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Abstract : Nowadays Real time data analysis and Real time data  processing is in demand and its demand is getting increase day by day, as we 
know Real time data processing is the continuous data stream processing and the data stream could be flow in rate of millions data points per 
seconds. This real time data stream information which will be further used for various purposes, it could be for commercial use or for scientific 
use .while processing the real time data stream proper methodologies with good approximations have to be used for stream data preparation and 
aggregation .In my paper, I have also provided the study about data stream aggregation techniques and their characteristics to improve the 
performance. Here we would discuss the way of stream aggregation and time based grouping (Windowing) using suitable techniques, the 
important thing in data stream aggregation is to aggregate right set of data and for using windowing of stream for aggregation, Here we would 
discuss different windowing techniques. 
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I. INTRODUCTION 

The Real-time data stream processing, allows data to be 
processed as soon as it is made available, without the need of 
any disk and memory storage system. Data stream is a flow of 
data which can be consist only time, value or other stream 
attribute, the stream attributes and characteristic In a Survey[1] 
of a European company in 2013, the 70% of total participators 
were in interested and shown need for real time data 
processing. And from that time, multiple works has been done 
in stream processing technology and major roll of development 
has been paid in rapid development of modern stream 
processing technologies by the open source software 
community. Many applications need to process streams, for 
example, application performance monitoring, weather 
prediction, financial data analysis, network traffic monitoring, 
and telecommunication monitoring. Several database research 
groups are building Data Stream Management Systems 
(DSMS) so that applications can issue queries to get timely 
information from streams. 

The common use of stream processing in  now days in 
application performance monitoring, and a very common task 
is that of monitoring a large area in regards to some physical 
sensed value such as cpu, memory, IO and Disk usage. Usually 
the companies and system admin wants to examine and analyse 
this information, so they are collect the data through various 
systems like Vmware Vcenter, collectd, Grafite, and various 
open source libraries which exposes performance monitoring, 
the collected continuous data stream collects in a central point 
we call the sink node. Due to the large amount of data 
transmitted as the scale of the network increases, it is important 
to combine several data metric points in intermediate nodes 
along the way towards the processing system conserve data. 
This process is known as data aggregation. However due to the 
nature of the data stream data points can be receive out of order 
so to analyse this out of order data is error-prone and the 
aggregation techniques used must be aware and resilient to 
errors in message transmission. 

. 

II.  REQUIREMENTS REAL TIME DATA STREAM 
PROCESSING 

The basic requirements [2] for real time data stream process to 
accurate and high performance. 

• A real-time stream processing system is to process 
messages “in-stream”, without any requirement to 
store them to perform any operation or sequence of 
operations. Ideally the system should also use an 
active (i.e., non-polling) processing model [2]. 

• Support a high-level query language with built-in 
extensible stream oriented primitives and operators. 

• Built-in mechanisms to provide resiliency against 
stream “imperfections”, including missing and out-of-
order data, which are commonly present in real-world 
data streams. 

• Stream processing engine must guarantee predictable 
and repeatable outcomes. 

• Capability to efficiently store, access, and modify 
state information, and combine it with live streaming 
data. For seamless integration, the system should use a 
uniform language when dealing with either type of 
data. 

• Ensure that the applications are up and available, and 
the integrity of the data maintained at all times, 
despite failures. 

• Capability to distribute processing across multiple 
processors and machines to achieve incremental 
scalability. Ideally, the distribution should be 
automatic and transparent. 

• Stream processing system must have a highly 
optimised, minimal-overhead execution engine to 
deliver real-time response for high-volume 
applications. 

In these requirements the first thing is to handle out of order 
data and to accurate aggregation of data stream. The 
computations on data streams can be challenging due to 
multiple reasons, including the size of a dataset. 

. 
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III. STREAM AGGREGATION AND SCALABILITY 

Stream data aggregation is a process in which information is 
gathered and expressed in a summary form, for purposes such 
as statistical analysis. A common data aggregation[3] purpose 
is to get more information about particular data points groups 
based on specific variable such as time, attribute, or metric 
type.  

