
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4410

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 741

ISSN No. 0976-5697

GREEDY DISCRETE ANT COLONY OPTIMIZATION FOR HIGH COVERAGE
TEST SUITE GENERATION

T. Ramasundaram
Research Scholar,

Department of Computer Science
Periyar University, Salem

Tamil Nadu, India

Dr. V.Sangeetha
Assistant Professor and Head

Department of Computer Science
Periyar University Constituent College of Arts & Science

Pappireddipatti, Dharmapuri, Tamil Nadu, India

Abstract: Test suite optimization is significant problems in software engineering research to reduce testing cost of software program. Recently,
few research works have been designed for test suite generation and reduction. However, there is a requirement for new technique to improve
coverage rate of test suite generation and to remove redundant test cases. In order to overcome such limitations, a Greedy Discrete Ant Colony
Optimization (GDACO) technique is proposed. The main objective of GDACO technique is to optimize the coverage capability of test suite
generation. The GDACO technique initially used Ant Colony Optimization (ACO) algorithm for generating the test suites. The ACO algorithm
selects test cases from test cases set based on trail’s probability and subsequently update pheromone trails until the maximum iteration is
reached. This process results in generation of test suites for testing software programs. After that, GDACO technique used Greedy Discretization
algorithm to test suite optimization. The Greedy Discretization algorithm designed in GDACO technique chooses the test cases which cover
most test requirements and removes redundant test cases in test suites. Therefore, GDACO technique finally obtains minimal cardinality subset
of test suites with higher coverage rate of faults. The GDACO technique conducts the experimental works on parameters such as coverage rate,
average rate of test suite reduction and execution time. The experimental result demonstrates that the GDACO technique is able to improve the
coverage rate of software faults and also increases the average rate of test suite reduction when compared to state-of-the-art-works.

Keywords: Test suite, Test case, software program, coverage, ACO algorithm, Greedy Discretization algorithm

1. INTRODUCTION

Software Testing is the process of testing the

functionality of a software program through analytical
methods. Test cases play a vital role in the process of
software testing for determining the software quality.
Therefore, test suites are generated with aid of test cases for
testing software programs. Most of research works has been
designed for test suite generation and optimization. But,
optimizing the coverage capability of test suite generation
was not sufficient.

A Memetic Algorithm was designed in [1] for whole test
suite generation and optimization. However, coverage
capability was not ensured. Test case minimization approach
was developed in [2] to reduce the number of test cases in
configuration-aware structural testing. However, this
approach takes more computational time for achieving test
suite minimization.

The efficiency of test suites generated was analyzed in
[3] to fulfill four coverage criteria with aid of counter
example-based test generation and a random generation
approach. But, code coverage does not ensure test quality.
Cuckoo Search Algorithm was designed in [4] to
systematically reduce the number of test cases through
considering the combinations of inputs.

A novel approach called whole test suite generation was
developed in [5] for test data generation that covers all
coverage goals and simultaneously reduces the total size of
test case. Though, optimizing coverage capability of test
suite was remained unsolved. An intelligent search-based
method was intended in [6] to generate test cases
automatically for coverage-oriented soft-ware testing. This
method provides better performance in terms of test coverage

and the number of test cases. But, test coverage was not at
required level.

A Tabu Search hyper-heuristic strategy was presented in
[7] for t-way test suite generation. However, test suite
optimization was remained unaddressed. A test-suite-
generation approach was developed in [8] for efficiently
achieving complete multi-goal test-coverage of product-line
implementations. However, optimization criteria for ordering
of test goals were not considered.

A Parallel Genetic Algorithm Based on Spark was
employed in [9] for Pairwise Test Suite Generation and to
reduce test suite size. But, finding a smaller test suite size
was remained unsolved. A novel regression test selection
approach was designed in [10] based on analysis of state and
dependence models of components to generate a regression
test suite. However, execution time was more. A different
techniques designed for test suite minimization was analyzed
in [11] for enhancing the testing process of test suites and
achieving all the testing requirements.

Based on the above mentioned techniques and methods
presented, Greedy Discrete Ant Colony Optimization
(GDACO) technique is developed. The research objective of
GDACO technique is formulated as follows,

• To optimize the coverage capability of test suite
generation, GDACO technique is introduced.

• To generate the test suites for testing software
programs, Ant Colony Optimization (ACO)
algorithm is used in GDACO technique.

