
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4483

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 816

ISSN No. 0976-5697

REAL TIME DATA STREAM AGGREGATION AND WINDOWING
Aditya Kumar Shukla

Tech Lead(Perspica, Noida) /MTech-CSE
Dr. K. N. Modi University

Newai,Tonk, Rajasthan, India

Abstract : Nowadays Real time data analysis and Real time data processing is in demand and its demand is getting increase day by day, as we
know Real time data processing is the continuous data stream processing and the data stream could be flow in rate of millions data points per
seconds. This real time data stream information which will be further used for various purposes, it could be for commercial use or for scientific
use .while processing the real time data stream proper methodologies with good approximations have to be used for stream data preparation and
aggregation .In my paper, I have also provided the study about data stream aggregation techniques and their characteristics to improve the
performance. Here we would discuss the way of stream aggregation and time based grouping (Windowing) using suitable techniques, the
important thing in data stream aggregation is to aggregate right set of data and for using windowing of stream for aggregation, Here we would
discuss different windowing techniques.

Keywords: stream aggregation, time windowing, data preparation, data processing, data aggregation, data pipeline

I. INTRODUCTION

The Real-time data stream processing, allows data to be
processed as soon as it is made available, without the need of
any disk and memory storage system. Data stream is a flow of
data which can be consist only time, value or other stream
attribute, the stream attributes and characteristic In a Survey[1]
of a European company in 2013, the 70% of total participators
were in interested and shown need for real time data
processing. And from that time, multiple works has been done
in stream processing technology and major roll of development
has been paid in rapid development of modern stream
processing technologies by the open source software
community. Many applications need to process streams, for
example, application performance monitoring, weather
prediction, financial data analysis, network traffic monitoring,
and telecommunication monitoring. Several database research
groups are building Data Stream Management Systems
(DSMS) so that applications can issue queries to get timely
information from streams.

The common use of stream processing in now days in
application performance monitoring, and a very common task
is that of monitoring a large area in regards to some physical
sensed value such as cpu, memory, IO and Disk usage. Usually
the companies and system admin wants to examine and analyse
this information, so they are collect the data through various
systems like Vmware Vcenter, collectd, Grafite, and various
open source libraries which exposes performance monitoring,
the collected continuous data stream collects in a central point
we call the sink node. Due to the large amount of data
transmitted as the scale of the network increases, it is important
to combine several data metric points in intermediate nodes
along the way towards the processing system conserve data.
This process is known as data aggregation. However due to the
nature of the data stream data points can be receive out of order
so to analyse this out of order data is error-prone and the
aggregation techniques used must be aware and resilient to
errors in message transmission.

.

II. REQUIREMENTS REAL TIME DATA STREAM
PROCESSING

The basic requirements [2] for real time data stream process to
accurate and high performance.

• A real-time stream processing system is to process
messages “in-stream”, without any requirement to
store them to perform any operation or sequence of
operations. Ideally the system should also use an
active (i.e., non-polling) processing model [2].

• Support a high-level query language with built-in
extensible stream oriented primitives and operators.

• Built-in mechanisms to provide resiliency against
stream “imperfections”, including missing and out-of-
order data, which are commonly present in real-world
data streams.

• Stream processing engine must guarantee predictable
and repeatable outcomes.

• Capability to efficiently store, access, and modify
state information, and combine it with live streaming
data. For seamless integration, the system should use a
uniform language when dealing with either type of
data.

• Ensure that the applications are up and available, and
the integrity of the data maintained at all times,
despite failures.

• Capability to distribute processing across multiple
processors and machines to achieve incremental
scalability. Ideally, the distribution should be
automatic and transparent.

• Stream processing system must have a highly
optimised, minimal-overhead execution engine to
deliver real-time response for high-volume
applications.

In these requirements the first thing is to handle out of order
data and to accurate aggregation of data stream. The
computations on data streams can be challenging due to
multiple reasons, including the size of a dataset.

.

Aditya Kumar Shukla, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,816-819

© 2015-19, IJARCS All Rights Reserved 817

III. STREAM AGGREGATION AND SCALABILITY

Stream data aggregation is a process in which information is
gathered and expressed in a summary form, for purposes such
as statistical analysis. A common data aggregation[3] purpose
is to get more information about particular data points groups
based on specific variable such as time, attribute, or metric
type.

For statistical analysis of certain metrics of data stream the
common case is to calculate sum, count, average, mean,
percentile and rate of data set over specific time period, and for
calculation of these parameters some time need to iterate over
the entire dataset in a sorted order using standard formula/
practices and they may not be the most suited approach, for
example, mean = sum of value/ count. For a streaming dataset,
this is not fully scalable.

