >= 0, this sets the number of LogitBoost

iterations to perform. If < 0, the number is cross-validated or a

stopping criterion on the training set is used (depending on the

value of useCrossValidation).

Use CrossValidation -- Sets whether the number of LogitBoost

iterations is to be cross-validated or the stopping criterion on

the training set should be used. If not set (and no fixed number

of iterations was given), the number of LogitBoost iterations is

used that minimizes the error on the training set

(misclassification error or error on probabilities depending on

errorOnProbabilities).

3. Building Lazy Classifiers Algorithm

a. IB1: Nearest-neighbour classifier. Uses normalized

Euclidean distance to find the training instance closest to the

given test instance, and predicts the same class as this training

instance. If multiple instances have the same (smallest)

distance to the test instance, the first one found is used.

OPTIONS

 Debug -- If set to true, classifier may output additional info to

the console.

b. IBK: Storing and using specific instances improves the

performance of several supervised learning algorithms. These

include algorithms that learn decision trees, classification

rules, and distributed networks. However, no investigation has

analyzed algorithms that use only specific instances to solve

incremental learning tasks [8]. In this paper, we describe a

framework and methodology, called instance-based learning

that generates classification predictions using only specific

instances. Instance-based learning algorithms do not maintain

a set of abstractions derived from specific instances.

This approach extends the nearest neighbor

algorithm, which has large storage requirements. We describe

how storage requirements can be significantly reduced with, at

most, minor sacrifices in learning rate and classification

accuracy. While the storage-reducing algorithm performs well

on several real-world databases, its performance degrades

rapidly with the level of attribute noise in training instances.

Therefore, we extended it with a significance test to

distinguish noisy instances. This extended algorithm's

performance degrades gracefully with increasing noise levels

and compares favorably with a noise-tolerant decision tree

algorithm.

C. . KStar: K* is an instance-based classifier, that is the class

of a test instance is based upon the class of those training

instances similar to it, as determined by some similarity

function. It differs from other instance-based learners in that it

uses an entropy-based distance function. The use of entropy as

a distance measure has several benefits[7]. Amongst other

things it provides a consistent approach to handling of

symbolic attributes, real valued attributes and missing values.

The approach of taking all possible transformation paths is

discussed. We describe K*, an instance-based learner which

uses such a measure and results are presented which compare

favorably with several machine learning algorithms.

d. LWL

It uses an instance-based algorithm to assign instance

weights which are then used by a specified Weighted Instances

Handler. It is used for classification (e.g. using naive Bayes) or

regression (e.g. using linear regression).

 Option Description

KNN How many

neighbours are used

to determine the

width of the

weighting function

(<= 0 means all

neighbours).

classifier The base classifier to

be used.

debug If set to true, classifier

may output additional

info to the console.

Nearest

NeighbourSearchAlgorithm

The nearest neighbour

search algorithm to

use (Default:

LinearNN).

Weighting Kernel Determines weighting

function. [0 = Linear,

1 = Epnechnikov,2 =

Tricube, 3 = Inverse,

4 = Gaussian and 5 =

Constant. (default 0 =

Linear)].

P.Santhi et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,63-70

© 2010, IJARCS All Rights Reserved 66

4. Building Lazy Classifiers Algorithm

a. AdaBoost: The Class is used for boosting a nominal class

classifier using the Adaboost M1 method. Only nominal class

problems can be tackled. Often dramatically improves

performance, but sometimes overfits.

OPTIONS

Classifier -- The base classifier to be used.

Debug -- If set to true, classifier may output additional info to

the console.

Num Iterations -- The number of iterations to be performed.

Seed -- The random number seed to be used.

Use Resampling -- Whether resampling is used instead of

reweighting.

Weight Threshold -- Weight threshold for weight pruning.

b. Attribute Selected Classifier: Dimensionality of training and

test data is reduced by attribute selection before being passed

on to a classifier[8].

OPTIONS

Classifier -- The base classifier to be used.

Debug -- If set to true, classifier may output additional info to

the console.

Evaluator -- Set the attribute evaluator to use. This evaluator is

used during the attribute selection phase before the classifier is

invoked.

Search -- Set the search method. This search method is used

during the attribute selection phase before the classifier is

invoked.

c.Bagging: The Class for bagging classifier is used to reduce

variance. We can do classification and regression depending

on the base learner.

d. CV Parameter Selection: This Class is used performing the

parameter selection by cross-validation for any classifier.

e. Classification via Regression: This Class is used for doing

classification using regression methods. Class is binarized and

one regression model is built for each class value.

