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Abstract: Network traffic data is huge in volume and needs to be processed in real time to detect Intrusions.  By utilizing the power of latest 
Hardware with multi-core processors and GPGPU computing, there is a scope for processing the huge volume of network traffic data in near 
real-time.  This study is intended for examining the potential of Network Anomaly Detection Algorithm (NADA) presented by the authors [9] 
for parallelization.  NADA was parallelized using parallel toolbox functions in Matlab.  Other classification algorithms such as Naive Bayes, 
SVM and Decision trees were also implemented using the pre-defined functions in Matlab and the time taken for execution of these algorithms 
were compared with NADA for various sizes of data.  This study uses the new version of Kyoto University’s Intrusion Detection/Evaluation 
benchmark dataset for experimentation.  The parallel performance measures such as time taken, speedup and efficiency are encouraging.  
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1. INTRODUCTION 

Intrusion Detection is the process of analyzing the stream of 
network traffic for possible intrusions.  IDS can be classified 
into two type based on the detection techniques namely 
Misuse or signature based and Anomaly based.  Signature 
based systems compare the network packets with the existing 
malicious signature for any possible intrusions/attacks. 
Anomaly detection algorithms attempt to profile normal 
behaviour of the network [6].  In the present digital age and 
with the huge volume of data floating around, the information 
security has become utmost importance.  The data growth rate 
and the higher bandwidth & network speed makes it very 
difficult to process the data in real-time.  With the advent of 
latest processor architectures (with many cores) and GPGPU 
computing, efficient Intrusion Detection has become a reality 
if the data is processed in parallel.  This study does not attempt 
to compare the performance metrics such as Detection Rate, 
Accuracy, False Alarm Rate and F-Score etc. of Intrusion 
detection classifier.  This study intents to compare the 
execution time for various classifiers and the parallel 
performance of NADA since NADA outperforms all the other 
classifiers in terms of serial execution time.  

In this paper, the following contributions are made: 

• The execution time taken for some of the 
classifications algorithms were compared with 
different data sizes. 

• The NADA algorithm proposed by Ashok Kumar et 
al is parallelized. 

• The performance metrics such as time taken, speedup 
and efficiency are presented.  

The rest of the paper is structured as follows.  In chapter 2, the 
literature on various classification algorithms for intrusion 

detection are presented and parallel program performance 
metrics are discussed.  In chapter 3, Experimental setup for 
this study and the dataset used, data set generation for this 
study are discussed.  Chapter 4 discusses the experimental 
results. Conclusions of the study are given in Chapter 6.  

2. BACKGROUND 

The speeds of networks have increased than the speed of 
processors and the centralized IDS have not scaled [5]. 
Anomaly detection is one of the important area of research in 
information security and different algorithms were proposed 
by various researchers for Anomaly Detection.  Naïve Bayes 
was proposed by Panda, M. et al p for Network Intrusion 
Detection and the same was compared with back propagation 
neural network algorithm.  It was found that the performance 
of Naïve Bayes is better in term of False Positive rate [10].  
SM Hussein et al compared the performance of Naïve Bayes-
net and J48 and recorded that Naïve Bayes performs better in 
terms of detection rate and time to build model [11].  Amor et 
al. have compared Naïve Bayes and Decision trees and found 
that Naïve Bayes performs better for KDD Cup99 dataset [12].  
Support Vector Machines is used by many researchers for 
classification problems.  In general SVM deals with two-class 
problems [13].  Sandhya P., et al have compared the 
performance of Decision trees with SVM for Intrusion 
Detection and found that decision trees is better than SVM for 
Probe, U2R and R2L classes of attacks in terms of accuracy.  
For DOS attacks SVM is better than Decision trees in terms of 
accuracy.  Decision Tree is capable of handling multi-class 
problems [3] 

Various researchers have used different machine learning 
techniques for Intrusion Detection.  The study of the existing 
literature reveals that very little had been done towards 
parallelization of the classification algorithms for intrusion 
detection.  By parallelizing the machine learning & soft 
computing algorithms and using them for intrusion detection, 
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the required efficiency requirements can be met.  .  The main 
objective of this study is to compare the sequential execution 
time of various classification algorithms and compare it with 
NADA and examine the potential for parallelization of NADA 
algorithm. 

A. PERFORMANCE METRICS 

There are several performance metrics associated with parallel 
programs.  These metrics are used to determine best parallel 
algorithm, Evaluate Hardware platforms and examine the 
benefits of Parallelism.  To evaluate a parallel program, the 
basic measure required is serial execution time. i.e. time taken 
by a program if it is executed serially on one processor.  Like 
serial computing in parallel computing also the time and 
memory are important performance measures.  The important 
goals of parallel programs are Performance and Scalability and 
the main factors limiting the performance are architectural 
limitation and algorithmic limitations [4].  Performance is the 
measure of the capacity to reduce the time to solve the 
problem when the computing resources are increased. In 
parallel computing Amdhal's Law is used to predict the 
theoretical maximum speedup for a program using multiple 
processors. Speedup and Efficiency are important measures for 
any parallel programs.  

