
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4546

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1183

ISSN No. 0976-5697

LOAD BALANCING NON-PREEMPTIVE JOBS IN GRID ENVIRONMENT

P.Neelakantan
Professor, Department of CSE,

VNR VJIET,
Hyderabad,India

C.Kiranmai
Professor, Department of CSE,

VNR VJIET
Hyderabad,India

Abstract: The computing resources are effectively utilized in Grid computing by using the concept of scheduling and load balancing. The non-
preemptive jobs arrive at random intervalsunder varying load conditions consists of multiple interdependent tasks and independent tasks which
will be executed in multiple nodes and have to be assigned to the most appropriate node during the initial placement itself. Algorithms existing
in the literature considered only the processing capacity of nodes in the Grid for assigning the incoming jobs. However, the performance of the
Grid system can be further improved in terms of response time by considering the length or the execution time of the jobs. In this paper, the load
balancing algorithm which considers both the processing capability of the nodes and job length has been proposed for scheduling jobs to the
appropriate node.

Keywords: Grid; Load balancing; Non preemptive Jobs

1. INTRODUCTION

The Grid Computing is becoming a platform for the
execution of high performance applications. Organizations,
individuals can communicate and collaborate by using Grid
computing technologies. The goal of Grid computing is to
create an illusion of single but large and powerful self –
managing node out of a large collection of multiple nodes
with different capabilities by using a high communication
network. The Resource manager in the Grid must identify
the requirements of applications, allocate, schedule and
monitor those resources in an efficient manner. The
Scheduling process directs the job to appropriate resource
and monitoring process monitors the resource [1].
Various load balancing algorithms, such as round robin,
weighted round robin, dynamic load balancing, Equally
Spread Current Execution (ESCE) Algorithm, First Come
First Serve, Ant Colony algorithm, and Throttled algorithm
are available. The most frequently used scheduling
techniques for a non-preemptive system are first in first out
(FIFO) and weighted round robin (WRR) [2]. The above
algorithms support grid systems consisting of multiple
heterogeneous nodes.
With the aid of Grid computing and network facility, the
application can use node resources in the grid and is
constrained by the total processing power. The nodes in
Grid computing supports resource provisioning policies
which leverage virtualized services. The higher performance
and utilization of nodes are improved by dynamic load
scheduling implemented as improved weighted round robin,
under varying load conditions. This produces the faster
response time to the application when it is submitted to the
grid.
The objective of the Grid computing is to assign jobs to the
most suitable nodes by considering the requirements of each
job and the load on the nodes present in the grid. The
arrivals of jobs are directed to any of the nodes in the grid,
based on the grid management policies depending.
The non-preemptive scheduling uses round robin and the
weighted round robin polices. The round robin method does

not consider the resource capabilities, priority and the length
of the job. This causes higher priority and long jobs to take
higher execution times. However the resource capabilities
of the nodes are considered by the weighted round robin
method and it assigns more number of jobs to the high end
nodes based on the weightage. However weighted round
robin algorithm will not consider the length of the job to
select the appropriate node, The proposed load balancing
algorithm, Modified Weighted Round Robin Load
Balancing algorithm (MWRRLB) considers the length and
priority of the job and selects the appropriate node to
execute the jobs for lower execution times.
Performances of nodes have been improved by identifying
the length of the jobs, resource capabilities, task dependency
and effectively finding the lightly loaded nodes. The
consideration of additional parameter” job length” helps to
schedule the jobs to the appropriate nodes at any instant and
is able to deliver the minimum completion time for any job.
The proposed algorithm will also minimize job migrations
in the grid system. The performance of the Modified
Weighted Round Robin Load Balancing algorithm is
compared with the existing round robin and weighted round
robin algorithm and here it is assumed that the job contains
multiple tasks and tasks have dependency between them. A
job can use multiple nodes for its various tasks to complete
its entire processing.

2. RELATED WORK

The important characteristic of job scheduling in a grid
environment is balancing non preemptive dependent tasks
on nodes. The load is shared among the lightly loaded nodes
to achieve optimal resource utilization by the tasks to
complete within less span of time. The node uses two types
of job execution mechanisms such as space and time shared.
In space shared mechanism the jobs will be executed one
after the other and only one job/task is assigned to the CPU.
The remaining jobs must wait at the job queue of the node
and it makes easy to migrate a job from the overloaded node
to the under loaded node. However in a time shared

