
��������	�
����	��
�����������

������
����
�������
��������
���������
������� ��������!�������

�"!"�� #�$�$"��

��
��
%���&������
��'''��(
���������

© 2010, IJARCS All Rights Reserved 219

�����������	
��
�	�

SQL Query Dissembler –A Self Optimizing Autonomic System

Ms. Shanta Rangaswamy*
Department of Computer Science and Engineering

R.V. College of Engineering,
Bangalore, India

shantharangaswamy@rvce.edu.in

Dr. Shobha G

Department of Computer Science and Engineering
R.V. College of Engineering,

Bangalore, India
deanpgcs@rvce.edu.in

Abstract: Current database workloads often consist of a mixture of short OnLine Transaction Processing (OLTP) queries and typical large
complex queries such as OnLine Analytical Processing (OLAP). OLAP queries usually involve multiple joins, arithmetic operations, nested
sub-queries, and other system or user-defined functions and they typically operate on large data sets. These resource intensive queries can
monopolize the database system resources and negatively impact the performance of smaller, possibly more important, queries. In this paper, we
present an approach to managing the execution of large queries that involves the decomposition of large queries into an equivalent set of smaller
queries and then scheduling the smaller queries so that the work is accomplished with less impact on other queries. Here we implement a SQL
disassembler that actually controls the impact of the execution of large queries that has the impact on the other workload classes in a Database
Management System. The approach involved divides a large query into an equivalent set of smaller queries and later schedules the execution of
these smaller queries.

Keywords: Query Optimization, DBMS, Dissembler

I. INTRODUCTION

In past decades, we have experienced an information
explosion. Now, to manage effectively such large volumes
of information DBMSs have been widely used. The database
management system (DBMS) has been very successful over
the last half-century history. According to an IDC report
made by C. Olofson [1] in 2006, the worldwide market for
DBMS software was about $15 billion in 2005 alone with an
estimated 10% growth rate per year. DBMSs and database
applications have become a core component in most
organizations’ computing systems. These systems are
becoming increasingly complex and the task to ensure
acceptable performance for all applications is a challenge. In
recent years, this complexity has approached a point where
even DataBase Administrators (DBAs) and other highly
skilled IT professionals are unable to comprehend all
aspects of a DBMS’s day-to-day performance [14] and
manual management has become virtually impossible.

One solution to this growing complexity problem is
IBM’s Autonomic Computing initiative [14] [15]. An
autonomic computing system is one that is self-managed in
a way reminiscent of the human autonomic nervous system.
To be more specific, an autonomic DBMS should be self-
Configuring, self- Healing, self-Optimizing and self-
Protecting (Self-CHOP). One of the efforts towards
autonomic DBMS involves workload control, that is,
controlling the type of queries and the intensity of different
workloads presented to the DBMS to ensure the most
efficient use of the system resources.[14]One challenge
involved in the implementation of workload control is the
handling of very large queries that are common in data
warehousing and OLAP systems. These queries are crucial
in answering critical business questions. They usually boast
very complicated SQL and access a huge amount of data in
a database. When executed in a DBMS, they tend to

consume a large portion of the database resources, often for
long periods of time. The existence of these queries can
dramatically affect overall database performance and restrict
other workloads requiring access to the DBMS. Our goal is
to design a mechanism to dynamically control the execution
of a large query so as to lessen its impact on competing
workloads.

Due to the high degree of competition within a business
environment more and more companies employ data
warehouses and OLAP technologies to help the knowledge
worker make better and fast decisions. When a large
complex query is submitted to a high volume database for
execution, it tends to consume many of the physical
database resources like CPU. Also it may consume
resources for long periods of time, thus impacting other
possibly more important queries which may need resources
to complete their work in a timely fashion.

