Volume 8, No. 6, July 2017 (Special Issue III)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

DOMINATING FUNCTIONS OF CORONA PRODUCT GRAPH OF K_n AND P_m

C Shobha Rani

Research Scholar, Department of Mathematics, Madanapalle Institute of Technology & Science, Madanapalle-517325, India E-mail: charapallishobha@gmail.com

S Jeelani Begum
Assistant Professor, Department of Mathematics,
Madanapalle Institute of Technology & Science,
Madanapalle-517325, India

E-mail: sjb.maths@gmail.com

B Maheswari
Professor, Department of Applied Mathematics,
Sri Padmavati Mahila Visvavidyalayam,
Tirupati-517502, India²
E-mail: maherahul55@gmail.com

G S S Raju

Professor, Department of Mathematics, JNTU College of Engineering, Pulivendula- 516390, India⁴ E-mail: rajugss@yahoo.com

S Gouse Mohiddin
Assistant Professor, Department of Mathematics,
Madanapalle Institute of Technology & Science,
Madanapalle-517325, India
E-mail: gousemaths@gmail.com

Abstract: Let G be a simple graph with vertex set V and edge set E. A subset D of a vertex set V is known as dominating set of G, if for every vertex v in V-D, there exists a vertex u in D such that $(u, v) \in E$. Let G(V, E) be a graph and a function $f: V \to [0, 1]$ is called a dominating function (DF) of G, if $f[N[v]] = \sum_{u \in N[v]} f(u) \ge 1$, for each $v \in V$. The dominating function f of G is called a minimal

dominating function, if for all g < f, g is not a dominating function. In this paper we study dominating functions of corona product graph of complete graph K_n with path P_n .

Keywords: Corona product graph, Dominating sets, Dominating functions.

I. INTRODUCTION

Domination theory gain an importance in graph theory which aids to find efficient routes within ad-hoc mobile networks and designing secure systems for electrical grids. The study on theory of product graphs is useful to understand computational complexity in wireless networking.

Frucht and Harary [1] introduced a new product on two graphs G_1 and G_2 , called corona product denoted by $G_1 \square G_2$. Generally Product of graphs occurs in discrete mathematics. Allan and Laskar [2], Cockayne and Hedetniemi [3,4] have studied various domination parameters of graphs. Dominating functions are studied in [5,6,7].

A nonempty subset D of V in a graph G is a dominating set of G, if every vertex in V-D is adjacent to at least one vertex in D. The number of vertices in a minimum dominating set is defined as the domination number of G and is denoted by $\gamma(G)$. If D consists of minimum number of vertices among all dominating sets, then D is called the minimum dominating set(MDS).

The corona product of a K_n and P_m is a graph obtained by taking one copy of a n-vertex complete graph K_n and n copies of P_m and then joining the \mathbf{i}^{th} vertex of K_n to every vertex of \mathbf{i}^{th} copy of P_m and it is denoted by $G = K_n \square P_m$.

Now some properties of the graph $G = K_n \square P_m$ is discussed in the following.

Theorem 1: The graph $G = K_n \square P_m$ is a connected graph.

Proof: Consider the graph $G = K_n \square P_m$ By the definition of corona product, we know that the ith vertex of K_n is adjacent to each copy of ith copy of P_m in G. That is the vertices in K_n are connected to the vertices of P_m thus it becomes a one component. Hence it follows that G is connected.

Theorem 2: The degree of a vertex v in $G = K_n \square P_m$ is

given by
$$d(v) = \begin{cases} m+n-1, & \text{if } v \in K_n \\ 3 \text{ or } 2, & \text{if } v \in P_m \end{cases}$$

Proof: In the graph G, i^{th} vertex of K_n is joined to m vertices of i^{th} copy of P_m in G. We observe that any vertex

II. CORONA PRODUCT OF K_n AND P_m

v in K_n is adjacent to (n-1) vertices of K_n . Therefore the degree of a vertex v in K_n is (n+m-1) in G.

i.e.,
$$d(v) = \{ m + n - 1, \quad \text{if } v \in K_n \to (1) \}$$

And there are m vertices in each copy of P_m , such that each vertex v in P_m is of degree 2, if v is the end vertex in P_m and v in P_m is of degree 3, if v is the not end vertex in P_m . Since this vertex is adjacent to a correspond vertex of K_n in G, it follows that the degree of a vertex $v \in P_m$ in G is either 2 or 3.