OPTIONS

Classifier -- The base classifier to be used.

Debug -- If set to true, classifier may output additional info to

the console.

f. Decorate: DECORATE is a meta-learner for building

diverse ensembles of classifiers by using specially constructed

artificial training examples. Comprehensive experiments have

demonstrated that this technique is consistently more accurate

than the base classifier, Bagging and Random Forests.

Decorate also obtains higher accuracy than Boosting on small

training sets, and achieves comparable performance on larger

training sets.

g. Filtered Classifier: This Class is used for running an

arbitrary classifier on data that has been passed through an

arbitrary filter. Like the classifier, the structure of the filter is

based exclusively on the training data and test instances will

be processed by the filter without changing their structure.

OPTIONS

Classifier -- The base classifier to be used.

Debug -- If set to true, classifier may output additional info to

the console.

Filter -- The filter to be used.

h. Grading: It Implements Grading. The base classifiers are

"graded".

OPTIONS

Classifiers -- The base classifiers to be used.

Debug -- If set to true, classifier may output additional info to

the console.

Meta Classifier -- The meta classifiers to be used.

Num Folds -- The number of folds used for cross-validation.

Seed -- The random number seed to be used.

i. Logit boost: This Class is used for performing additive

logistic regression. This class performs classification using a

regression scheme as the base learner, and can handle multi-

class problems.

j. MultiBoostAB: This Class is used for boosting a classifier

using the Multi Boosting method. Multi Boosting is an

extension to the highly successful AdaBoost technique for

forming decision committees. Multi Boosting can be viewed

as combining AdaBoost with wagging. It is able to harness

both Ada Boost's high bias and variance reduction with

wagging's superior variance reduction. Using C4.5 as the base

learning algorithm, Multi-boosting is demonstrated to produce

decision committees with lower error than either AdaBoost or

wagging significantly more often than the reverse over a large

representative cross-section of UCI data sets. It offers the

further advantage over AdaBoost of suiting parallel execution.

K. Multi class classifier: A meta classifier is used for handling

multi-class datasets with 2-class classifiers. This classifier is

also capable of applying error correcting output codes for

increased accuracy.

OPTIONS

Classifier -- The base classifier to be used.

Debug -- If set to true, classifier may output additional info to

the console.

Method -- Sets the method to use for transforming the multi-

class problem into several 2-class ones.

Random Width Factor -- Sets the width multiplier when using

random codes. The number of codes generated will be thus

number multiplied by the number of classes.

Seed -- The random number seed to be used.

l. Multischeme: This Class is for selecting a classifier from

among several using cross validation on the training data or

the performance on the training data. Performance is measured

based on percent correct (classification) or mean-squared error

(regression).

OPTIONS

Classifiers -- The classifiers to be chosen from.

Debug -- Whether debug information is output to console.

Num Folds -- The number of folds used for cross-validation (if

0, performance on training data will be used).

Seed -- The seed used for randomizing the data for cross-

minChunkSize and grow twice as large for as many times as

they are less than or equal to the maximum size.

P.Santhi et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,63-70

© 2010, IJARCS All Rights Reserved 67

Min ChunkSize -- The minimum number of instances to train

the base learner with.

Pruning Type -- The pruning method to use within each

committee. Log likelihood pruning will discard new models

m. Stacking: It combines the several classifiers using the

stacking method.

OPTIONS

Classifiers -- The base classifiers to be used.

Debug -- If set to true, classifier may output additional info to

the console.

Meta Classifier -- The meta classifiers to be used.

Num Folds -- The number of folds used for cross-validation.

Seed -- The random number seed to be used.

n. StackingC: It requires meta classifier to be a numeric

prediction scheme.

OPTIONS

Classifiers -- The base classifiers to be used.

Debug -- If set to true, classifier may output additional info to

the console.

Meta Classifier -- The meta classifiers to be used.

5. Building Rule Classifiers

a. Conjunction Rule: This class implements a single

conjunctive rule learner that can predict for numeric and

nominal class labels. A rule Consists of antecedents "AND"ed

together and the consequent (class value) for the

classification/regression. In this case, the consequent is the

distribution of the available classes (or mean for a numeric

value) in the dataset. If the test instance is not covered by this

rule, then it's predicted using the default class

distributions/value of the data not covered by the rule in the

training data [6]. This learner selects an antecedent by

computing the Information Gain of each antecedent and prunes

the generated rule using Reduced Error Pruning (REP) or

simple pre-pruning based on the number of antecedents. For

classification, the Information of one antecedent is the

weighted average of the entropies of both the data covered and

not covered by the rule.