• To perform test suite reduction, Greedy
Discretization Algorithm is employed in GDACO
technique.

The rest of this paper is organized as follows. Section II
explains Greedy Discrete Ant Colony Optimization

T.Ramasundaram, et al International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,741-747

© 2015-19, IJARCS All Rights Reserved 742

(GDACO) technique with the assist of architecture diagram.
Section III and Section IV explains the experimental settings
and details performance analysis with the aid of parameters.
Section V describes the related works. Finally, Section VI
concludes this paper.

2. A GREEDY DISCRETE ANT COLONY
OPTIMIZATION TECHNIQUE

In software engineering, a test suite contains set of test

cases for testing a software program to prove that it has some
specific set of characteristics. Test suite reduction technique
is required to reduce the cost of software testing by removing
the redundant test cases from the test suite. Therefore, a
Greedy Discrete Ant Colony Optimization (GDACO)
technique is designed to improve coverage capability of test
suite and to reduce redundancy of test cases for test suite
optimization. The GDACO technique generates the test
suites for evaluating the efficiency of software programs with
aid of Ant Colony Optimization (ACO) algorithm. The test
suites consist of numerous test cases for testing the software
programs. After generating the test suites, Greedy
Discretization algorithm is used to select a minimal subset of
a test suite that covers all test requirements. Thus, GDACO
technique reduces the test cases in test suites through
choosing a set of test cases that are fulfill the testing criteria.
As a result, GDACO technique improves coverage rate of
test cases for discovering the more faults in software
programs and also reduces test cases redundancy of software
testing. This resulting in reduced test cost for improving
software quality. The overall architecture diagram of Greedy
Discrete Ant Colony Optimization technique for test suite
minimization is shown in below Figure 1.

Figure 1. Architecture of Greedy Discrete Ant

Colony Optimization Technique

As shown in Figure 1, GDACO technique takes
schoolmate data set as input. Next, GDACO technique
applies Ant Colony Optimization algorithm for generating
test suites. Then, GDACO technique used Greedy
Discretization Algorithm for test suite minimization which
resulting in minimal cardinality subset of test suites for
finding the more number of faults in schoolmate data set.
Therefore, GDACO technique increases average rate of test
suite reduction with higher coverage rate of faults. The

detailed explanation about GDACO technique is described in
forthcoming sections.
A. Test Suite Generation Using Ant Colony Optimization

The GDACO technique used Ant Colony Optimization
(ACO) algorithm to generate a set of test suites for achieving
high fault coverage in a short time. Ant colony optimization
(ACO) is a metaheuristic which discovers solutions for
complex combinatorial optimization problems. The ACO
algorithm is depends on the behavior of real ants for
determining the shortest path from the nest to the food source
and back to the nest through putting a chemical substance
termed pheromone. Foragers can follow the trail to food
determined by other ants trail through sensing pheromone.
Therefore, a shortest route is identified for food source. By
using this ACO algorithmic process, GDACO technique
selects the test cases from the test case set in order to
generate a test suites for testing the software programs based
on user test requirements. The following diagram shows the
Test Suite Generation process using Ant Colony
Optimization.

Figure 2. Test Suite Generation Process Using

Ant Colony Optimization

As shown in Figure 2, Ant Colony Optimization
algorithm initially takes test cases set as input and then
initializes the ACO parameters. In ACO algorithm, Ant
selects the test cases for generating test suites based on trail’s
probability and subsequently update pheromone trails. This
process is repeated until the maximum iteration is found.
Finally, ACO algorithm finds best solutions of iterations in
order to form the test suites.

For generating the test suites, ACO algorithm initially
constructs a directed graph G= (V, E) in which V represents
the vertices (i.e. test cases) and E denotes the edges between
the two vertices. Each edge e ∈ E is allocated with a weight
which signifies the amount of pheromone that an ant may
deposit on track with the primary weights assigned to 1 as
shown in Figure 2. The graph is traversed through the ants
based on a probabilistic approach where each crossing results
in generation of test suites for evaluating the software
quality. A graph structure of ACO algorithm for Test Suite
Generation is shown in below Figure 3.

