
DOI: http://dx.doi.org/10.26483/ijarcs.v8i8.4711
Volume 8, No. 8, September-October 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 376

 ISSN No. 0976-5697

AN EFFECTIVE APPROACH TOWARDS PARALLELIZATION OF NETWORK
TRAFFIC ANOMALY DETECTION SYSTEM

D. Ashok Kumar
Associate Professor, Department of Computer Science

Government Arts College, Thuvakudimalai,
Tiruchirappalli, India

S. R. Venugopalan
Scientist, Information and Computing technologies

Aeronautical Development Agency (Ministry of Defence)
Bangalore, India

Abstract: Network traffic data is huge in volume and needs to be processed in real time to detect Intrusions. By utilizing the power of latest
Hardware with multi-core processors and GPGPU computing, there is a scope for processing the huge volume of network traffic data in near
real-time. This study is intended for examining the potential of Network Anomaly Detection Algorithm (NADA) presented by the authors [9]
for parallelization. NADA was parallelized using parallel toolbox functions in Matlab. Other classification algorithms such as Naive Bayes,
SVM and Decision trees were also implemented using the pre-defined functions in Matlab and the time taken for execution of these algorithms
were compared with NADA for various sizes of data. This study uses the new version of Kyoto University’s Intrusion Detection/Evaluation
benchmark dataset for experimentation. The parallel performance measures such as time taken, speedup and efficiency are encouraging.

Keywords: Network traffic, Network anomaly detection, speedup, efficiency, multi-core processor, parallelization,

1. INTRODUCTION

Intrusion Detection is the process of analyzing the stream of
network traffic for possible intrusions. IDS can be classified
into two type based on the detection techniques namely
Misuse or signature based and Anomaly based. Signature
based systems compare the network packets with the existing
malicious signature for any possible intrusions/attacks.
Anomaly detection algorithms attempt to profile normal
behaviour of the network [6]. In the present digital age and
with the huge volume of data floating around, the information
security has become utmost importance. The data growth rate
and the higher bandwidth & network speed makes it very
difficult to process the data in real-time. With the advent of
latest processor architectures (with many cores) and GPGPU
computing, efficient Intrusion Detection has become a reality
if the data is processed in parallel. This study does not attempt
to compare the performance metrics such as Detection Rate,
Accuracy, False Alarm Rate and F-Score etc. of Intrusion
detection classifier. This study intents to compare the
execution time for various classifiers and the parallel
performance of NADA since NADA outperforms all the other
classifiers in terms of serial execution time.

In this paper, the following contributions are made:

• The execution time taken for some of the
classifications algorithms were compared with
different data sizes.

• The NADA algorithm proposed by Ashok Kumar et
al is parallelized.

• The performance metrics such as time taken, speedup
and efficiency are presented.

The rest of the paper is structured as follows. In chapter 2, the
literature on various classification algorithms for intrusion

detection are presented and parallel program performance
metrics are discussed. In chapter 3, Experimental setup for
this study and the dataset used, data set generation for this
study are discussed. Chapter 4 discusses the experimental
results. Conclusions of the study are given in Chapter 6.

2. BACKGROUND

The speeds of networks have increased than the speed of
processors and the centralized IDS have not scaled [5].
Anomaly detection is one of the important area of research in
information security and different algorithms were proposed
by various researchers for Anomaly Detection. Naïve Bayes
was proposed by Panda, M. et al p for Network Intrusion
Detection and the same was compared with back propagation
neural network algorithm. It was found that the performance
of Naïve Bayes is better in term of False Positive rate [10].
SM Hussein et al compared the performance of Naïve Bayes-
net and J48 and recorded that Naïve Bayes performs better in
terms of detection rate and time to build model [11]. Amor et
al. have compared Naïve Bayes and Decision trees and found
that Naïve Bayes performs better for KDD Cup99 dataset [12].
Support Vector Machines is used by many researchers for
classification problems. In general SVM deals with two-class
problems [13]. Sandhya P., et al have compared the
performance of Decision trees with SVM for Intrusion
Detection and found that decision trees is better than SVM for
Probe, U2R and R2L classes of attacks in terms of accuracy.
For DOS attacks SVM is better than Decision trees in terms of
accuracy. Decision Tree is capable of handling multi-class
problems [3]

Various researchers have used different machine learning
techniques for Intrusion Detection. The study of the existing
literature reveals that very little had been done towards
parallelization of the classification algorithms for intrusion
detection. By parallelizing the machine learning & soft
computing algorithms and using them for intrusion detection,

D. Ashok Kumar et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,376-380

© 2015-19, IJARCS All Rights Reserved 377

the required efficiency requirements can be met. . The main
objective of this study is to compare the sequential execution
time of various classification algorithms and compare it with
NADA and examine the potential for parallelization of NADA
algorithm.