For regression, the Information is the weighted average of the

mean-squared errors of both the data covered and not covered

by the rule.

In pruning, weighted average of the accuracy rates on

the pruning data is used for classification while the weighted

average of the mean-squared errors on the pruning data is used

for regression.

OPTIONS

Debug -- If set to true, classifier may output additional info to

the console.

Exclusive -- Set whether to consider exclusive expressions for

nominal attribute splits.

Folds -- Determines the amount of data used for pruning. One

fold is used for pruning, the rest for growing the rules.

Min No -- The minimum total weight of the instances in a rule.

Num Antds -- Set the number of antecedents allowed in the

rule if pre-pruning is used. If this value is other than -1, then

pre-pruning will be used, otherwise the rule uses reduced-error

pruning.

b. Decision Table: The Class for building and using a simple

decision table majority classifier. It evaluates feature subsets

using best-first search and can use cross-validation for

evaluation. There is a set of methods that can be used in the

search phase (E.g.: Best First, Rank Search, Genetic Search)

and we may also use LBk to assist the result. In this

experiment, we

Choose the cross Val = 1; search Method = Best First and

useIBk = False

c. JRip: This class implements a propositional rule learner,

Repeated Incremental Pruning to Produce Error Reduction

(RIPPER), which was proposed by William W. Cohen as an

optimized version of IREP.

d. NNge: Nearest-neighbor-like algorithm using non-nested

generalized exemplars (which are hyperrectangles that can be

viewed as if-then rules).

e. OneR: Class for building and using a 1R classifier; in other

words, uses the minimum-error attribute for prediction,

discretizing numeric attributes.

f. PART: The Class for generating a PART decision list. It

uses separate-and-conquer. Builds a partial C4.5 decision tree

in each iteration and makes the "best" leaf into a rule.

g. Ridor: It is the implementation of a RIpple-DOwn Rule

learner. It generates a default rule first and then the exceptions

for the default rule with the least (weighted) error rate. Then it

generates the "best" exceptions for each exception and iterates

until pure. Thus it performs a tree-like expansion of

exceptions.

 The exceptions are a set of rules that predict classes

other than the default. IREP is used to generate the exceptions.

h. ZeroR: The Class is for building and using a 0-R classifier.

It predicts the mean (for a numeric class) or the mode (for a

nominal class).

OPTIONS

debug -- If set to true, classifier may output additional info to

the console.

6. Building Tree Classifiers Algorithm

a. J48: The Class is for generating a pruned or un pruned C4.5

decision tree.

OPTIONS

Binary Splits -- Whether to use binary splits on nominal

attributes when building the trees.

Confidence Factor -- The confidence factor used for pruning

(smaller values incur more pruning).

Debug -- If set to true, classifier may output additional info to

the console.

Min NumObj -- The minimum number of instances per leaf.

Num Folds -- Determines the amount of data used for reduced-

error pruning. One fold is used for pruning, the rest for

growing the tree.

Reduced ErrorPruning -- Whether reduced-error pruning is

used instead of C.4.5 pruning.

Save Instance Data -- Whether to save the training data for

visualization.

P.Santhi et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,63-70

© 2010, IJARCS All Rights Reserved 68

Seed -- The seed used for randomizing the data when reduced-

error pruning is used.

Sub tree Raising -- Whether to consider the subtree raising

operation when pruning.

Un pruned -- Whether pruning is performed.

Use Laplace -- Whether counts at leaves are smoothed based

on Laplace.

b. LMT: Classifier for building 'logistic model trees', which are

classification trees with logistic regression functions at the

leaves. The algorithm can deal with binary and multi-class

target variables, numeric and nominal attributes and missing

values.

c. NB Tree: The Class is for generating a decision tree with

naive Bayes classifiers at the leaves.

OPTIONS

Debug -- If set to true, classifier may output additional info to

the console.

d. Random Forest: The Class is used for constructing a forest

of random trees.

OPTIONS

Debug -- If set to true, classifier may output additional info to

the console.

Num Features -- The number of attributes to be used in

random selection (see RandomTree).

Num Trees -- The number of trees to be generated.

 Seed -- The random number seed to be used.

e. Random Tree: The Class for constructing a tree that

considers K randomly chosen attributes at each node. It

performs no pruning.

OPTIONS

K Value -- Sets the number of randomly chosen attributes.

Debug -- Whether debug information is output to the console.

Min Num -- The minimum total weight of the instances in a

leaf.