T.Ramasundaram, et al International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,741-747

© 2015-19, IJARCS All Rights Reserved 743

Figure 3. Graph Structure of ACO Algorithm for

Generating Test Suites

As shown in Figure 3, during each level of graph
traversal, an ant has to select between two vertices that
correspond to the identical initial input. But, each vertex
corresponds to a dissimilar input value possibility such as 0
or 1. An ant selects one of the two vertices based on the
trail’s probability by using following mathematical formula,

 (1)
From the equation (1), represents the weight of the

candidate trail and denotes the weight of the alternate trail.
Let assume is the intensity of trail on edge at
time . An ant picks the next initial input depends on
time . The pheromone trails are updated by using
following mathematical equation,

 (2)
From the equation (2), is a coefficient that indicates the

trail’s probability between and . An ant uses the
pheromone trail to compute the probability of choosing as
the next vertex when at a vertex by using following
mathematical equation,

 (3)

From the equation (3), the probability of choosing the
next vertex (i.e. test case) is determined. The above process
is repeated until the maximum iteration is found. The
algorithmic process of ACO Algorithm for generating test
suite is shown in below,

// ACO Based Test Suite Generation Algorithm

Input: Test cases set: {t_1,t_2,t_3,…t_n}
Output: Test Suites : T={T_1,T_2,T_3,…T_n}
Step 1: Begin
Step 2: Initialize ACO parameters like total test cases with

the input values
Step 3: While the termination condition is met, do
Step 4: Ant selects test cases based on trail’s probability

using (1)

Step 5: Update the pheromone trails using (2)
Step 6: Compute the probability of choosing the next test

case using (3)
Step 8: End while
Step 9: Return the best solution found
Step 10: End

Algorithm 1 ACO Based Test Suite Generation

As shown in algorithm 1, Ant initially chooses the test
cases for generating test suites based on trail’s probability
and subsequently update pheromone trails. During each level
of the graph traversal, the ants find out the probability of
choosing a vertex through creating a random number x. If x
is less than ρ then the ant select the vertex to the current trail
(i.e. choose test case for generating test suites) and the vertex
value is retained. Otherwise, the adjacent vertex is select.
This process is repeated until all the ant traverses all graph
levels using the same procedure. The vertices selected for
each level of the graph traversal is collected together in order
to generate a test a suites.
B. Test Suite Reduction Using Greedy Discretization

Algorithm
The GDACO technique used Greedy Discretization

algorithm for determining the optimal solution to the test
suite reduction problem. The Greedy Discretization
algorithm repeatedly removes the test case which unsatisfied
user test requirements from the test suite set T until all the
requirements are covered. The following diagram shows the
process of Greedy Discretization algorithm for obtaining
minimal cardinality subset test suites.

Figure 4. Process of Greedy Discretization
Algorithm for Test Suites Reduction

As shown in Figure 4, Greedy Discretization algorithm
initially takes generated test suites (i.e. the output of ACO
algorithm) as input. Then, Greedy Discretization algorithm
creates the test requirement table. The test requirement table
includes the information’s about test cases and their test
requirements to be satisfied. After that, Greedy
Discretization algorithm selects the test cases which cover

T.Ramasundaram, et al International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,741-747

© 2015-19, IJARCS All Rights Reserved 744

most user requirements and subsequently removes the test
cases which unsatisfied test requirements and redundant test
suites. Therefore, GDACO technique obtains minimal
cardinality subset test suites with higher coverage capability
for testing software. This in turn helps for reducing the
testing cost of software program.

Greedy Discretization Algorithm initially constructs a test
requirement matrix termed as TR table from the requirement
and test case of software. TR is a two dimensional 0-1 value
table with size of . The test suite
is represented in row and the requirement

 is represented in the column. That is
each row of the table represent requirements fulfill by a
particular test case. TR table value is value is determined by
following mathematical formula,

 (4)

From the equation (4), TR table value is measured. The
following table 1 shows the example of TR table value with a
test suite of five test case and their test requirements to be
satisfied.

Table I. TR Table

Test
Case

Requirements to be Satisfied

 1 1 1 0 0
 0 1 1 1 0
 1 0 0 0 1
 0 0 1 0 1
 1 0 1 0 1

The TR table with rows and columns, it is essential

for choosing the subset of rows to cover all of the columns in
the matrix with minimal execution time. The GDACO
technique used greedy discretization algorithm for removing
the redundant test cases in different test suites. Let us
consider 5 test suites with 9 test cases as shown in Figure
5.