For statistical analysis of certain metrics of data stream the 
common case is to calculate sum, count, average, mean, 
percentile and rate of data set over specific time period, and for 
calculation of these parameters some time need to iterate over 
the entire dataset in a sorted order using standard formula/ 
practices and they may not be the most suited approach, for 
example, mean = sum of value/ count. For a streaming dataset, 
this is not fully scalable. 

Instead, suppose we store the sum and count and each new 
data-point is added to the sum. For every new point, we 
increment the count, and whenever we need the average, we 
divide the sum by the count. Then we get the mean at that 
instance. 

Some time we need aggregated percentile of data stream[4], 
while percentile requires finding the location of an data point in 
a large dataset; for example, 90th percentile would mean the 
value that is over 90 percent of the values in a sorted dataset. 
To illustrate, in [9, 1, 8, 7, 6, 5, 2, 4, 3, 0], the 80th percentile 
would be 8. This means we need to sort the dataset and then 
find an item by its location. This clearly is not scalable. Scaling 
this operation involves using an algorithm called tdigest[5]. 
This is a way of approximating percentile at scale. tdigest[5] 
creates digests that create centroids at positions that are 
approximated at the appropriate quantiles. These digests can be 
added to get a complete digest that can be used to estimate the 
quantiles of the whole dataset. 

Let’s assume that a data centre which consist of different 
type of devices like load balancer, virtual machine, host-
systems  etc  and these devices are managed through inbuilt 
vcenter plug-in. assume that a device is generating continues 
stream time series 

S = (a1,a2,a3.........an) of real data points with time, value and 
name of metric for example cpu_usage , indexed by time t 
(time series), At any time t, we need to be able to succinctly 
and efficiently answer statistical aggregate queries regarding 
the underlying stream up to time t, i.e. St = (a1, a2, . . . , at). 

 As we’ve mentioned before, we ideally want to perform 
that in (poly)logarithmic space and time, respecting the 
computational and storage capabilities of our tiny devices. We 
achieve that by maintaining auxiliary data structures called 
summaries1 which are clever and succinct synopses of the 
underlying data set observed so far. The most important 
operation of a summary is that of merging new elements into it, 
in order to produce efficiently a new synopsis, describing the 
new, larger stream. More formally, we need a function F such 
that if Sk(St) is a summary instance describing an underlying 
stream St , then 

 Sk(St+1) = F(Sk(St), at+1). 
 For example, for the MAX and AVG aggregates it is trivial 

to see that can be efficiently computed by maintaining 
(recursively) summaries with  

SkMAX(S1) = a1, summary is that of merging new elements 
into it, in order to produce efficiently a new synopsis, 
describing the new, larger stream. More formally, we need a 
function F such that if Sk(St) is a summary instance describing 
an underlying stream St , then  

Sk(St+1) = F(Sk(St), at+1) 

. For example, for the MAX and AVG aggregates it is 
trivial to see that can be efficiently computed by maintaining 
(recursively) summaries with  

SkMAX(S1) = a1, FMAX(x, y) = max{x, y} and 
 SkAVG(S1) = (a1, 1), FAVG((x1, x2), y) = (x1 + y, x2 + 1), 

respectively, where the actual mean value can be extracted by 
the AVG summary by simply computing  

AVG(S) = x y , where SkAVG(S) = (x, y). 
Let’s take   example of application performance metrics like 

cpu usages, if we have multiple points like 

Table I.  In memory Stream Aggregation 

Metric 
name 

time(hh:mm:ss) value  count  sum Avg max 

CPU 
Usage 

11:30:01 23.4 1 23.4 23.4 23.4 

CPU 
Usage 

11:30:32 21.0 2 44.4 22.2 23.4 

. 