P.Neelakantan et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,1183-1187

© 2015-19, IJARCS All Rights Reserved 1184

mechanism, jobs share CPU slice time for execution and it
gives an illusion that all jobs are executing at the same
instant. In time shared policy, job migration becomes
difficult due to the time sliced execution of all the jobs. The
cost of moving a job from highly loaded node to a lightly
loaded node will be high as a job may lose previously
completed portion of the instructions in highly loaded nodes.
The load balancing algorithm should also consider the
unpredictable nature of job arrivals and assigning them to
the appropriate nodes by considering jobs with multiple
tasks and dependencies between tasks. The proposed
algorithm is designed by considering that it must be suitable
for both homogeneous and heterogeneous environments for
varying job execution times [12].
The load balancing algorithm uses Honeybee behavior to
balance the load across nodes to maximize the throughput.
The amount of time the job has to wait in a queue will be
reduced. This algorithm works for heterogeneous nodes and
balances non preemptive independent jobs. Paper [3][10]
discusses the importance of performance optimization and
queuing model for a group of heterogeneous nodes with
varying speeds and sizes. This algorithm addresses the
optimal load allocation and distribution of jobs over
multiple heterogeneous nodes across the grid.
The metric skewness used to measure the unevenness of a
node can be minimized by combing different types of
workloads that use different node resources. The load
prediction algorithm [4][11] will minimize the number of
nodes by estimating the resource usages of jobs in the future
and nodes are allocated appropriately. The weighted round
robin enhanced scheduling, algorithm [5][9], considers
nodes processing power, job length and multiple dependent
tasks in the job for balancing the load among the nodes.
The scheduling algorithm for dependent tasks in the grid
environment proposed by [6][8] uses direct acyclic graph
based applications and Earliest–Finish scheduling algorithm
for heterogeneous computing proposed by [7] uses a
stochastic hill climbing approach for load distribution in a
grid environment. The workflow execution time and
scheduling overhead is reduced in the grid by dynamic
workflow scheduling which uses genetic algorithm that
produces better results within a shorter time. The job
scheduling algorithm considers priority of jobs as a main
Quality of Service parameter for scheduling jobs in the grid
environment. This algorithm also considers issues like
complexity, makespan and consistency for improving the
performance of the system..

3. SYSTEM MODEL

Let VS= (, ,…) be the set of n nodes which
executes m number of jobs represented by the set
J={ , ,… }. The nodes in the grid environment run in
parallel to execute the incoming jobs. There is no sharing of
resources owned by nodes to other nodes. Non- preemptive
dependent jobs are scheduled to these nodes, where ‘m’ jobs
are assigned to ‘n’ nodes represented as a linear
programming model.

Execution time: Let be the computing time of a assigned
job “i” to Node ‘j” and define

=

The model is represented as

Minimize

Subject to

Average Node Utilization: The important objective in the
grid computing is maximizing node utilization which is
derived as

Average Node utilization =

Where makespan can be expressed as

Makespan=

4. PROPOSED METHOD

The figure1 shows the design of load balancing and
scheduling that schedules jobs during runtime to appropriate
node. Jobs may arrive at different intervals and the load
status of the nodes may also change at different intervals.
The under loaded node at one interval may become
overloaded at another interval. The current status
information of all nodes in the grid is collected by Resource
Manager Module and that information is used by the Load
Balancer for migrating jobs from a heavily loaded node to
an idle or lightly loaded node.

4.1. Scheduling and Load Balancing Design
The user submits a job to a grid and job manager checks
whether the job contains multiple independent tasks or
dependent tasks. The scheduler will notify parent tasks only
after child tasks are completed. Independent tasks are
assigned to appropriate nodes by the proposed load
balancing algorithm based Weighted Round Robin method.
Each node maintains a job execution list, job pause list and
job waiting list.
The user submits a job to a grid and job manager checks
whether the job contains multiple independent tasks or
dependent tasks. The scheduler will notify parent tasks only
after child tasks are completed. Independent tasks are
assigned to appropriate nodes by the proposed load
balancing algorithm based weighted round robin method.
Each nodeconsists ajob execution list, job pause lit and job
waiting list information where a job execution list contains
the current executing job list and the JobpauseList contains
temporarily paused jobs and waiting jobs information is
found on JobWaitingList queue. For every job arrival , the
scheduler finds the least utilized node in the grid system and
job is assigned to it.

P.Neelakantan et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,1183-1187

© 2015-19, IJARCS All Rights Reserved 1185

Figure 1: Scheduling and Load balancing design

The grid resource manager calculates the weightage of node
based on the processing capacity and also identifies the
amount memory available in each node. The ratio of the
number of jobs running to the number of nodes are
calculated by the load balancing algorithm and if the ratio is
less than 1, then it communicates the scheduler to identify a
Node for allocating the job. If the utilization is less than 0.2,
then the lightly utilized node will be allotted or else the
communication will be sent to the scheduler to identify the
most suitable node for the job.