Figure 5. Example of Greedy Discretization

Algorithm Process for Test Suite Reduction

As shown in Figure 5, the greedy discretization algorithm
iteratively chooses test cases which covers maximum test
requirements until all the requirements are fulfilled.
Consequently, greedy discretization algorithm removes the

test cases which are redundant and unsatisfied test
requirements. From the Figure 5, greedy discretization
algorithm picks the test suites T1, T2 and T3 as a minimal
cardinality subset test suites which covers the all test
requirements of software program. As a result, GDACO
technique achieves higher coverage rate. The algorithmic
process of greedy discretization algorithm for test suite
minimization is shown in below,

// Greedy Discretization Based Test Suite Minimization
Algorithm

Input: Test Suites : T={T_1,T_2,T_3,…T_n}
Output: Minimal Cardinality Subset of Test Suites
Step 1: Begin
Step 2: Constructs test requirement table using (4)
Step 3: For each Test Suite
Step 4: Choose the test cases which covers maximum test

requirements until all the requirements are fulfilled
Step 5: Eliminates the test cases which is redundant and

unsatisfied test requirements
Step 6: End for
Step 7: Return minimal cardinality subset of test suites
Step 6: End

Algorithm 2 Greedy Discretization Based Test Suite
Minimization

By using the above algorithmic process, GDACO
technique acquires minimal cardinality subset of test suites
which covers maximum test requirements. This helps for
achieving higher coverage rate of faults in software program.

3. EXPERIMENTAL SETTINGS

In order to evaluate the efficiency of proposed, Greedy

Discrete Ant Colony Optimization (GDACO) technique is
implemented in Java Language by using schoolmate data set.
The GDACO technique employed schoolmate data set for
discovering faults in software programs in order to increase
software quality. This schoolmate data set consists of many
PHP program. The performance of GDACO technique is
measured in terms of coverage rate, average rate of test suite
reduction and execution time.

4. RESULT AND DISCUSSIONS

In this section, the result analysis of GDACO technique is

estimated. The effectiveness GDACO technique is compared
against with two methods namely Memetic Algorithm [1]
and Test case minimization approach [2] respectively. The
efficiency of GDACO technique is evaluated along with the
following metrics with the help of tables and graphs.
A. Measurement of Average Rate of Test Suite Reduction

The average rate of test suite reduction measures the ratio
of number of test suites reduced using GDACO technique to
the total number of test suites taken as input. The average
rate of test suite reduction is measured in terms of percentage
(%) and mathematically formulated as,

 (5)

From the equation (5), average rate of test suite reduction
is measured. While the average rate of test suite reduction is
higher, the method is said to be more efficient.

T5

t1 T2

T1

t4 t7

t2 t5 t8

t3 t6 t9

T3

T4

T.Ramasundaram, et al International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,741-747

© 2015-19, IJARCS All Rights Reserved 745

Table II. Tabulation for Average Rate of Test Suite
Reduction

Number
of Test
Suites

Average Rate of Test Suite Reduction (%)

Memetic
Algorithm

Test Case
Minimization

Approach

GDACO
Technique

10 63.16 71.15 80.56
20 65.85 74.64 81.25
30 66.19 75.92 82.98
40 69.83 76.65 84.62
50 72.06 78.63 85.92
60 73.85 81.06 88.67
70 75.19 84.25 89.90
80 78.61 86.86 91.02
90 79.18 89.82 93.15

100 81.33 90.92 94.81

Table 2 presents the results obtained for average rate of

test suite reduction based on diverse number of test suites in
range of 10-100 using three methods. From the table value, it
is clear that the average rate of test suite reduction using
GDACO technique is higher when compared to existing
Memetic Algorithm [1] and Test case minimization approach
[2].

Figure 6. Measure of Average Rate of Test Suite

Reduction Vs Number of Test Suites

Figure 6 describes the impact of average rate of test suite
reduction with respect of different number of test suites. As
illustrated in figure, the proposed GDACO technique is
provides better average rate of test suite reduction when
compared to existing Memetic Algorithm [1] and Test case
minimization approach [2]. Besides, while increasing the
number of test suite, the average rate of test suite reduction is
also gets increased using all three methods. But
comparatively, the average rate of test suite reduction using
proposed GDACO technique is higher. This is because of
application of Greedy Discretization Based Test Suite
Minimization in GDACO technique. With aid of Greedy
Discretization algorithm, proposed GDACO technique picks
test cases which cover more test requirements until all the
requirements are fulfilled and consequently eliminates the
test cases which are redundant and unsatisfied test
requirements. This in turn helps for improving the average
rate of test suite reduction in an effective manner. Therefore,

proposed GDACO technique increases the average rate of
test suite reduction by 21% when compared to Memetic
Algorithm [1] and 8% when compared to Test case
minimization approach [2] respectively.
B. Measurement of Coverage Rate