A common approach to managing large queries within a
DBMS is to classify queries as they enter the system and
then to delay the submission of the large queries. This
approach has 2 disadvantages. First, the large query is
simply delay and no progress on that work is achieved.
Second, in businesses with 24/7 availability there may exist
no time at which the large query will not interfere with other
work. A more flexible approach such as dynamically
adjusting the DBMS resources of a running query, which
allows a query to progress at a reduced rate, is preferable,
especially in a differentiated service environment.
Controlling the consumption of DBMS resources by a query
(particularly a big query) is, however, not a trivial task.
Ideally, low-level approaches, such as directly assigning
CPU cycles or disk I/O bandwidths to a query based on its
complexity and/or importance, are desirable. In practice,
however, these approaches are problematic for two reasons.
First, running a query against a DBMS involves many
different and interrelated DBMS components. It is
impossible to ensure that a query is treated equally (from the
viewpoint of resource allocation) across all these

Shanta Rangaswamy et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,219-223

© 2010, IJARCS All Rights Reserved 220

components. Secondly, it is difficult to determine the
appropriate settings for the resource allocations for all the
components.

II. ARCHITECTURE

The main purpose of this project was to implement a
SQL disassembler that actually controls the impact of the
execution of large queries that has the impact on the other
workload classes in a Database Management System. Our
approach involved here divides a large query into an
equivalent set of smaller queries and later schedules the
execution of these queries.

The goal of the work was to control the impact that the
execution of large queries has on the performance of other
workload classes. Our approach to decomposing a large
query into a set of smaller queries is based on two
observations. First, at any given time, a smaller query will
likely hold fewer resources than a large query and so,
interferes less with other parts of the workload. Second,
running a large query as a series of smaller queries means
that all resources are released between queries in the series
and so are available to other parts of the workload. Figure 1
shows the Query Disassembler. Each large query is
submitted to Query Disassembler before it is executed by
the DBMS (step 1). Query Disassembler calls DB2’s
Explain utility to obtain a (cost-augmented) QEP for the
submitted query (steps 2 and 3). The decomposition
algorithm then divides the QEP into multiple segments, if
possible, while keeping track of dependency relationships
among the segments (steps 4 and 4’). The Segment
Translation procedure transforms the resulting segments into
executable SQL statements (step 5), which are then
scheduled for execution by the Schedule Generation
procedure (step 5’). The generated SQL statements are
submitted to the DBMS for execution as per the schedule
that is obtained in step 5’ (step 6).

If the decomposition algorithm determines that it is
impossible to break up the submitted large query, for
example a single operator within the QEP for the large
query covers most of the total cost, Query Disassembler
notifies an Exception Management Module to handle this
situation (step 7). The Exception Management Module is not
currently implemented in our prototype but we envision that
it could be implemented using an appropriate mechanism
such as delaying the execution of the large query to an off-
peak time in the system.

The work makes two main contributions. The first is an
original method of breaking up a large query into smaller
queries based on its access plan structure and the estimated
query cost information. The second is an implementation
of the Query disassembler. Query disassembler is used to
break the queries, if necessary and manages the execution of
the queries submitted to a DBMS. In our approach, we adopt
a method similar to query decomposition techniques
commonly used in distributed database management
systems.But,unlike distributed database systems where
queries are re-written to access data from multiple sources,
our approach focuses on breaking up a large query into an
equivalent set of smaller queries in a centralized database
environment. Currently our algorithm supports select-only
queries, which are typical in an OLAP system.

Figure 1: Query disassembler framework

Our work shows the feasibility and potential of the
management of the execution of large queries in a database
to increase workload performance. This suggests a number
of interesting opportunities of future research. Currently, the
small query set in our experiment workload contains just
read-only queries. One important step of our approach
involves translating a decomposed segment into an
equivalent SQL statement. This step is highly vendor-
specific and has some limitations that are inherent in our
current approach due to the fact that our approach is
implemented outside a database engine. The approach of
controlling the execution of a large query in our work is to
decompose the large query based on this QEP. This
approach is static and cannot handle all types of large
queries. It is very attractive to investigate a more flexible
control mechanism, such as dynamically pausing or
throttling query execution, so that the large queries that
cannot be handled by our current algorithm, can be
processed properly. Our current approach relies solely on
the DB2 compiler to provide the necessary performance-
related information, especially cost, to do the decomposition
job. From this point of view, our approach is relatively
independent from the configuration of the underlying
computer system because the DBMS screens the system
configuration change on the approach’s behalf (assuming
that the DBMS configuration parameters remain the same).
However, it is very interesting to investigate how our
approach can react to the change of the system configuration
in a more active and reasonable way. For example, if more
CPUs are added in the system, the decomposition algorithm
could utilize that information to generate a more parallel
segment schedule and therefore the performance of our
approach could be enhanced by taking advantage of the
parallelism introduced.