A. Time based aggregation 
As we discussed in data stream aggregation section , the most 
important part in data aggregation is to aggregate on the basis 
of time.In case of application performance metrics example 
embedded time in data messages is like epoch timestamp and 
it is in milliseconds. 
For aggregation of metric stream, each data element in the 
stream needs to be associated with a timestamp. When we say 
"events in the last 5 minutes" - which 5 minutes do we mean? 
This can be done in three ways:[6] 

• event-time - a logical, data-dependent timestamp, 
embedded in the event (data element) itself 

• ingestion-time - a timestamp assigned to the event 
when it enters the system 

• processing-time - the wall-clock time when the event 
is processed 

Event-time, while most useful, is also the most troubling: it 
gives the least guarantees; events may arrive out of order or 
late, so we can never be sure if we saw all events in a given 
time window. Processing-time is easiest, as it is monotonic: 
you know precisely when a 5-minute window ended (by 
looking at the clock), but also much less useful. 
 The selection of time depends on the use case and 
requirement of further processing and analysis. 
 

IV. WINDOWING CONCEPT IN DATA STREAM 

The data analysis space is witnessing an evolution from batch 
to stream processing for many use cases. Although batch can be 
handled as a special case of stream processing, analyzing 
never-ending streaming data often requires a shift in the 
mindset and comes with its own terminology (for example, 
“windowing” and “at-least-once”/”exactly-once” processing). 
Instead of using synopses to compress the characteristics of the 
whole data streams, window techniques[7] only look on a 
portion of the data. This approach is motivated by the idea that 
only the most recent data are relevant. Therefore, a window 
continuously cuts out a part of the data stream, e.g. the last ten 
data stream elements, and only considers these elements during 
the processing. There are different kinds of such windows like 
sliding windows that are similar to FIFO lists or tumbling 
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windows that cut out disjoint parts. Furthermore, the windows 
can also be differentiated into element-based windows, e.g., to 
consider the last ten elements, or time-based windows, e.g., to 
consider the last ten seconds of data. There are also different 
approaches to implementing windows. There are, for example, 
approaches that use timestamps or time intervals for system-
wide windows or buffer-based windows for each single 
processing step. Sliding-window query processing is also 
suitable to being implemented in parallel processors by 
exploiting parallelism between different windows and/or within 
each window extent.. 
 

 
Figure 1.  Wndowing Examples 

A. Type of Windows:[8] 

• fixed/tumbling: time is partitioned into same-length, 
non-overlapping chunks. Each event belongs to exactly one 
window 

• sliding: windows have fixed length, but are separated 
by a time interval (step) which can be smaller than the 
window length. Typically the window interval is a 
multiplicity of the step. Each event belongs to a number of 
windows. 

• session: windows have various sizes and are defined 
basing on data, which should carry some session identifiers. 

B.  Out of order data handling:[9].  
As we discuss event-time, events can arrive out of order. 
For example in IoT, when you are receiving a stream of 
sensor readings, devices might be offline, and send catch-up 
data after some time. That’s why we definitely have to 
allow for some lateness in event arrival, but how much? We 
can’t keep all windows around forever, as this would eat all 
available memory. At some point, a window has to be 
considered "done" and garbage collected. 
This is handled by a mechanism called watermarks. A 
watermark specifies that we assume that all events before X 
have been observed. This is of course a heuristic, as we 
usually can’t know that for sure. The heuristic has to be 
picked so that it strikes a good balance between including 
as much late data as possible and not delaying final window 
processing too much. 
Any events older than the current watermark are dropped. 
An example of a heuristic is a watermark that is always 5 
minutes behind the newest event time seen in an event; that 
is, we allow data to be up to 5 minutes late. 

Once we accumulate data (events) in a window, to get 
value, it needs to be somehow manipulated. There are a 
number of options: 

•  basic operations such as map, filter, flatMap, ... 
•  Aggregate: count, max, min, sum, etc. 
•  fold/reduce using an arbitrary function 

This allows us to get a window result value for each 
window. 

V. RELATED WORK 

Let’s now compare a couple of popular systems and see how 
they classify when it comes to windowing data taking into 
account the above mentioned aspects. 