A. PERFORMANCE METRICS

There are several performance metrics associated with parallel
programs. These metrics are used to determine best parallel
algorithm, Evaluate Hardware platforms and examine the
benefits of Parallelism. To evaluate a parallel program, the
basic measure required is serial execution time. i.e. time taken
by a program if it is executed serially on one processor. Like
serial computing in parallel computing also the time and
memory are important performance measures. The important
goals of parallel programs are Performance and Scalability and
the main factors limiting the performance are architectural
limitation and algorithmic limitations [4]. Performance is the
measure of the capacity to reduce the time to solve the
problem when the computing resources are increased. In
parallel computing Amdhal's Law is used to predict the
theoretical maximum speedup for a program using multiple
processors. Speedup and Efficiency are important measures for
any parallel programs.

Speedup: It is the ratio between time taken by a serial
execution and the parallel execution and is given by the below
formula.

S(p) = T(1)/T(p) -->3 [4]

Where T(1) is the execution time with one processor
T(p) is the execution time with p processors

Efficiency: It is the measure of usage of computational
resources. It is the ratio performance and resources used to
achieve performance and are given below.

Where Efficiency= E(p) = S(p)/p --> 4 [4]
S(p) is the speedup for p processor

A. NADA

Ashok Kumar et al [9] proposed Network Anomaly Detection
Algorithm and claims that their algorithm out performs the
popular classification algorithms such as Support Vector
Machines, Naïve Bayes, ONE-R and Logistic Regression in
terms of Detection Rate, False Alarm Rate and F-Score. But
the authors have not measured execution time and compared it
with other schemes. The numbers of test records were small
in number which make it difficult to measure the execution
time. The NADA algorithm is given the following Fig. 1.

Fig. 1: NADA Algorithm

In this study the execution times is computed for various
classification schemes and are compared with NADA.

3. DATASET AND EXPERIMENTAL SETUP

Network Intrusion Evaluation/Detection dataset from Kyoto
University popularly known as Kyoto 2006+ dataset which is
used in this study. The new version of Kyoto University
Benchmark dataset [1] consists of 10 years of data i.e. from
Nov.01, 2006 – Dec. 31, 2015. Earlier version of dataset
which has traffic traces from Nov.01, 2006 – Aug. 31, 2009.
The dataset has different sets of data with IP addresses and
without IP addresses. This dataset consists of 14 conventional
factors based on KDD Cup 99 dataset [2], and additional 10
features for effective investigation. The version of dataset has
one more new feature which is ‘protocol type’. Out of 15
features 3 features are categorical (flag, service & protocol
type) and rest 12 features are numerical in nature. The added
feature ‘protocol type’ in the new version is not used and only
14 conventional features are used here. According the authors
of [7 and 8], probability function for categorical data and
mean-range normalization for numerical data yields better
results in terms of detection rate and time to build model for
intrusion detection classifiers. In this study, categorical data
was normalized using the following probability function
(Equation 1) and the numerical data was normalised using the
mean range normalization technique (Equation 2).

 --> 1

 -->2

The list of features which is used in this study is given below

 duration: length (number of seconds) of the connection

 service: network service on the destination, e.g., http,
telnet, etc.

 src_bytes: number of data bytes from source to
destination

 dst_bytes: number of data bytes from destination to
source

D. Ashok Kumar et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,376-380

© 2015-19, IJARCS All Rights Reserved 378

 count: number of connections to the same host as the
current connection in the past two seconds

 same_srv_rate: % of connections in the count feature to
the same service

 serror_rate: % of connections in the count feature that
have ``SYN'' errors

 srv_serror_rate: % of connections whose service type is
the same to that of the current connection in the past
two seconds that have “SYN” errors

 dst_host_count: among the past 100 connections whose
destination IP address is the same to that of the current
connection, the number of connections whose source IP
address is also the same to that of the current
connection

 dst_host_srv_count: the number of connections in the
dst_host_count feature whose service type is also the
same to that of the current connection

 dst_host_same_src_port_rate: % of connections in the
dst_host_count feature whose source port is the same to
that of the current connection

 dst_host_serror_rate: % of connections in the
dst_host_count feature that have “SYN”

 dst_host_srv_serror_rate: % of connections in the
dst_host_srv_count feature that “SYN” errors

 flag: normal or error status of the connection

 Protocol type: indicates the type of packets such as
TCP, UDP and ICMP.

 label: indicates whether the session is an attack or not
The last four days of data (new version) i.e. data between 28th
Dec 2015 to 31st Dec 2015 is used for experimentation.