4.2. Computation of Load Imbalance Factor
Let VS= (, ,…) be the set of n nodes which
executes m number of jobs represented by the set
J={ , ,… }. The nodes in the grid environment run in
parallel to execute the incoming jobs. There is no sharing of
resources owned by nodes to other nodes. Non- preemptive
dependent jobs are scheduled to these nodes, where ‘m’ jobs
are assigned to ‘n’ nodes represented as a linear
programming model.

Execution time: Let be the computing time of a assigned
job “i” to Node ‘j” and define

=

The model is represented as

Minimize

Subject to

Average Node Utilization: The important objective in the
grid computing is maximizing node utilization which is
derived as

Average Node utilization =

Where makespan can be expressed as

Makespan=

4.3. Algorithms
The most frequently used scheduling policies in a non-
preemptive system are round robin and weighted round
robin policies. The proposed algorithm is modified weighted
round robin algorithm which allocates job to the next node
in the queue irrespective of the load of that node. The
resource capabilities and job lengths are not considered by
the round robin policy; hence jobs with more execution
times and lower priority will end up with higher response
times. The resource capabilities of the nodes is considered in
the weighted round robin algorithm and based on the
computing capacity the weightage has been assigned to the
nodes. However, this algorithm does not consider the length
of the job and hence there are possibilities of assigning the
job to the wrong node.

4.4 Modified Weighted Round Robin Algorithm
The proposed algorithm considers the processing capacity,
load on the node, job length for assigning a job to the
appropriate node. The load at each node has been identified
by the dynamic scheduling of aproposed algorithm for
allocating the job to the appropriate node. Sometimes there
is a probability that job execution time becomes longer than
initial calculations due to the execution of more number of
cycles (loop). In such situations, the load balancer
rearranges jobs according to the idle slot available in the
other lightly loaded nodes by moving a waiting job from
heavily loaded node to the lightly loaded node. There will be
no job migrations, if there are no lightly loaded nodes in the
grid system. The load balancer calculates the resource load
only after the completion of any of the jobs on any of the
nodes to remove the overhead on the nodes. This will in turn
reduces the number of job migrations between nodes and the
number of probe messages requesting the lightly loaded
nodes in a grid environment.
4.4.1. Implementation of the Algorithm
The implementation of the algorithm consists of four
modules (a) Scheduler (b) Load balancer (c) resource
manager. The scheduler has to find suitable nodes for
incoming jobs. The scheduler can schedule the jobs during
run time or before runtime. The job migration froma
heavily loaded node to lightly loaded node has been decided
by the load balancer by utilizing the resource monitor
information. The resource manager module communicates
with all Nodes and collects information such as their
processing capacity, current load and number of jobs queued
at each node. This information serves as a basis for the load
balancer to migrate the jobs to the suitable nodes to
complete the jobs in minimum span of time.
The system architecture is shown below, in which the grid
system consist of grid broker and multiple nodes. The node
can host any number of jobs based on its processing

P.Neelakantan et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,1183-1187

© 2015-19, IJARCS All Rights Reserved 1186

capacity. The grid broker has important components such as
scheduler and load balancer to schedule and balances the
jobs effectively.
Load balancing using MWRR is done by collecting the
pending execution time of all jobs from all nodes and
arranged in ascending order of pending time followed by
runtime of the arrived jobs in the queue based on the
priority. The job mapping involves selecting the job from
the queue and calculation of job completion time in each
node and job has been assigned to the most appropriate node
based completion time of the job and pending execution
time of all the jobs residing at that node. The corresponding
jobs and their execution time is added to the pending time of
node by the load balancer to rearrange the nodes based on
their utilization.

1) Calculate unfinished execution time in each of the
node by collecting the unfinished execution length
from JobExecution ,JobWaitingQueue and
JobPauseQueue list.

a) Set
LengthofUnfinishedJobs=LengthofJobsRe
mainLengthinJobExecutionlist+JobsRema
ininglength in Jobwaitlist+JobsRemaining
in JobPauselist

b) Pi is Processing capacity of each node
c) Set EPTime =

TotLengthofunfinishedJobs/Pi
2) Sort Virtualnodes based on the

leastunfinishedexecutiontime
a)   Nodes of the same unfinishedjob

execution length is assigned with
execution time as key and its associated
node as a value.

b) Sort the VirtualNodes by the
unfinishedExecution Time of each node

3) sort the incoming Jobs based on the length &
priority of the Jobs.

a) Sort the JobSubmittedList based on
length & priority.

4) Initialize the Indexvs, indexjob&totalJobs
a) Set indexvx = 0
b) Set totalJobs = length of JobSubmittedList
c) Set VScount= size of nodes in the grid
d) Set indexjob= 0
e) Set jobToVSratio = totalJobs/VScount

5) Assign the incoming jobs to the VS based on the
least unfinished Execution Time in the Nodes and
their processing capacity.