i.e.,
$$d(v) = \begin{cases} 3, & \text{if } v \in P_m \text{ and vis not a end vertex,} \\ 2, & \text{if } v \in P_m \text{ and vis an end vertex.} \end{cases} \rightarrow (2)$$

Finally from (1) & (2), we get

$$d(v) = \begin{cases} m+n-1, & \text{if } v \in K_n \\ 3 \text{ or } 2, & \text{if } v \in P_m \end{cases}$$

Theorem 3: The number of vertices and edges in $G = K_{\parallel} \square P_{\parallel}$ is given by

$$|V(G)| = n(m+1)$$
 and $|E(G)| = \frac{n}{2}(4m+n-1)$

Proof: Let us consider the graph $G = K_n \square P_m$ with the vertex set V. In G, we know that n, m denotes the number of vertices of K_n and the cycle P_m respectively. By the definition, the vertex set of G contains the vertices of K_n and the vertices P_m in n- copies. Hence, it follows that |V(G)| = n + nm = n(m+1).

By the above theorem, the degree of a vertex is given by

$$\begin{split} d(v) &= \begin{cases} m+n-1, & \text{if } v \in K_n \\ 3 & \text{or } 2, & \text{if } v \in P_m \end{cases} \\ \text{Hence } \left| E(G) \right| &= \frac{1}{2} \bigg(\sum_{v \in K_n} \deg(v) + n \sum_{v \in P_m} \deg(v) \bigg) \\ &= \frac{1}{2} \Big[n(m+n-1) + 2n(2) + n(m-2)(3) \Big] \\ &= \frac{1}{2} \Big[mn + n^2 - n + 4n + 3mn - 6n \Big] \\ &= \frac{1}{2} \Big[n^2 + 4mn - 3n \Big] \end{split}$$

$$|E(G)| = \frac{n}{2} [4m + n - 3].$$

II. III. MAIN RESULTS

Here we study on dominating sets and dominating functions of the graph $G = K_n \square P_m$.

Theorem 4: The minimal dominating set for the graph $G = K_n \square P_m$ is set of all vertices of K_n .

Proof: Consider $G = K_n \square P_m$. Let D denote a dominating set of the graph $G = K_n \square P_m$. Suppose D contains the set of all vertices of K_n . By the definition of the graph $G = K_n \square P_m$, every vertex in K_n is adjacent to all vertices of each copy of P_m . That is, the vertices in K_n dominates the vertices in each copy of P_m . Thus D becomes a dominating set of $G = K_n \square P_m$. If possible to remove a vertex in D, that vertex is v_i is the i^{th} vertex in K_n , then the remaining set

becomes $D_1=D-\{v_i\}$ is not a dominating set. Because v_i in K_n not dominates the vertices in i^{th} copy of P_m . That means the subset of D is not a dominating set. Hence D becomes a minimal dominating set of $G=K_n \square P_m$.

Theorem 5: The domination number of the graph $G = K_n \square P_m$ is n.

Proof: Let D denote a dominating set of G. Suppose D contains the vertices of K_n . By the definition of the graph, every vertex in K_n is adjacent to all vertices of associated copy of P_m . That is the vertices in K_n dominate the vertices in all copies of P_m respectively. Further these vertices being in K_n , they dominate among themselves. Thus becomes a DS of G. Therefore $\gamma(G) = n$.

Theorem 6: Let *D* be a minimal dominating set (MDS) of $G = K_n \square P_m$. Let a function $f: V \to [0,1]$ be defined by

$$f(v) = \begin{cases} 1, & \text{if } v \in D \\ 0, & \text{otherwise} \end{cases}$$

Then f becomes a MDF.

Proof: Consider $G = K_n \square P_m$ be corona product of K_n and P_m .

Let D be a MDS of $G = K_n \square P_m$. Clearly this set contains all vertices of K_n and this set is also minimal.

Case (1): Let $v \text{ in } K_n$ be such that d(v) = (m+n-1) in G, then N[v] contains m vertices of P_m and n vertices of K_n in G.