III. IMPLEMENTATION

The application developed has a main source code as
program.cs where in, the entire process of disassembly is
done. The code works as follows: First a user gives a nested
query with proper parenthesis and related ‘=’ operators. The
application developed gets the query in the nested form and
then it reads the queries in the normal form i.e. from
outermost query to the innermost query. All these are stored

Shanta Rangaswamy et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,219-223

© 2010, IJARCS All Rights Reserved 221

in an array in an individual way. Then at the final stage of
this step we have the queries in an array.

During implementation, it was found that the query
format must be maintained i.e. proper nesting of queries was
needed like there must be some sort of separation between
the queries. For an example if we have three nested queries
we must make sure that segment dependency is maintained.
So, we need to have a symbol that helps the application
developed to identify the individual parts of the query. This
is done with the help of the ‘=’ operator.

Figure 2: An example of merging/decomposing segment(s)

In the next step, we start reading the queries from the
array and start creating a set of segments. Here we consider
the dependency between the segments, i.e. if two segments
are dependent then they must be scheduled properly, or else
we get undesired results. So, creating a proper schedule is of
high importance. After considering all these things we start
reading the queries in the opposite direction from the array.
Then we create a table that has two variants, that is, one
variant has segments or individual queries that have no
segment dependencies and the other set has segments that
are dependent on each other and must be executed to get
proper results. In the final step of the application, we take
the individual queries as input and the queries are then
submitted to the database that has been created.

IV. CONCLUSION

In this, we present an approach to managing the
execution of large complex queries in a database and
therefore controlling its impact on other smaller, possibly

more important, queries. A decomposition algorithm that
breaks up a large query into a set of equivalent smaller
queries is discussed in detail. Our experiments show that
concurrent execution of large resource-intensive queries can
have significant impact on the performance of other
workloads, especially as the points of contention between
the workloads increase. We conclude that there is a need to
be able to manage the execution of these large queries in
order to control their impact.

The experiments show that our approach is viable,
especially in cases when contention among the workloads is
high, for example when a large query and other workloads
run in the same database and share buffer pools. In other
cases when the competition is low (by “low”, we mean that
the workloads do not share buffer pools, our approach does
not work well. In these cases, the performance degradation
that is caused by the overhead of our approach dominates
and therefore makes our approach impracticable.

In this approach, the major overhead is primarily due to
the costs involved in saving the intermediate results to
connect the decomposed queries. Specifically, these costs
include those related with creating, populating, accessing,
and destroying the temporary tables that are necessary for
accommodating the intermediate results. The overhead
could be large in some cases, especially when a
decomposition solution is reached by interrupting a
pipelined operation. Currently, due to the fact that our
approach is implemented outside of a database engine, we
have no choice but to use an expensive way to store the
intermediate results, which is to submit a “CREATE
TABLE” SQL statement followed by an “INSERT” SQL
statement and a “DROP TABLE” statement. For
intermediate results from inside a database engine, we could
probably design a cheaper and faster mechanism to save the
intermediate results. A possible solution would be to save
the ROWID and COLUMNID information of a table instead
of storing its real record values. There are two main
advantages of doing so. First, it can create a much smaller
intermediate table because the ROWID and COLUMNID
information of a table record is usually much smaller in size
than the real record value. Second, it can also create a much
faster intermediate table because the DBMS can utilize the
ROWID and COLUMNID information to pinpoint the
needed information directly rather than to go through an
expensive and slow search process.

Another big improvement of saving the intermediate
results from inside a database engine is that it would avoid
the overhead that is caused by the DBMS following the
standard parsing, compiling, and optimizing procedure to
execute a submitted SQL statement.Here, this type of
overhead is inevitable.

The experiment also show that our approach always
causes performance degradation for the large query itself
and sometimes the reduction can be significant, especially
when the large query is decomposed in a way that a
pipelined operation is interrupted. One reason for the
degradation comes from the decomposition processes itself
and another comes from creating, accessing, and deleting
the intermediate tables. The first type of degradation is
unavoidable in this approach. We could, however, shorten
the overall delay by utilizing more advanced techniques of
saving intermediate tables as discussed in previous
paragraphs.