Speedup:  It is the ratio between time taken by a serial 
execution and the parallel execution and is given by the below 
formula. 

S(p) = T(1)/T(p) -->3 [4] 

Where T(1) is the execution time with one processor  
T(p) is the execution time with p processors 

Efficiency: It is the measure of usage of computational 
resources.  It is the ratio performance and resources used to 
achieve performance and are given below. 

Where Efficiency= E(p) = S(p)/p --> 4 [4] 
S(p) is the speedup for p processor 

 
A. NADA 

Ashok Kumar et al [9] proposed Network Anomaly Detection 
Algorithm and claims that their algorithm out performs the 
popular classification algorithms such as Support Vector 
Machines, Naïve Bayes, ONE-R and Logistic Regression in 
terms of Detection Rate, False Alarm Rate and F-Score.  But 
the authors have not measured execution time and compared it 
with other schemes.  The numbers of test records were small 
in number which make it difficult to measure the execution 
time.  The NADA algorithm is given the following Fig. 1. 

 
Fig. 1: NADA Algorithm 

In this study the execution times is computed for various 
classification schemes and are compared with NADA. 

3. DATASET AND EXPERIMENTAL SETUP 

Network Intrusion Evaluation/Detection dataset from Kyoto 
University popularly known as Kyoto 2006+ dataset which is 
used in this study.  The new version of Kyoto University 
Benchmark dataset [1] consists of 10 years of data i.e. from 
Nov.01, 2006 – Dec. 31, 2015. Earlier version of dataset 
which has traffic traces from Nov.01, 2006 – Aug. 31, 2009.  
The dataset has different sets of data with IP addresses and 
without IP addresses.  This dataset consists of 14 conventional 
factors based on KDD Cup 99 dataset [2], and additional 10 
features for effective investigation.  The version of dataset has 
one more new feature which is ‘protocol type’.  Out of 15 
features 3 features are categorical (flag, service & protocol 
type) and rest 12 features are numerical in nature.  The added 
feature ‘protocol type’ in the new version is not used and only 
14 conventional features are used here.  According the authors 
of [7 and 8], probability function for categorical data and 
mean-range normalization for numerical data yields better 
results in terms of detection rate and time to build model for 
intrusion detection classifiers. In this study, categorical data 
was normalized using the following probability function  
(Equation 1) and the numerical data was normalised using the 
mean range normalization technique (Equation 2).  
 

 --> 1 
 

 -->2 

The list of features which is used in this study is given below 
 
 duration: length (number of seconds) of the connection  

 service: network service on the destination, e.g., http, 
telnet, etc.  

 src_bytes: number of data bytes from source to 
destination  

 dst_bytes: number of data bytes from destination to 
source  
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 count: number of connections to the same host as the 
current connection in the past two seconds  

 same_srv_rate: % of connections in the count feature to 
the same service  

 serror_rate: % of connections in the count feature that 
have ``SYN'' errors  

 srv_serror_rate: % of connections whose service type is 
the same to that of the current connection in the past 
two seconds that have “SYN” errors  

 dst_host_count: among the past 100 connections whose 
destination IP address is the same to that of the current 
connection, the number of connections whose source IP 
address is also the same to that of the current 
connection  

 dst_host_srv_count: the number of connections in the 
dst_host_count feature whose service type is also the 
same to that of the current connection  

 dst_host_same_src_port_rate: % of connections in the 
dst_host_count feature whose source port is the same to 
that of the current connection  

 dst_host_serror_rate: % of connections in the 
dst_host_count feature that have “SYN”  

 dst_host_srv_serror_rate: % of connections in the 
dst_host_srv_count feature that “SYN” errors  

 flag: normal or error status of the connection  

 Protocol type: indicates the type of packets such as 
TCP, UDP and ICMP. 

 label: indicates whether the session is an attack or not  
The last four days of data (new version) i.e. data between 28th 
Dec 2015 to 31st Dec 2015 is used for experimentation.   
 
Out of 1188869 records, 49.1% (583809) of the records are 
duplicates and were removed and in the remaining 607060 
records 92.9% of the records are attack.  Only 43148 records 
are normal records.  This data was split into two sets, 70% for 
training and 30% for testing.  Out of 70% records 20000 
records were selected for training by random sampling using 
IBM SPSS Statistics V20.  For data processing Microsoft 
Office Profession 2010 (Excel) was used.  There are 10000 
records each of attack and normal class in the training dataset.  
Similarly 50000 records were selected in random for testing. 
 