6) Remove all the assigned Jobs from the
JobSubmittedList

5. EXPERIMENTS

The performance of MWRR algorithm is compared with the
existing algorithm round robin and aweighted round robin
in the grid sim. The simulator is used to find response time
of the jobs, the number of job migrations under the
heterogeneous grid environment. The load balancer in the
MWRR identifies the highly loaded node from the grid and
calculates the possible completion of those jobs present in
the overloaded node and the lightly loaded node. If the
lightly loaded node can finish any of the jobs present in the

overloaded node in the shortest possible time, then that job
will be migrated to a lightly loaded node. The proposed
algorithm considers the ratio of processing capacity of the
node to the total processing capacity of the nodes and
assigns the appropriation number of arrived jobs to the
nodes. The simple RR will not consider node capabilities
and job lengths. It simply assigns jobs to nodes one after the
other in an ordered manner. So, the completion time of the
jobs is higher than the other 2 algorithms.

Figure2: Number of virtual servers vs Completion time
 Comparison of Job Migration
The modified WRR algorithm identifies the most
appropriate nodes and hence the job migrations are minimal
when compared to the round robin and weighted round
robin algorithm The weighted round robin considers only
the processing capacity of the nodes and hence there will be
a few job migrations as it won’t consider the job length. In
contrast, the MWRR considers both processing capacity and
job length and hence it is possible for the algorithm to
identify the appropriate nodes for the newly arriving jobs
and hence there will be minimal job migrations or none.
6. CONCLUSIONS AND FUTURE WORK

The objective of the grid computing is to achieve high
system utilization of geographically dispersed distributed
and heterogeneous resources. However the application
performance in the grid remains a challenging task in a
dynamic grid environment. Resources can be submitted to
the grid at any moment and similarly they can also be
withdrawn at any moment. Every load balancing algorithm
consists of five policies. The effective implementation of
these polices by the load balancing algorithm drives the
overall performance of systems. The most important
feature of Grid Middleware will be the execution of
intensive compute applications. Load balancing algorithms
that use Genetic algorithms may be considered for the future
implementation of scheduling jobs to nodes.

P.Neelakantan et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,1183-1187

© 2015-19, IJARCS All Rights Reserved 1187

Figure 3: Number of virtual servers vs Job migration

REFERENCES

1. Buyya, R., D. Abramson, J. Giddy and H.Stockinger, 2002.

Economic models for resource management and scheduling in
grid computing. J. Concurrency and Computation: Practice
and Experience, 14: 1507-1542.

2. Sachin Kumar, NeerajSinghal, “A Priority based Dynamic
Load Balancing Approach in a Grid based Distributed
Computing Network”, International Journal of Computer
Applications (0975-8887), Vo. 49, No.5, July 2012, pp. 11-13

3. Sharma D, Sharma K, Dalal S. Optimized load balancing in
grid computing using tentative ant colony algorithm.

International Journal of Recent Research Aspects. 2014 Jun;
1(1):35–9.

4. Nadimi-Shahraki MH, Fard ES, Safi F. Efficient load
balancing using ant colony optimization. Journal of
Theoretical and Applied Information Technology. 2015 Jul;
77(2):253–8.

5. Buyya R, Murshed M. Gridsim: A toolkit for the modeling
and simulation of distributed resource management and
scheduling for grid computing. Concurrency and computation:
Practice and experience. 2002 Nov; 14(13‐15):1175–20.

6. Srivastava PK, Gupta S, Yadav DS. Improving performance
in load balancing problem on the grid computing system.
International Journal of Computer Applications. 2011 Feb;
16(1):6–10.

a. Dorigo M, Blum C. Ant colony optimization theory: A
survey. Theoretical Computer Science. 2005 May;
344(23):243–78.

7. Ludwig SA, Moallem A. Swarm intelligence approaches for
grid load balancing. Journal of Grid Computing. 2011 Sep;
9(3):279–301.

8. AlexandruCârstea, Georgiana Macariu, Towards a grid
enabled symbolic computation architecture, Pollack Periodica
Aug 2008, Vol. 3, Issue 2, pp. 15-26.

9. BalázsTukora, Tibor Szalay, High performance computing on
graphics processing units, Pollack Periodica Aug 2008, Vol.
3, Issue 2, pp. 27-34

10. PuligundlaNeelakantan, Ambati Reddy," Decentralized load
balancing in distributed systems," Pollack Periodic, Aug 2014,
Vol. 9, Issue 2, pp. 15-28

11. Shanmugasundaram Suresh, JeevaPoornaselvan,
Chidambaram Divyapreya,”Optimal path planning approach
to Grid environment”,PollackPeriodica Apr 2011, Vol. 6,
Issue 1, pp. 131-140.