Shanta Rangaswamy et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,219-223

© 2010, IJARCS All Rights Reserved 222

V. REFERENCES

[1] IDC Competitive Analysis: Worldwide RDBMS 2005
Vendor Shares: Preliminary Results for the Top 5
Vendors Show Continued Growth,
http://www.oracle.com/corporate/analyst/reports/infrast
ructure/dbms/idc-1692.pdf.

[2] G. Luo, J. F. Naughton, C. J. Ellmann, M. W. Watzke.
Toward a Progress Indicator for Database Queries,
Proc. of the 2004 ACM SIGMOD Int. Conf. on
Management of Data, Paris, France, June 2004, pp. 791
– 802.

[3] S. Chaudhuri, V. Narasayya, R. Ramamurthy.
Estimating Progress of Execution for SQL Queries,
Proc. of the 1996 ACM SIGMOD Int. Conf. on
Management of Data, Paris, France, June 2004, pp. 803
-814.

[4] N. Kabra, D. J. DeWitt. Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution Plans,
Proc. of the 1998 ACM SIGMOD Int. Conf. on
Management of Data, Seattle, USA, June 1998, pp. 106
-117.

[5] M. J. Carey, R. Jauhari, M. Linvy. Priority in DBMS
resource scheduling, Proc. Of the 15th Int. Conf. on
Very Large Data Bases, Amsterdam, The Netherlands,
August 1989,pp. 397 – 410.

[6] B. Niu, P. Martin, W. Powley, R. Horman, P. Bird.
Workload Adaptation in Autonomic DBMSs, Proc. of
the 2006 Conf. of the Centre for Advanced Studies on
Collaborative Research, Toronto, Canada, October
2006, Article No. 13.

[7] H. Boughton, P. Martin, W. Powley, and R. Horman.
Workload Class Importance Policy in Autonomic

Database Management Systems, Seventh IEEE Int.
Workshop on Policies for Distributed Systems and
Networks, London, Canada, June 2006, pp. 13-22.

[8] C. Ballinger, Introduction to Teradata Priority
Scheduler, July 2006,
http://www.teradata.com/library/pdf/eb3092.pdf.

[9] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh,
M. Urata, Answering Complex SQL Queries Using
Automatic Summary Tables, Proc. of the 2000 ACM
SIGMOD Int. Conf. on Management of Data, Dallas,
USA, June 2000, pp. 105 -116.

[10] P. Martin, W. Powley, H. Y. Li, K. Romanufa,
Managing Database Server Performance to Meet QoS
Requirements in Electronic Systems, Int. Journal on
Digital Libraries 3(4), pp. 316-324.

[11] R. Ramakrishnan, J. Gehrke, Database Management
Systems (3rd Edition), McGraw-Hill Companies, Inc.
2003.

[12] S. Venkataraman, T. Zhang. Heterogeneous Database
Query Optimization in DB2 Universal DataJoiner, Proc.
of the 24th Int. Conf. on Very Large Data Bases, New
York City, USA, August 1998, pp. 685 – 689.

[13] L. Liu, C. Pu, K. Richine, Distributed Query Scheduling
Service: An Architecture and Its Implementation,
International Journal of Cooperative Information
Systems (IJCIS) 7(2&3), 1999, pp 123 – 166.

[14]Kephart J, Chess D. The vision of autonomic computing.
IEEE Computing 2003;36:41–50.

[15]Shanta Rangaswamy, “Autonomic Computing-
SCORE/EROCS” at International Association of
Computer Science and Information Technology,
ICSTE 2009, Chennai, Tamil Nadu.

Shanta Rangaswamy et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,219-223

© 2010, IJARCS All Rights Reserved 223

Author Profile

Ms. Shanta Rangaswamy, Assistant
Professor, Department of CSE, R.V. College of
Engineering is pursuing her PhD from Kuvempu
University. Her research areas of interest are
Autonomic computing, Data mining, Performance
Evaluation of systems, Cryptography and

 Steganography, System Modeling and Simulation.

 Dr. Shobha G., Dean, PG Studies, (CSE &
ISE) is associated with R.V.College of Engineering
since 1995.She has received her Masters degree
from BITS, Pilani and Ph.D (CSE) from Mangalore
University. Her research areas of interest are
Database Management Systems, Data mining,

Data warehousing, and Information and Network Security.