In GDACO technique, coverage measures the rate at
which a maximum number of faults covered by a reduced
test suites form the total number of test suites generated. The
average coverage rate (CR) is measured in terms of
percentages (%) and mathematically formulated as,

 (6)

From the equation (6), coverage rate of test suites is
measured. While the coverage rate is higher, the method is
said to be more efficient.

Table III. Tabulation for Coverage Rate

Number
of Test
Suites

Coverage Rate (%)

Memetic
Algorithm

Test Case
Minimization

Approach

GDACO
Technique

10 55.16 62.25 71.54
20 56.98 64.85 73.24
30 58.69 65.87 74.35
40 60.25 68.38 77.13
50 63.68 70.72 79.26
60 64.19 74.68 82.31
70 67.16 75.62 83.87
80 69.81 77.38 85.58
90 70.14 78.15 86.86

100 74.63 81.06 89.68

Table 3 shows the comparative result analysis of

coverage rate is obtained based on different number of test
cases using three methods. The GDACO considers the
framework with diverse number of test suites in range of 10-
100 for conducting experimental works using Java Language.
Form the table value, it is illustrative that the coverage rate
using GDACO technique is higher as compared to existing
Memetic Algorithm [1] and Test case minimization approach
[2].

Figure 7. Measure of Coverage Rate Vs Number

of Test Suites

T.Ramasundaram, et al International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,741-747

© 2015-19, IJARCS All Rights Reserved 746

Figure 7 depicts the impact of coverage rate with respect
of diverse number of test suites. As exposed in figure, the
proposed GDACO technique is provides better coverage rate
for discovering the more faults in software program when
compared to existing Memetic Algorithm [1] and Test case
minimization approach [2]. In addition, while increasing the
number of test suite, the coverage rate is also gets increased
using all three methods. But comparatively, the coverage rate
using proposed GDACO technique is higher. This is owing
to application of Greedy Discretization Based Test Suite
Minimization in GDACO technique. By using Greedy
Discretization algorithm, proposed GDACO technique
chooses test cases which cover maximum test requirements
until all the requirements are satisfied. This in turn assists for
improving the coverage rate of faults in an effectual manner.
As a result, proposed GDACO technique increases the
coverage rate by 26% when compared to Memetic Algorithm
[1] and 12% when compared to Test case minimization
approach [2] respectively.
C. Measurement of Execution Time

In GDACO technique, the execution time measures the
amount of time taken for generating the test suites. The
execution time (ET) is measured in terms of milliseconds
(ms) and mathematically formulated as,

 (7)

From the equation (7), execution time of test suites

generation is measured. While the execution time is lower,
the method is said to be more efficient.

Table IV. Tabulation for Execution Time

Number
of Test
Suites

Execution Time (ms)

Memetic
Algorithm

Test Case
Minimization

Approach

GDACO
Technique

10 24.6 19.2 11.5
20 30.2 25.8 18.8
30 35.9 32.4 23.4
40 41.7 39.5 28.2
50 48.6 46.8 32.7
60 55.5 53.1 38.9
70 63.1 59.4 42.1
80 72.6 65.2 46.8
90 80.7 72.9 50.5

100 86.5 80.5 56.7

Table 4 shows the result analysis of execution time with

respect to different number of test suites in range of 10-100
using three methods. From the table value, it is expressive
that the execution time of test suite generation using
GDACO technique is lower when compared to existing
Memetic Algorithm [1] and Test case minimization approach
[2].

Figure 8. Measure of Execution time Vs Number

of Test Suites

Figure 8 demonstrates the impact of execution time with
respect of dissimilar number of test suites using three
methods. As shown in figure, the proposed GDACO
technique is provides better execution time for generating
test suites when compared to existing execution time. As
well, while increasing the number of test suite, the execution
time is also gets increased using all three methods. But
comparatively, the execution time using proposed GDACO
technique is lower. This is due to application of ACO based
Test Suite Generation in GDACO technique in which ant
chooses the test cases for generating test suites based on
trail’s probability. The vertices selected during each level of
the graph traversal are collected together order to generate a
test a suites with lower time. This in turn supports for
reducing the execution time in a significant manner. Thus,
proposed GDACO technique reduce the execution time of
test suite generation by 36% when compared to Memetic
Algorithm [1] and 30% when compared to Test case
minimization approach [2] respectively.