The experiments were carried out on a system with Intel Xeon 
E5 2650 2 Ghz processor with two processors of each having 8 
cores of PEs and 32GB memory running Window 7 
Professional 64-bit Operating System. The test dataset was 
processed in parallel with 2, 4, 8 and 16 cores respectively.  
Test dataset has only 50000 records and is too small for 
measuring the parallel performance. The dataset was replicated 
using ‘repmat’ function in Matlab and five test cases were 
generated with 1 Million, 2 Million, 5 Million, 10 Million and 
20 Million records.  

4. EXPERIMENT AND RESULTS 

The NADA algorithm was implemented in Matlab V R2015a. 
Similarly other classification algorithms such as Naïve Bayes, 

Support Vector Machine (SVM) and Decision Tree were 
implemented in Matlab using the built-in functions.  
Experiments were carried out on each test dataset for the 
above mentioned classification algorithms and the results are 
given in Table 1.  

Table 1: Time taken various classification algorithms 

No. of Test Cases NADA Naive Bayes Decision Tree 
 
SVM 
 

1 Million 1.79 3.15 2.98 31.77 

2 Million 3.22 5.57 5.26 56.03 

5 Million 7.29 12.52 12.13 126.07 

10 Million 13.79 26.20 23.84 244.55 

20 Million 26.71 50.43 47.05 492.41 

The time taken by SVM is much higher when compared with 
other algorithms and is almost 17 times higher than NADA.  
Naïve Bayes takes almost double the time than NADA 
algorithm in all the cases.  Whereas the time taken by Naïve 
Bayes and Decision tree are almost similar with marginal 
differences.  The time taken by NADA is the lowest among all 
the algorithms compared in all test cases. 

The above results make NADA a clear candidate for 
parallelization.  NADA algorithm was parallelized using 
‘parfor’ function in parallel toolbox of Matlab.  The test 
dataset was processed in parallel with 2, 4, 8 and 16 cores 
respectively.  The time taken to execute the program is given 
in Table 2 and Fig. 2.   

Table 2: Time taken by Parallel NADA 

No. of Test Cases 
No. of Cores/Workers 

1 2 4 8 16 

1 Million 1.79 2.90 1.99 1.45 1.25 

2 Million 3.22 5.02 3.01 2.10 1.65 

5 Million 7.29 11.07 6.60 4.41 3.20 

10 Million 13.79 21.64 12.05 7.35 5.77 

20 Million 26.71 41.64 24.02 14.29 9.39 

 

 
Fig. 2: Time taken by NADA 
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From the above Table and Figure it is very clear that the time 
taken by 2 cores/workers is almost 1.5 times higher than the 
time taken by a single core/worker.  Similarly the time taken 
by 1 core and 4 cores are almost equal and there is slight 
improvement in 4 core configuration.  Clear performance 
improvements are seen from 8 core onwards.  The delay in 2 
cores and 4 cores can be attributed to the inter 
processor/process communication time. 

Similarly the other performance measures such as Speedup 
and Efficiency are calculated from the time taken as given in 
Table 2.  Table 3 lists the Speed up of the NADA Algorithm. 
 

Table 3: Speedup of NADA Algorithm 

No. of Test Cases 2 Workers 4 Workers 8 Workers  16 Workers 
1 Million 0.6172 0.8995 1.2345  1.4320 

2 Million 0.6414 1.0698 1.5333  1.9515 

5 Million 0.6585 1.1045 1.6531  2.2781 

10 Million 0.6372 1.1444 1.8762  2.3899 

20 Million 0.6415 1.1120 1.8691  2.8445 

 
From the above table, it can be observed that the speedup 
increases with the large dataset and number of cores.  The 
efficiency of NADA is given in Table 4. 

Table 4: Efficiency of NADA Algorithm 

No. of Test 
Cases 2 Workers 4 Workers 8 Workers 16 Workers 

1 Million 0.3086 0.2249 0.1543 0.0895 

2 Million 0.3207 0.2674 0.2011 0.1220 

5 Million 0.3293 0.2761 0.2066 0.1424 

10 Million 0.3186 0.2861 0.2345 0.1494 

20 Million 0.3207 0.2780 0.2336 0.1778 

 
The scalability of the algorithm needs to be checked for more 
cores and processors.  The parallel measures of Parallel 
NADA are encouraging. 

5. CONCLUSIONS AND FUTUE WORK 

The Network Anomaly Detection Algorithm was implemented 
and parallelized using Matlab parallel toolbox functions.  The 
popular classification algorithms such as Naïve Bayes, SVM 
and Decision Trees were also implemented in Matlab and the 
time taken by these methods were compared with NADA.  
NADA outperforms all the above algorithms with regard to 
time taken for execution.  The parallel performance measures 
are calculated and discussed in the earlier section.  NADA 
algorithm is a potential candidate for GPGPU parallelization.   
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