
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4371

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 678

ISSN No. 0976-5697

PERFORMANCE EVALUATION OF DYNAMIC LOAD BALANCING SYSTEM BY
USING NUMBER OF EFFECTIVE PARAMETERS

Deepti Sharma & Vijay B. Aggarwal

Dept. of Information Technology
Jagan Institute of Management Studies, GGSIPU, Rohini, Delhi, India

Abstract: Today, the World Wide Web is growing at an increasing rate and occupied a big percentage of the traffic in the Internet. These
systems lead to overloaded and congested proxy servers. Load Balancing and Clustering of web servers helps in balancing this load among
various web servers. In this paper we have given solution for load balancing among web servers and evaluated their performance using number
of effective parameters. This paper explains the main objectives of proposed algorithm. It shows architecture diagram for load balancing in web
server clusters. Proposed algorithm is explained using Pseudo code. Time complexity of proposed algorithm is also shown. Finally, it is
concluded with experimental results andanalysis.

Keywords: DynamicLoad Balancing; Cluster System; load sharing and web traces.

1. INTRODUCTION

Accessing web sites today has many challenges in terms of
response time, throughput and resource utilization. There is
a heavy load on web servers and this load has to be
distributed among these web servers[1]. Load Balancing
among web servers is one of the solutions for solving these
problems. There are several methods that have been
proposed in the literature related to load balancing in web
server clusters [2] [3].These approaches have already been
discussed in past and the discussion provides motivation for
us to continue the work in this field. In this research paper,
we present our research work consisting of a new algorithm,
viz. Performance Evaluation of Dynamic Load Balancing
System by Using Number of Effective Parameters. The
proposed algorithms produce solutions to the problems
which have been faced by other basic algorithms. In this
paper, we discuss our algorithm along with its objectives,
architecture, time complexities and experimental results.

2. PROPOSED METHOD

In this approach, we propose a new request distribution
algorithm for load balancing among web server clusters. The
Dynamic Load Balancing among web servers take place
based on user’s request and dynamically estimating server
workload using multiple parameters like processing and
memory requirement [5] [6]. Our simulation results show
that, the proposed method dynamically and efficiently
balance the load to scale up the services, calculate average
response time, average waiting time and server’s throughput
on different web servers[11]. At the end of this paper, we
presented an experimentation of running proposed system
which proves the proposed algorithm is efficient in terms of
speed of processing, response time, server utilization and
cost efficiency.

This framework uses the dynamic algorithm to analyze the
current system load and various cost factors in arriving at
the best target processor to handle the job processing. This
algorithm uses a load factor to distribute the jobs among the
web servers. Load factor is decided on the basis of
processing capabilities of servers. The server with highest
configuration will be assigned as highest load factor; lowest
configuration server will take less load factor and so on.
This can be implemented on proposed framework.
Whenever there is a request from client, it will be distributed
among web servers based on load factor.
The prime contribution of this research is to propose a
framework that can run web server cluster system based on
gathered requirements and to present its implementation on
one of the web server in the cluster system. Another
contribution is to present the architecture diagram and its
implementation followed by an experimental analysis to
prove the proposed research based on the various parameters
such as speed of processing, response time, server utilization
and cost efficiency [11].

3. ARCHITECTURE DIAGRAM FOR LOAD
BALANCING IN WEB SERVER CLUSTERS

Web server allows running an application on several servers
in parallel [4]. The load is distributed among different
servers in a cluster. The application is accessible on other
nodes of cluster even if any server fails. These clustering
solutions provide scalability, high availability and load
balancing [7]. The main objective of load balancing is to
provide the best possible response time to user by
distributing load using the servers in the cluster [9]. In this
type of solution, the architecture involves use of load
distribution algorithm, like simple round robin algorithm or
other refined algorithms [8]. These algorithms help to
distribute requests to other servers in the cluster taking load
status and available resources on the servers.