We’ll take a look at Spark, Flink, and Kafka Streams. It’s 
by no means a comprehensive list - there are many more 
streaming systems out there, but these seem to be quite popular. 

.  

A. Spark Streaming[10] 
Spark Streaming is one of the most popular options out 

there, present on the market for quite a long time, allowing 
processing a stream of data on a Spark cluster. It builds on the 
usual Spark execution engine, where the main abstraction is the 
RDD: Resilient Distributed Dataset (you can think about it as a 
replicated, parallelised collection). In Spark Streaming, the 
main abstraction is a DStream: a Discretized stream. 
A DStream is defined by an interval (e.g. 1 second), which is 
used to pre-group the incoming stream elements into discrete 
chunks. Each chunk forms an RDD and is processed by the 
"normal" Spark execution engine. Hence this is not "true" 
streaming, but micro-batching. However, you can implement 
quite a lot of streaming operations on top of such architecture. 
The DStream.window() API has the following capabilities: 

• tumbling/sliding windows 
• only processing-time; no event-time support 
• no watermarks support (which wouldn’t make sense 

with processing-time anyway) 
• triggers at the end of the window only 

 

B. Flink[11] 
Apache Flink reifies a lot of the concepts described in the 
introduction as user-implementable classes/interfaces. Like 
Spark, Flink processes the stream on its own cluster. Note that 
most of these operations are available only on keyed streams 
(streams grouped by a key), which allows them to be run in 
parallel. The interfaces involved are: 

• Time Characteristic: enumeration 
of  Event, Ingestion, Processing. 

• Timestamp Assigner: assigns timestamps to events 
(when using event-time), but also 
generates watermarks. There are some built-in 
options, like generating a watermark in specified 
event-time intervals, but custom implementations can 
be provided 

• Window Assigner: for each data element, assign 
windows corresponding to it. Built-in options: 
tumbling/sliding/global windows. A custom 
implementation can be used to implement session 
windows. 

• Trigger: event/processing time (when watermark is 
passed), continuous event/processing time (based on 
an interval), element count 

. 
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C. Kafka Stream[12] 
Apache Kafka, being a distributed streaming platform with a 
messaging system at its core, contains a client-side component 
for manipulating data streams. The data sources and sinks are 
Kafka topics. Like in previous cases, Kafka Streams also 
allows to run stream processing computations in parallel on a 
cluster, however that cluster has to be managed externally. 
Like with any other Kafka stream consumer, multiple 
instances of a stream processing pipeline can be started and 
they divide the work. 
As for windowing, Kafka has the following options:[13] 

• TimestampExtractor allows to use event, ingestion or 
processing time for any event 

• windows can be tumbling or sliding 
• There are no built-in watermarks, but window data 

will be retained for 1 day (by default) 
• trigger: after every element. The results are stored in 

an ever-updating KTable. A KTable is table 
represented as a stream of row updates; in other ways, 
a changelog stream. The each-element triggering can 
be a problem if the window function is expensive to 
compute and doesn’t have a straightforward 
"accumulative" nature. 

The options here are much more modest comparing to Flink, 
but the processing and clustering models are simple to 
understand, which is definitely a plus when designing a 
system.  

VI. CONCLUSION 

As we have seen, the present system varies widely in how 
data can be windowed. Some offer only the basics, like Spark 
Streaming, some have a very wide range of windowing 
features, such as Flink .However, keep in mind that windowing 
in only one of the aspects of a stream processing engine.  

Another important aspect to aggregate data in window in 
right-way, to use right key of aggregation, that can be grouped 
over right set of keys so out of order data can be handle in 
window itself. 

The best way of windowing is to use tumbling window if 
out of order is an issue for further processing, there should be 
use of embedded event time to identified out of order data. 

We would suggest to convert embedded time stamp into at-
least one minute granularity so adequate data points can be use 

for aggregation if we talk performance metrics monitoring data 
which comes in milliseconds granularity. 
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