5. RELATED WORKS

Multiple coverage criteria was applied in [12] for

efficient test Suite minimization and improving the capability
of fault detection. A novel method was designed in [13] that
remove the test case redundancy with aid of fuzzy clustering
technique and provides good results for conditions/path
coverage. But, time complexity taken for removing the
redundancy was higher.

A Hierarchical Clustering Approach was presented in
[14] for test suite minimization in which a branch coverage
criterion is selected as the code coverage criteria in order to
reduce the test suite. However, a reduced test suite does not
cover more faults. A genetic algorithm was used in [15] to
decrease the test case in regression testing. This genetic
algorithm reduces test cost of regression testing and enhances
the efficiency of the software with the optimized test suite.

A data mining-based algorithm was presented in [16] in
which concept of maximal frequent item set mining is used
for test suite reduction. A novel technique was designed in
[17] to lessen the size of test suite by using improved

T.Ramasundaram, et al International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,741-747

© 2015-19, IJARCS All Rights Reserved 747

precision slices. But, average rate of test suite reduction was
lower. An effective strategy was intended in [18] to generate
a balanced test suite for spectrum-based fault localization.
But, coverage rate was lower.

A model-based approach was designed in [19] to lessen
the amount of fault detection rate in the test suite generation.
Test case classification was performed in [20] using tuned
fuzzy logic for test suite reduction. However, it takes more
execution time for reducing test suites.

6. CONCLUSION

An efficient Greedy Discrete Ant Colony Optimization

(GDACO) technique is developed with the objective of
improving the coverage capability of test suite generation.
The GDACO technique initially generates the test suites by
using ACO algorithm. The ACO algorithm chooses test cases
from test cases set depends on trail’s probability and
consequently update pheromone trails in order to generate
test suites. Afterwards, GDACO technique performs test
suite optimization with assists of Greedy Discretization
algorithm. The Greedy Discretization algorithm selects the
test cases which cover test requirements and subsequently
eliminates redundant test cases in test suites. As a result,
GDACO technique finally gets minimal cardinality subset of
test suites with higher coverage rate for identifying the faults
in software programs. This in turn assists for reducing the
testing cost of software program. The efficiency of GDACO
technique is test with the metrics such as coverage rate,
average rate of test suite reduction and execution time. With
the experiments conducted for GDACO technique, it is
observed that the coverage rate provided more accurate
results for improving software quality when compared to
state-of-the-art works. The experimental results show that
GDACO technique is provides better performance with an
improvement of average rate of test suite reduction with
higher coverage rate when compared to the state-of-the-art
works

7. REFERENCES

[1] Gordon Frasera, Andrea Arcurib, “A Memetic Algorithm for

whole test suite generation”, The Journal of Systems and
Software, Elsevier, Volume 103, Pages 311–327, May 2014

[2] Bestoun S. Ahmed, “Test case minimization approach using
fault detection and combinatorial optimization techniques for
configuration-aware structural testing”, Engineering Science
and Technology, an International Journal, Elsevier, Volume
19, Pages 737–753, 2016

[3] Gregory Gay, Matt Staats, Michael Whalen, Mats P. E.
Heimdahl, “The Risks of Coverage-Directed Test Case
Generation”, IEEE Transactions on Software Engineering,
Volume 41, Issue 8, Pages 803-819, 2015

[4] Bestoun S. Ahmed, Taib Sh. Abdulsamad, Moayad Y. Potrus,
“Achievement of Minimized Combinatorial Test Suite for
Configuration-Aware Software Functional Testing Using the
Cuckoo Search Algorithm”, Information and Software
Technology, Elsevier, Volume 66, Pages 13-29, October 2015

[5] Gordon Fraser, and Andrea Arcuri, “Whole Test Suite
Generation”, IEEE Transactions on Software Engineering,
Volume 39, Issue 2, Pages: 276-291, February 2013