Deepti Sharma et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,678-681

© 2015-19, IJARCS All Rights Reserved 679

Figure1. Architecture Diagram for Load Balancing among ‘n’ Web Server Cluster and one Apache Load Balancer

A. Details of Architecture Model
In the above architecture, the request will come from the
browser. There may be ‘n’ instances of tomcat web servers
depending upon the requirement. In utmost cases the java
web applications will run on different Tomcat instances and
multiple server machines. But for simulation in our
proposed approach, they are placed on a single machine.
Single web application is deployed in all tomcat instances.
There is one Apache httpd web server that works as load
balancer with mod_jk module [10]. It is placed in-front of
all instances of tomcat web servers to accept the request and
distribute to these back end web servers based on load
factor. These tomcat web servers are managed by the same
apache load balancer. When request comes from client, it
will be assigned to load balancer which will be checked
further and be load-balanced based on their load factors.

4. PROPOSED ALGORITHM – Pseudo code

As discussed above, in this proposed algorithm, load is
distributed among ‘n’ web servers on the basis of load
factor. Following Pseudocode shows the working of
algorithm. It first initializes the server and load balancer.
When request will come from clients, it will go to load
balancer first which is placed in between client and other
tomcat servers. Load balancer module will check and
distribute this dynamic load among web servers based on
load factor.

Begin:

1. Server Initialization
a. Three tomcat servers are initialized based on load factor

(LF)
b. Load Factor is assigned as LF=4 to WS1, LF=2 to WS2

and LF=1 to WS3

2. Load Balancer Initialization
3. client_module ()

{
callclient.request () /* forwards the client request
*/
}

4. loadbalancer_module ()
{/*Distribute requests as per load factor (LF =4 or 2 or 1)

WS 1 will get maximum jobs,
WS 2 will get medium jobs and WS 3 will get least jobs.*

for (int j = 0 ; j <noOfLoops ; j++) {
ExecutorService executor =
Executors.newFThPool(noClients);
//creating a pool of 5 threads

for (int i = 0; i <noOfClients; i++) {

Runnable worker = new Client();
executor.execute(worker); //calling execute method of

ExecutorService
} } }

5. Call jk_status manager
a. Displays job distribution among ‘n’

tomcat web servers
b. Shows errors, number of failed requests

and client errors (if any)
c. Displays current and maximum number of

busy connections
d. Shows number of bytes read and written

End

Deepti Sharma et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,678-681

© 2015-19, IJARCS All Rights Reserved 680

5. EXPERIMENTAL RESULTS AND ANALYSIS

This section depicts the experimental results obtained from
the proposed approaches as well as motivating approaches.
The Proposed approach has been implemented in Java. It
has been validated on real time requests (ref:
http://cricscore-api.appspot.com/

• Availability: Percentage of time that the server has
been up

) and two load balancers
namely Apache and Nginx. The model is validated by using
different number of requests ranging from 100 to 10000. For
the purpose of validation, different parameters are defined:

• Health Check: Most recent and most severe logs,
errors, etc.

• Activity: Throughput over the last minute including
requests, bytes, etc.

• Resource Utilization: Resources currently in use
and still available. It shows current busy
connections and maximum busy connections.

• Efficiency: Server optimizations to maximize
throughput. Sticky sessions.

The results are tested and run on two load balancers namely
Apache and Nginx. The difference between two are given in
following table.
The obtained results are given in the following sub-sections.

A. Results with Apache and Nginx Proxy Load
Balancer

The above approach is tested and run on two load balancers
namely Apache and Nginx. The total processing time taken
(in sec) has been measured and compared. The effect on
total processing time with change in number of requests can
be checked from the table 1 and figure.

Table I. Total Processing Time with change in Number of Requests

No. of Requests Total Processing Time (sec)

Apache Load Balancer Nginx Load Balancer

100 14.7 8.39
400 22.8 18.05
900 52.2 36.6

1600 177.2 59.5
2500 192.69 124.31
6400 292.52 186.78

10000 538.55 346.09

Figure2.Graphical Representation of above table.