Instead, suppose we store the sum and count and each new
data-point is added to the sum. For every new point, we
increment the count, and whenever we need the average, we
divide the sum by the count. Then we get the mean at that
instance.

Some time we need aggregated percentile of data stream[4],
while percentile requires finding the location of an data point in
a large dataset; for example, 90th percentile would mean the
value that is over 90 percent of the values in a sorted dataset.
To illustrate, in [9, 1, 8, 7, 6, 5, 2, 4, 3, 0], the 80th percentile
would be 8. This means we need to sort the dataset and then
find an item by its location. This clearly is not scalable. Scaling
this operation involves using an algorithm called tdigest[5].
This is a way of approximating percentile at scale. tdigest[5]
creates digests that create centroids at positions that are
approximated at the appropriate quantiles. These digests can be
added to get a complete digest that can be used to estimate the
quantiles of the whole dataset.

Let’s assume that a data centre which consist of different
type of devices like load balancer, virtual machine, host-
systems etc and these devices are managed through inbuilt
vcenter plug-in. assume that a device is generating continues
stream time series

S = (a1,a2,a3.........an) of real data points with time, value and
name of metric for example cpu_usage , indexed by time t
(time series), At any time t, we need to be able to succinctly
and efficiently answer statistical aggregate queries regarding
the underlying stream up to time t, i.e. St = (a1, a2, . . . , at).

 As we’ve mentioned before, we ideally want to perform
that in (poly)logarithmic space and time, respecting the
computational and storage capabilities of our tiny devices. We
achieve that by maintaining auxiliary data structures called
summaries1 which are clever and succinct synopses of the
underlying data set observed so far. The most important
operation of a summary is that of merging new elements into it,
in order to produce efficiently a new synopsis, describing the
new, larger stream. More formally, we need a function F such
that if Sk(St) is a summary instance describing an underlying
stream St , then

 Sk(St+1) = F(Sk(St), at+1).
 For example, for the MAX and AVG aggregates it is trivial

to see that can be efficiently computed by maintaining
(recursively) summaries with

SkMAX(S1) = a1, summary is that of merging new elements
into it, in order to produce efficiently a new synopsis,
describing the new, larger stream. More formally, we need a
function F such that if Sk(St) is a summary instance describing
an underlying stream St , then

Sk(St+1) = F(Sk(St), at+1)

. For example, for the MAX and AVG aggregates it is
trivial to see that can be efficiently computed by maintaining
(recursively) summaries with

SkMAX(S1) = a1, FMAX(x, y) = max{x, y} and
 SkAVG(S1) = (a1, 1), FAVG((x1, x2), y) = (x1 + y, x2 + 1),

respectively, where the actual mean value can be extracted by
the AVG summary by simply computing

AVG(S) = x y , where SkAVG(S) = (x, y).
Let’s take example of application performance metrics like

cpu usages, if we have multiple points like

Table I. In memory Stream Aggregation

Metric
name

time(hh:mm:ss) value count sum Avg max

CPU
Usage

11:30:01 23.4 1 23.4 23.4 23.4

CPU
Usage

11:30:32 21.0 2 44.4 22.2 23.4

.

A. Time based aggregation
As we discussed in data stream aggregation section , the most
important part in data aggregation is to aggregate on the basis
of time.In case of application performance metrics example
embedded time in data messages is like epoch timestamp and
it is in milliseconds.
For aggregation of metric stream, each data element in the
stream needs to be associated with a timestamp. When we say
"events in the last 5 minutes" - which 5 minutes do we mean?
This can be done in three ways:[6]

• event-time - a logical, data-dependent timestamp,
embedded in the event (data element) itself

• ingestion-time - a timestamp assigned to the event
when it enters the system

• processing-time - the wall-clock time when the event
is processed

Event-time, while most useful, is also the most troubling: it
gives the least guarantees; events may arrive out of order or
late, so we can never be sure if we saw all events in a given
time window. Processing-time is easiest, as it is monotonic:
you know precisely when a 5-minute window ended (by
looking at the clock), but also much less useful.
 The selection of time depends on the use case and
requirement of further processing and analysis.