[6] Shunkun Yang, Tianlong Man, Jiaqi Xu, Fuping Zeng, Ke Li,
“RGA: A lightweight and effective regeneration genetic
algorithm for coverage-oriented software test data
generation”, Information and Software Technology, Elsevier,
Volume 76, Pages 19–30 2016

[7] Kamal Z. Zamlia, Basem Y. Alkazemib, Graham Kendall, “A
Tabu Search hyper-heuristic strategy for t-way test suite
generation”, applied Soft Computing, Elsevier, Volume 44,
Pages 57–74, 2016

[8] Johannes Bürdek, Malte Lochau, Stefan Bauregger, Andreas
Holzer, Alexander von Rhein, Sven Apel, and Dirk Beyer,”
Facilitating Reuse in Multi-goal Test-Suite Generation for
Software Product Lines”, Springer, Pages 84–99, Apr 2015

[9] Rong-Zhi Qi, Zhi-Jian Wang and Shui-Yan Li, “A Parallel
Genetic Algorithm Based on Spark for Pairwise Test Suite
Generation”, Journal of Computer Science and Technology,
Volume 31, Issue 2, Pages 417–427, 2015

[10] Tamal Sen and Rajib Mall, “State-Model-Based Regression
Test Reduction for Component-Based Software”,
International Scholarly Research Network, ISRN Software
Engineering, Volume 2012, Article ID 561502, Pages 1-9,
2012

[11] Shilpi Singh, Raj Shree, “An Analysis of Test Suite
Minimization Techniques”, international Journal of
Engineering Sciences and Research Technology, Volume 5,
Pages 252-260, 2016

[12] P. Velmurugan, Rajendra Prasad Mahapatra, “Effective Test
Case Minimization and Fault Detection Capability Using
Multiple Coverage Technique”, International Journal of
Applied Engineering Research, Volume 11, Issue 8, Pages
5389-5394, 2016

[13] Gaurav Kumar, Pradeep Kumar Bhatia, “Software testing
optimization through test suite reduction using fuzzy
clustering”, CSI Transactions on ICT, Springer, Volume 1,
Issue 3, Pages 253–260, September 2013

[14] Fayaz Ahmad Khan, Anil Kumar Gupta, Dibya Jyoti Bora,
“An Efficient Technique to Test Suite Minimization using
Hierarchical Clustering Approach”, International Journal of
Emerging Science and Engineering, Volume 3 Issue 11, Pages
1-10, September 2015

[15] Sudhir Kumar Mohapatra, Srinivas Prasad, “Finding
Representative Test Case for Test Case Reduction in
Regression Testing”, International journal of Intelligent
Systems and Applications, Volume 11, Pages 60-65, 2015

[16] Preethi Harris, Nedunchezhian Raju, “Towards test suite
reduction using maximal frequent data mining concept”,
International Journal of Computer Applications in
Technology, Volume 52, Issue 1, Pages 48-58, 2015

[17] Chhabi Rani Panigrahi, Rajib Mall, “Regression test size
reduction using improved precision slices”, Innovations in
Systems and Software Engineering, Springer, Volume 12,
Issue 2, Pages 153–159, June 2016

[18] Ning Li, RuiWang, Yu-li Tian, and Wei Zheng, “An Effective
Strategy to Build Up a Balanced Test Suite for Spectrum-
Based Fault Localization”, Hindawi Publishing Corporation,
Mathematical Problems in Engineering, Volume 2016, Article
ID 5813490, Pages 1-13, 2016

[19] Prabhu Jayagopal and Malmurugan Nagarajan, “A Novel
Prioritization Algorithm Model Based Test-Suite Generation
Using Regression Testing”, Journal of Computer Science,
Volume 10, Issue 2, Pages 190-197, 2014

[20] R.Kamalraj and R. Rajivkannan, “Asian Journal of
Information Technology”, Volume 15, Issue 9, Pages 1437-
1442, 2016

	1. INTRODUCTION
	2. A GREEDY DISCRETE ANT COLONY OPTIMIZATION TECHNIQUE
	Test Suite Generation Using Ant Colony Optimization
	Test Suite Reduction Using Greedy Discretization Algorithm

	3. EXPERIMENTAL SETTINGS
	4. RESULT AND DISCUSSIONS
	Measurement of Average Rate of Test Suite Reduction
	Measurement of Coverage Rate
	Measurement of Execution Time

	5. RELATED WORKS
	6. CONCLUSION
	7. REFERENCES