Out of 1188869 records, 49.1% (583809) of the records are
duplicates and were removed and in the remaining 607060
records 92.9% of the records are attack. Only 43148 records
are normal records. This data was split into two sets, 70% for
training and 30% for testing. Out of 70% records 20000
records were selected for training by random sampling using
IBM SPSS Statistics V20. For data processing Microsoft
Office Profession 2010 (Excel) was used. There are 10000
records each of attack and normal class in the training dataset.
Similarly 50000 records were selected in random for testing.

The experiments were carried out on a system with Intel Xeon
E5 2650 2 Ghz processor with two processors of each having 8
cores of PEs and 32GB memory running Window 7
Professional 64-bit Operating System. The test dataset was
processed in parallel with 2, 4, 8 and 16 cores respectively.
Test dataset has only 50000 records and is too small for
measuring the parallel performance. The dataset was replicated
using ‘repmat’ function in Matlab and five test cases were
generated with 1 Million, 2 Million, 5 Million, 10 Million and
20 Million records.

4. EXPERIMENT AND RESULTS

The NADA algorithm was implemented in Matlab V R2015a.
Similarly other classification algorithms such as Naïve Bayes,

Support Vector Machine (SVM) and Decision Tree were
implemented in Matlab using the built-in functions.
Experiments were carried out on each test dataset for the
above mentioned classification algorithms and the results are
given in Table 1.

Table 1: Time taken various classification algorithms

No. of Test Cases NADA Naive Bayes Decision Tree

SVM

1 Million 1.79 3.15 2.98 31.77

2 Million 3.22 5.57 5.26 56.03

5 Million 7.29 12.52 12.13 126.07

10 Million 13.79 26.20 23.84 244.55

20 Million 26.71 50.43 47.05 492.41

The time taken by SVM is much higher when compared with
other algorithms and is almost 17 times higher than NADA.
Naïve Bayes takes almost double the time than NADA
algorithm in all the cases. Whereas the time taken by Naïve
Bayes and Decision tree are almost similar with marginal
differences. The time taken by NADA is the lowest among all
the algorithms compared in all test cases.

The above results make NADA a clear candidate for
parallelization. NADA algorithm was parallelized using
‘parfor’ function in parallel toolbox of Matlab. The test
dataset was processed in parallel with 2, 4, 8 and 16 cores
respectively. The time taken to execute the program is given
in Table 2 and Fig. 2.

Table 2: Time taken by Parallel NADA

No. of Test Cases
No. of Cores/Workers

1 2 4 8 16

1 Million 1.79 2.90 1.99 1.45 1.25

2 Million 3.22 5.02 3.01 2.10 1.65

5 Million 7.29 11.07 6.60 4.41 3.20

10 Million 13.79 21.64 12.05 7.35 5.77

20 Million 26.71 41.64 24.02 14.29 9.39

Fig. 2: Time taken by NADA

D. Ashok Kumar et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,376-380

© 2015-19, IJARCS All Rights Reserved 379

From the above Table and Figure it is very clear that the time
taken by 2 cores/workers is almost 1.5 times higher than the
time taken by a single core/worker. Similarly the time taken
by 1 core and 4 cores are almost equal and there is slight
improvement in 4 core configuration. Clear performance
improvements are seen from 8 core onwards. The delay in 2
cores and 4 cores can be attributed to the inter
processor/process communication time.

Similarly the other performance measures such as Speedup
and Efficiency are calculated from the time taken as given in
Table 2. Table 3 lists the Speed up of the NADA Algorithm.

Table 3: Speedup of NADA Algorithm

No. of Test Cases 2 Workers 4 Workers 8 Workers 16 Workers
1 Million 0.6172 0.8995 1.2345 1.4320

2 Million 0.6414 1.0698 1.5333 1.9515

5 Million 0.6585 1.1045 1.6531 2.2781

10 Million 0.6372 1.1444 1.8762 2.3899

20 Million 0.6415 1.1120 1.8691 2.8445

From the above table, it can be observed that the speedup
increases with the large dataset and number of cores. The
efficiency of NADA is given in Table 4.

Table 4: Efficiency of NADA Algorithm

No. of Test
Cases 2 Workers 4 Workers 8 Workers 16 Workers

1 Million 0.3086 0.2249 0.1543 0.0895

2 Million 0.3207 0.2674 0.2011 0.1220

5 Million 0.3293 0.2761 0.2066 0.1424

10 Million 0.3186 0.2861 0.2345 0.1494

20 Million 0.3207 0.2780 0.2336 0.1778

The scalability of the algorithm needs to be checked for more
cores and processors. The parallel measures of Parallel
NADA are encouraging.