IV. WINDOWING CONCEPT IN DATA STREAM

The data analysis space is witnessing an evolution from batch
to stream processing for many use cases. Although batch can be
handled as a special case of stream processing, analyzing
never-ending streaming data often requires a shift in the
mindset and comes with its own terminology (for example,
“windowing” and “at-least-once”/”exactly-once” processing).
Instead of using synopses to compress the characteristics of the
whole data streams, window techniques[7] only look on a
portion of the data. This approach is motivated by the idea that
only the most recent data are relevant. Therefore, a window
continuously cuts out a part of the data stream, e.g. the last ten
data stream elements, and only considers these elements during
the processing. There are different kinds of such windows like
sliding windows that are similar to FIFO lists or tumbling

Aditya Kumar Shukla, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,816-819

© 2015-19, IJARCS All Rights Reserved 818

windows that cut out disjoint parts. Furthermore, the windows
can also be differentiated into element-based windows, e.g., to
consider the last ten elements, or time-based windows, e.g., to
consider the last ten seconds of data. There are also different
approaches to implementing windows. There are, for example,
approaches that use timestamps or time intervals for system-
wide windows or buffer-based windows for each single
processing step. Sliding-window query processing is also
suitable to being implemented in parallel processors by
exploiting parallelism between different windows and/or within
each window extent..

Figure 1. Wndowing Examples

A. Type of Windows:[8]

• fixed/tumbling: time is partitioned into same-length,
non-overlapping chunks. Each event belongs to exactly one
window

• sliding: windows have fixed length, but are separated
by a time interval (step) which can be smaller than the
window length. Typically the window interval is a
multiplicity of the step. Each event belongs to a number of
windows.

• session: windows have various sizes and are defined
basing on data, which should carry some session identifiers.

B. Out of order data handling:[9].
As we discuss event-time, events can arrive out of order.
For example in IoT, when you are receiving a stream of
sensor readings, devices might be offline, and send catch-up
data after some time. That’s why we definitely have to
allow for some lateness in event arrival, but how much? We
can’t keep all windows around forever, as this would eat all
available memory. At some point, a window has to be
considered "done" and garbage collected.
This is handled by a mechanism called watermarks. A
watermark specifies that we assume that all events before X
have been observed. This is of course a heuristic, as we
usually can’t know that for sure. The heuristic has to be
picked so that it strikes a good balance between including
as much late data as possible and not delaying final window
processing too much.
Any events older than the current watermark are dropped.
An example of a heuristic is a watermark that is always 5
minutes behind the newest event time seen in an event; that
is, we allow data to be up to 5 minutes late.

Once we accumulate data (events) in a window, to get
value, it needs to be somehow manipulated. There are a
number of options:

• basic operations such as map, filter, flatMap, ...
• Aggregate: count, max, min, sum, etc.
• fold/reduce using an arbitrary function

This allows us to get a window result value for each
window.

V. RELATED WORK

Let’s now compare a couple of popular systems and see how
they classify when it comes to windowing data taking into
account the above mentioned aspects.

We’ll take a look at Spark, Flink, and Kafka Streams. It’s
by no means a comprehensive list - there are many more
streaming systems out there, but these seem to be quite popular.

.

A. Spark Streaming[10]
Spark Streaming is one of the most popular options out

there, present on the market for quite a long time, allowing
processing a stream of data on a Spark cluster. It builds on the
usual Spark execution engine, where the main abstraction is the
RDD: Resilient Distributed Dataset (you can think about it as a
replicated, parallelised collection). In Spark Streaming, the
main abstraction is a DStream: a Discretized stream.
A DStream is defined by an interval (e.g. 1 second), which is
used to pre-group the incoming stream elements into discrete
chunks. Each chunk forms an RDD and is processed by the
"normal" Spark execution engine. Hence this is not "true"
streaming, but micro-batching. However, you can implement
quite a lot of streaming operations on top of such architecture.
The DStream.window() API has the following capabilities:

• tumbling/sliding windows
• only processing-time; no event-time support
• no watermarks support (which wouldn’t make sense

with processing-time anyway)
• triggers at the end of the window only

B. Flink[11]
Apache Flink reifies a lot of the concepts described in the
introduction as user-implementable classes/interfaces. Like
Spark, Flink processes the stream on its own cluster. Note that
most of these operations are available only on keyed streams
(streams grouped by a key), which allows them to be run in
parallel. The interfaces involved are:

• Time Characteristic: enumeration
of Event, Ingestion, Processing.

• Timestamp Assigner: assigns timestamps to events
(when using event-time), but also
generates watermarks. There are some built-in
options, like generating a watermark in specified
event-time intervals, but custom implementations can
be provided

• Window Assigner: for each data element, assign
windows corresponding to it. Built-in options:
tumbling/sliding/global windows. A custom
implementation can be used to implement session
windows.

• Trigger: event/processing time (when watermark is
passed), continuous event/processing time (based on
an interval), element count

.