Seed -- The random number seed used for selecting attributes.

f. Decision Stump: The Class for building and using a decision

stump. It is used in conjunction with a boosting algorithm.

Missing is treated as a separate value.

OPTIONS

Debug -- If set to true, classifier may output additional info to

the console.M5P

g. REP Tree: It is a Fast decision tree learner.

Option Description

Debug: If set to true, classifier may output additional info to

the console.

Max Depth: The maximum tree depth (-1 for no restriction).

Min Num: The minimum total weight of the instances in a

leaf.

minVariance Prop: The minimum proportion of the variance

on all the data that needs to be present at a node in order for

splitting to be performed in regression trees.

no Pruning: Whether pruning is performed.

Num Folds: Determines the amount of data used for pruning.

One fold is used For pruning, the rest for growing the rules.

Seed: The seed used for randomizing the data.

D. Performance Evaluation

The performance of the classifier will be evaluated by

using the heart disease data that contains the 107 instances and

10 folds cross validation [7]. The best classifier have evaluated

by using prediction accuracy [2]. The following table contains

the Prediction accuracy, Correctly Classified and Incorrectly

Classified Instance for each classifier algorithm and the result

of F_measures of the classes for each classifier algorithm. It

contains the Sick and buff classes having the separate F-

measure. The F-measure is calculated by using the precision

and Recall.

The Evaluation graph shows the performance of

classifiers based on prediction accuracy. The classifiers of

Naïve Bayes and Naïve Bayes updatable in Bayes classifiers,

SMO in Function Classifiers, IB1and IBK in Lazy Classifiers,

MultiBoostAB, and Multi Class Classifier in Meta Classifier,

Decision Table in Rule Classifiers, NB Tree in Tree

Classifiers is having the better performance comparing to other

classifier algorithms.