5. CONCLUSIONS AND FUTUE WORK

The Network Anomaly Detection Algorithm was implemented
and parallelized using Matlab parallel toolbox functions. The
popular classification algorithms such as Naïve Bayes, SVM
and Decision Trees were also implemented in Matlab and the
time taken by these methods were compared with NADA.
NADA outperforms all the above algorithms with regard to
time taken for execution. The parallel performance measures
are calculated and discussed in the earlier section. NADA
algorithm is a potential candidate for GPGPU parallelization.

6. REFERENCES

1) Song, Jungsuk, Hiroki Takakura, and Yasuo Okabe.
“Kyoto University Benchmark Data dataset”,
November 2011. URL
http://www.takakura.com/kyoto_data/.

2) The third international knowledge discovery and data
mining tools competition dataset KDD99-Cup
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.ht
ml, 1999.

3) Peddabachigari, Sandhya, Ajith Abraham, and Johnson
Thomas. "Intrusion detection systems using decision
trees and support vector Machines." International
Journal of Applied Science and Computations, USA
11.3 (2004): 118-134.

4) Fernando Silva & Ricardo Rocha.Parallel and
Distributed

 Programming URL:
ttp://www.dcc.fc.up.pt/~fds/aulas/PPD/1112/metrics_e
n.pdf. Accessed on 2 February 2016.

5) Foschini, Luca, et al. "A parallel architecture for
stateful, high-speed intrusion Detection.”International
Conference on Information Systems Security.
Springer, Berlin, Heidelberg, 2008.

6) Shanbhag, Shashank, and Tilman Wolf. "Accurate
anomaly detection through parallelism."IEEE network
23.1 (2009): 22-28.

7) Ihsan, Zohair, Mohd Yazid Idris, and Abdul Hanan
Abdullah. "Attribute normalization techniques and
performance of intrusion classifiers: A comparative
analysis."Life Science Journal. 10.4 (2013).

8) D. Ashok Kumar, and S. R. Venugopalan. "The Effect
of Normalization on Intrusion Detection Classifiers
(Naïve Bayes and J48)”. International Journal on
Future Revolution in Computer Science &
Communication engineering, 3.7 (2017): 60-64.

9) D. Ashok Kumar, and S. R. Venugopalan. "A
DISTANCE BASED ALGORITHM FOR
NETWORK ANOMALY DETECTION USING
INITIAL CLASSIFICATION OF'PROTOCOL
TYPE'ATTRIBUTE." International Journal of
Advanced Research in Computer Science 8.7 (2017).

10) Panda, Mrutyunjaya, and Manas Ranjan Patra.
"Network intrusion detection using naive
bayes."International journal of computer science and
network security, 7.12 (2007): 258-263.

11) Hussein, Safwan Mawlood, Fakariah Hani Mohd Ali,
and Zolidah Kasiran. "Evaluation effectiveness of
hybrid IDs using snort with naive Bayes to detect
attacks." Digital Information and Communication
Technology and it's Applications (DICTAP), 2012
Second International Conference on. IEEE, 2012.

12) Amor, Nahla Ben, Salem Benferhat, and Zied Elouedi.
"Naive bayes vs decision trees in intrusion detection
systems."Proceedings of the 2004 ACM symposium
on Applied computing. ACM, 2004.

13) Inadyuti Dutt, Samarjeet Borah. “Some Studies in
Intrusion Detection using Data Mining Techniques.”
International Journal of Innovative Research in
Science,

 Engineering and Technology, 4.7 (2015):.5500-5511

.

7. BIOGRAPHIES

Dr. D. Ashok Kumar is an Associate Professor in the
Department of Computer Science, Government Arts College,
Tiruchirappalli. His current research interests include Data

Mining Algorithms, Pattern Matching and Information
Security and Systems. His research works have appeared in a
variety of international journals and international conference
proceedings. He has guided several M. Phil. and
Ph. D. Scholars.

D. Ashok Kumar et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,376-380

© 2015-19, IJARCS All Rights Reserved 380

S. R. Venugopalan holds M. Sc., M. Phil in Computer
Science. He obtained his M.S (by research) in Management
from IIT Madras and he is a Scientist in Information &
Computing Technologies Directorate of Aeronautical
Development Agency, Bangalore. His current research

interests are in Information Technology and Information
Security, Project Management, Product Lifecycle Management
and Enterprise Information Systems and their implementation.
His research works have appeared in of international journals
and international conference proceedings.

	Introduction
	Background
	Dataset and Experimental Setup
	EXPERIMENT AND RESULTS
	Conclusions and futue work
	References
	BIOGRAPHIES