Thus
$$\sum_{u \in N[v]} f(u) = \left(\underbrace{1 + \cdots + 1}_{n-times}\right) + \left(\underbrace{0 + \cdots + 0}_{m-times}\right) = n$$

Case (2): Suppose $v \text{ in } P_{m}$ then

(i)If d(v) = 2 in G, then N[v] contains two vertices of P_m and one vertex of K_n in G. Thus $\sum_{u \in N[v]} f(u) = 1 + 0 + 0 = 1$

(ii) If d(v) = 3 in G, then N[v] contains three vertices of P_m and one vertex of K_n in G. Thus $\sum_{u \in N[v]} f(u) = 1 + 0 + 0 = 1$

Therefore all the possibilities, we get $\sum_{u \in N[v]} f(u) \ge 1$, $\forall v \in V$

Therefore the function f is a Dominating Function.

Now we check for minimality of f , define $g: V \rightarrow [0,1]$ by

$$g(v) = \begin{cases} r, & \text{if } v = v_k \in D \\ 1, & \text{if } v \in D - \{v_k\} \\ 0, & \text{otherwise} \end{cases}$$

Where 0 < r < 1 Since, strict inequality holds at the vertex v_k in D, it follows that g < f.

Case (1): Let v in K_n be such that d(v) = (m+n-1) in G, then N[v] contains m vertices of P_m and n vertices of K_n in G.

India

If
$$v_k$$
 in $N[v] \Rightarrow \sum_{u \in N[v]} g(u) = \left(\underbrace{1 + - - + 1}_{(n-1) - times} + r\right) + \left(\underbrace{0 + - - + 0}_{m - times}\right) = n + r - 1$

If
$$v_k$$
 not in $N[v] \Rightarrow \sum_{u \in N[v]} g(u) = \left(\underbrace{1 + - - + 1}_{n - times}\right) + \left(\underbrace{0 + - - + 0}_{m - times}\right) = n$

Case (2): Suppose v in P_m then

(i) If d(v) = 2 in G, then N[v] contains two vertices of P_m and one vertex of K_n in G.

If
$$v_k$$
 in $N[v]$, then $\sum_{u \in N[v]} g(u) = r + 0 + 0 = r < 1$

If
$$v_k$$
 not in $N[v]$, then $\sum_{u \in N[v]} g(u) = 1 + 0 + 0 = 1$

(ii) If d(v) = 3 in G, then N[v] contains three vertices of P_m and one vertex of K_n in G.

If
$$v_k$$
 in $N[v]$, then $\sum_{u \in N[v]} g(u) = r + 0 + 0 + 0 = r < 1$

If
$$v_k$$
 not in $N[v]$, then $\sum_{u \in N[v]} g(u) = 1 + 0 + 0 + 0 = 1$

In this case, g is not a dominating function.

Therefore g is not a DF, because

$$\sum_{u \in N[v]} g(u) < 1, \text{ for some } v \in V$$

Hence f is a minimal dominating function on G.

III. IV. ACKNOWLEDGMENT

The corresponding author acknowledge Department of Science and Technology, Government of India for financial support wide reference no: No.SR/WOS-A/MS-07/2014 (G) under women scientist scheme to carry out this work.

V. CONCLUSION

It is interesting to study the dominating functions of corona product graph of complete graph with a path. This work gives the scope for an extensive study of domination numbers and other dominating functions of this graph.

IV. VI. REFERENCES

- [1] R. Frucht, and F. Harary, "On the corona of Two Graphs", Aequationes Mathematicae, Volume 4, Issue 3, pp.322 – 325, 1970
- [2] R.B. Allan, and R.C. Laskar, "On domination, Independent domination numbers of a graph" Discrete Math., 23, pp. 73-76, 1978.
- [3] E.J. Cockayne, and S.T.Hedetniemi, "Towards a theory of domination in graphs", Networks, volume 7, pp. 247-261, 1977
- [4] E. J. Cockayne, G. Fricke, S.T. Hedetniemi, and C.M. Mynhardt, "Properties of minimal dominating functions of graphs", ARS. Combinatoria, volume 41, pp. 107-115, 1995.
- [5] J.A. Bondy, and U.S.R Murty, "Graph Theory", Springer, 2008.
- [6] M. Siva Parvathi, and B. Maheswari, "Minimal Dominating Functions Of Corona Product Graph Of A Path With A Star", IAEME, Volume 5, Issue 1, pp. 01-11, January - April 2014.
- [7] T.W. Haynes, S.T. Hedetniemi & J.S. Slater, "Fundamentals of Domination in Graphs", Marcel Decker, Inc. 1998.

India