Table I. Prediction Accuracy of Classifiers

Classifier

Category

Classifier

Algorithms

Measur<es

Correctly

Classified

Instance

In correctly

Classified

Instance

Prediction

Accuracy

Bayes

BayesNet 93 14 86.9

Naïve Bayes 95 12 88.8

Naïve Bayes

Updateable
95 12 88.8

Function

Logistics 90 17 84.1

Multilayer

Perception
87 20 81.3

RBF Network 91 16 85.0

SMO 92 15 86.0

Simple Logistics 91 16 85.0

Lazy

IB1 89 18 83.2

IBK 89 18 83.2

KStar 87 20 81.3

LWL 87 20 81.3

Misc
HyperPipes 65 42 60.7

VFI 90 17 84.1

Meta

AdaBoost 87 20 81.3

Attribute selected

classifier
88 19 82.2

Bagging 88 19 82.2

CV Parameter

Selection
56 51 52.3

Classification Via

Regression
89 18 83.2

Decorate 85 22 79.4

Filtered Classifier 83 24 77.6

Grading 56 51 52.3

Logit Boost 87 20 81.3

MultiBoostAB 90 17 84.1

Multi Class

Classifier
90 17 84.1

MultiScheme 56 51 52.3

Ordinal Class

Classifier
83 24 77.6

Raced Incremental

Logit Boost
56 51 52.3

Random Committ 86 21 80.4

Stacking

56
51

52.3

StackingC

Rule

Conjunctive Rule 89 18 83.2

Decision Table 95 12 88.8

JRip 91 16 85.0

NNge 90 17 84.1

OneR 86 21 80.4

PART 88 19 82.2

Ridor 85 22 79.4

ZeroR 56 51 52.3

Tree

Decision Stump 89 18 83.2

J48 83 24 77.6

LMT 90 17 84.1

P.Santhi et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,63-70

© 2010, IJARCS All Rights Reserved 69

NB Tree 97 10 90.7

REP Tree 85 22 79.4

Random Forest 88 19 82.2

Random Tree 83 24 77.6

Table II. F_Measures of Sick and Buff Classes

Classifier

Category

Classifier Algorithms F-Measures for

Sick Class

F-Measures

for Buff Class

Bayes

BayesNet 85.4 88.1

Naïve Bayes 88 89.5

Naïve Bayes Updateable 88 89.5

Function

Logistics 82.8 85.2

Multilayer Perception 80 82.5

RBF Network 83.7 86.2

SMO 85.1 86.7

Simple Logistics 84 86

Lazy

IB1 82.7 83.6

IBK 82.7 83.6

KStar 79.6 82.8

LWL 78.7 83.3

Misc
HyperPipes 69.1 46.2

VFI 83.5 84.7

Meta

AdaBoost 80.4 82.1

Attribute selected classifier 81.2 83.2

Bagging 81.2 83.2

CV Parameter Selection 0 68.7

Classification Via

Regression
82 84.2

Decorate 76.6 81.7

Filtered Classifier 75.5 79.3

Grading 0 68.7

Logit Boost 80.4 82.1

MultiBoostAB 82.8 85.2

Multi Class Classifier 82.8 85.2

MultiScheme 0 68.7

Ordinal Class Classifier 76 78.9

Raced Incremental Logit

Boost
0 68.7

Random Committ 79.6 81.1

Stacking

0 68.7 StackingC

Rule

Conjunctive Rule 81.3 84.7

Decision Table 88 89.5

JRip 84 86

NNge 83.2 85

OneR 78.8 81.7

PART 80.8 83.5

Ridor 77.6 81

ZeroR 0 68.7

Tree

Decision Stump 81.3 84.7

J48 76 78.9

LMT 82.8 85.2

NB Tree 90 91.2

REP Tree 78 80.7

Random Forest 81.2 83.2

Random Tree 75.5 79.3

Performance Analysis using Prediction Accuracy

80.00%
82.00%
84.00%
86.00%
88.00%
90.00%
92.00%

 N
a

ïv
e

B
a

y
e

s
,

IB
1

,I
B

k

V
F

I

N
B

 T
re

e

Algorithm

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

Fig 2. Evaluation Graph

Table III. Prediction Accuracy of Classifiers

Classifiers

Category

Classifiers

Algorithm

Prediction Accuracy

Bayes

 Naïve Bayes,

Naïve Bayes

Updateable

88.8%

Function SMO 86%

Lazy IB1,IBk 83.6%

Meta

MultiBoostAB,

Multi Class

Classifier

86.1%

Misc VFI 84.7%

Rule Decision Table 88.8%

Tree NB Tree 90.7%

III. CONCLUSION

 In medical industry having the large amount of

useful data .In this data is used for many purposes, here the

heart attack prediction data is used for find the performance of

classifiers. In final result shows the performance of classifier

algorithm using prediction accuracy. In this result shows the

evaluation of F-measure for two classes of sick and buff

classes and the prediction accuracy of classifier s. The

comparison result shows that, the NB Tree having the highest

prediction Accuracy. In Future this research will be expanded

in to numeric class. The next expansion of this research is to

use the clustering algorithm in heart disease prediction data

and find the performance of this clustering algorithm.

IV.ACKNOWLEDGMENT

 I Express my sincere thanks to my guide

Dr.V.MuraliBhaskaran,M.E.,(Ph.D), for his continuous

support and co-operation for doing my research.

I extend my thanks to Dr.R.Nedunchezian,

M.E.,(Ph.D) and Dr.T.Purusothaman, M.E.,(Ph.D) for their

encouragement of my research work.

I thank to my HOD and all my friends of Computer

science and Engineering Department for their encouragement.

 Finally, i place my humble accolates to my family

members for their moral support

V.REFERENCES

[1] Varun Kumar, Nisha Rathee,”Knowledge Discovery from

Database using an Integration of clustering and

Classification”, IJACSA, vol 2 No.3,PP. 29-33,March

2011.

 [2] Ritu Chauhan, Harleen Kaur, M.Afshar Alam, “Data

Clustering Method for Discovering Clusters in Spatial

Cancer Databases”, International Journal of Computer

Applications (0975 – 8887) Volume 10– No.6, November

2010.

[3] G.Karraz,G.Magenes,”Automatic Classification of Heart

beats using Neural Network Classifier based on a

Bayesian Frame Work”, IEEE, Vol 1,2006.

[4] N.A.Setiawan,A.F.M.Hani,”Missing Attribute Value

Prediction Based on Artificial Neural Network and Rough

Set Theory”, IEEE, Vol 1, pp.306-310,2008.

P.Santhi et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,63-70

© 2010, IJARCS All Rights Reserved 70

[5]] Sellappan Pandian, Rafigh Awang,”Heart Disease

Prediction System using Data Mining Techniques”,IEEE

Computer, Vol 7, PP.295-304, August 2008.

[6] Witten, I.H., Frank, E.: Data Mining: Practical Machine

Learning Tools and Techniques, 2nd edn. Morgan

Kaufmann, San Francisco (2005).

[7] Ian H.Witten, et al, “Weka: Practical Machine Learning

Tools and Techniques with Java implementations,”

Working Paper 99/11, Department of Computer.

[8] Weka – Data Mining Machine Learning Software,

http://www.cs.waikato.ac.nz/ml/.