Aditya Kumar Shukla, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,816-819

© 2015-19, IJARCS All Rights Reserved 819

C. Kafka Stream[12]
Apache Kafka, being a distributed streaming platform with a
messaging system at its core, contains a client-side component
for manipulating data streams. The data sources and sinks are
Kafka topics. Like in previous cases, Kafka Streams also
allows to run stream processing computations in parallel on a
cluster, however that cluster has to be managed externally.
Like with any other Kafka stream consumer, multiple
instances of a stream processing pipeline can be started and
they divide the work.
As for windowing, Kafka has the following options:[13]

• TimestampExtractor allows to use event, ingestion or
processing time for any event

• windows can be tumbling or sliding
• There are no built-in watermarks, but window data

will be retained for 1 day (by default)
• trigger: after every element. The results are stored in

an ever-updating KTable. A KTable is table
represented as a stream of row updates; in other ways,
a changelog stream. The each-element triggering can
be a problem if the window function is expensive to
compute and doesn’t have a straightforward
"accumulative" nature.

The options here are much more modest comparing to Flink,
but the processing and clustering models are simple to
understand, which is definitely a plus when designing a
system.

VI. CONCLUSION

As we have seen, the present system varies widely in how
data can be windowed. Some offer only the basics, like Spark
Streaming, some have a very wide range of windowing
features, such as Flink .However, keep in mind that windowing
in only one of the aspects of a stream processing engine.

Another important aspect to aggregate data in window in
right-way, to use right key of aggregation, that can be grouped
over right set of keys so out of order data can be handle in
window itself.

The best way of windowing is to use tumbling window if
out of order is an issue for further processing, there should be
use of embedded event time to identified out of order data.

We would suggest to convert embedded time stamp into at-
least one minute granularity so adequate data points can be use

for aggregation if we talk performance metrics monitoring data
which comes in milliseconds granularity.

VII. ACKNOWLEDGMENT

I take this opportunity to express a deep sense of gratitude for
my guide Mr. Vivek Sharma (H.O.D), Department of CSE,
DKNMU and My organization's seniors for providing excellent
guidance and support. It is because of her constant and general
interest and assistance that this paper has been successful.
I would also like to thank my teachers, family and friends who
have been a source of encouragement and inspiration
throughout the duration of this project.

VIII. REFERENCES

[1] Eurofound, European Company Surveys (ECS)2013
[2] Michael Stonebraker , Uğur Çetintemel, Stan Zdonik. The 8

Requirements of Real-Time Stream Processing
[3] Searchsqlserver.techtarget.com,Data aggregation, September

2005
[4] Anant Asthana, Real-Time Aggregation on Streaming Data

Using Spark Streaming and Kafka, April 11th, 2016
[5] Cameron Davidson-Pilon, Percentile and Quantile Estimation of

Big Data: The t-Digest, Mar 18, 2015
[6] Adam Warski, Windowing data in Big Data Streams - Spark,

Flink, Kafka, Akka, 2016
[7] Abadi; et al. Aurora: A Data Stream Management System.

SIGMOD 2003.
[8] Adam Warski, Types of window- Spark, Flink, Kafka, Akka,

2016
[9] Ming Li, Mo Liu, Luping Ding, Elke A. Rundensteiner and

Murali Mani, Event Stream Processing with Out-of-Order Data
Arrival

[10] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter,
Scott Shenker, Ion Stoica, Discretized Streams: Fault-Tolerant
Streaming Computation at Scale, 2013

[11] K.M.J. Jacobs, Apache Flink: Distributed Stream Data
Processing, 2016

[12] Martin Kleppmann, Jay Kreps, Kafka, Samza and the Unix
Philosophy of Distributed Data,

[13] NIXON PATEL, Chief Data Scientist, Brillio LLC, REAL
TIME ANALYTICS WITH SPARK AND KAFKA, 2015

	Introduction
	Requirements Real Time Data Stream Processing
	Stream Aggregation and scalability
	Time based aggregation

	Windowing Concept in data stream
	Type of Windows:[8]
	• fixed/tumbling: time is partitioned into same-length, non-overlapping chunks. Each event belongs to exactly one window
	• sliding: windows have fixed length, but are separated by a time interval (step) which can be smaller than the window length. Typically the window interval is a multiplicity of the step. Each event belongs to a number of windows.
	• session: windows have various sizes and are defined basing on data, which should carry some session identifiers.
	Out of order data handling:[9].

	Related work
	Spark Streaming[10]
	Flink[11]
	Kafka Stream[12]

	CONCLUSION
	Acknowledgment
	References