Above table and Figure illustrates the total number of
requests made from the users and its corresponding total
processing time on Apache and Nginx Load Balancer. It

shows that the total processing time is less with Nginx as
compared to Apache.

Deepti Sharma et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,678-681

© 2015-19, IJARCS All Rights Reserved 681

6. TIME COMPLEXITY OF PROPOSED
ALGORITHM

Time complexity of an algorithm is defined as the amount of
time taken by any algorithm to complete all instructions or
statements. It is expressed using big O notation. In our
proposed approach, we concentrate on finding complexity of
load balancer module which actually distributes the load
among web servers.
Time Complexity for Algorithm 1
loadbalancer_module ()

{
for (j = 0 ; j <noOfLoops ; j++) {// O(n) – where ' n' is
no of threads
ExecutorService executor =
Executors.newFixedThreadPool(noOfClients); // O (1)
for (i = 0; i <noOfClients ; i++) { // O(m) – where ' m'
is no of requests
Runnable worker = new Client(); // O (1)
executor.execute(worker); // O (1)
 }
}}
So overall complexity of Algorithm is O (n m)

7. REFERENCES

[1] H. Anna, J. Theodore, “A Study of Dynamic Load Balancing

in a Distributed System”, SIGCOMM '86, Proceedings of the
ACM SIGCOMM conference on Communications
architectures & protocols, 1986.

[2] Md. J. Zaki et al, “Customized Dynamic Load Balancing for a
Network of Workstations”, Journal of Parallel And
Distributed Computing 43, 156–162 (1996).

[3] J. P. Andrew and J. Thomas Naughton, “Framework for task
scheduling in heterogeneous distributed computing using
genetic algorithms”, Artificial Intelligence Review, Volume
24, Issue 3, pp 415-429, 2005.

[4] Z. Lan, V. E. Taylor and G. Bryan, “Dynamic Load Balancing
of SAMR Applications on Distributed Systems”,
Supercomputing, ACM/IEEE Conference, 2001.

[5] S.Sharma and J.Godara. "Load Balancing in Cloud
Computing”, International Journal of Computer Systems
(IJCS), pp: 322-326, Volume 3, Issue 4, April 2016.

[6] L. Nguyen, and J. L. Larson. "Providing on-demand
capabilities using virtual machines and clustering processes",
U.S. Patent No. 7,577,959. 18 Aug. 2009.

[7] S. K. Stephen et al, "A decision framework for cloud
computing", System Science (HICSS), 45th Hawaii
International Conference, IEEE, 2012.

[8] A. A. Rajguru, and S. S. Apte. "A comparative performance
analysis of load balancing algorithms in distributed system
using qualitative parameters", International Journal of Recent
Technology and Engineering (IJRTE), ISSN 1.3: 2277-3878,
2012.

[9] P. K. Singh, “An Efficient Load Balancing Algorithm in
Distributed Network”, Diss. Jaypee University Of
Engineering & Technology, 2015.

[10] http://hosteddocs.ittoolbox.com/AP121907.pdf
[11] Deepti Sharma, Vijay B. Aggarwal, “Improving Performance

of Dynamic Load Balancing among Web Servers by Using
Number of Effective Parameters”, published in International
Journal Information Technology and Computer Science
(IJITCS), 2016, 12, 27-38, Published Online December 2016,
DOI10.5815/ijitcs.2016.12.04.
http://www.mecs-press.org/ijitcs/ijitcs-v8-n12/IJITCS-V8-
N12-4.pdf

http://www.mecs-press.org/ijitcs/ijitcs-v8-n12/IJITCS-V8-N12-4.pdf�
http://www.mecs-press.org/ijitcs/ijitcs-v8-n12/IJITCS-V8-N12-4.pdf�

