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Abstract:The propagation of Rayleigh waves in non-homogeneous incompressible medium with an isotropic and homogeneous material 
boundary is studied. The period equation is obtained and it is compared with the corresponding equation of half-space with free boundary. 
The frequency equation of Rayleigh waves in an incompressible non-local elastic medium under gravity effect is derived. This equation is solved 
numerically taking the particular form of non-local influence function as derived in lattice dynamics. The frequency is seen to decrease with an 
increase of gravity constant. The amount of decrease of frequency due to the increase of gravity, increases with the increase of wave number. 
Rayleigh wave propagation in non-local elastic medium with material boundary is also studied. The important results of this study are: For a 
given material boundary the effect of the presence of non-locality is to increase the critical wave length. The velocity is an increasing function of 
Poisson’s ratio. And for a given material the velocity corresponding to non-local case is less than classical case. 
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INTRODUCTION: 
  
The study of deformations of elastic solids with stress 
supporting boundaries is of recent origin. A boundary that 
supports surface stresses is called a material boundary. The 
recent studies on wave propagation in elastic solids with 
material boundary have drawn the attention for divising 
experiments for the determination of surface elastic 
parameters and hence to aid the design of signal processing 
devices. In this chapter we study the influence of surface 
stresses on the propagation of elastic waves, in particular 
Rayleigh wave propagation in non-homogeneous bodies. 
Since the wave propagation in an elastic plate is analogous 
to propagation in layered spaces, we study the influence of 
surface stresses on elastic waves in an infinite plate. 
 
 Since velocity gradients are known to exist in the 
earth’s curst and mantle, many solutions are not available as 
in the case of homogeneous medium. A number of workers, 
notable among them being Meissner [64], Jeffreys [48], 
Sezawa [92], Matuazawa [63] etc., have contributed to this 
theory. The striking feature of these studies is “the non-
homogeneity increases the phase velocity of the longer 

period waves”. All these studies were made taking the 
overlying layer of finite thickness. 
 
 The first discussion of Rayleigh wave propagation 
in non-homogeneous medium seems to have been given by 
Honda [44]. Sezawa [90] investigated general equations of 
wave propagation in a semi-infinite solid body of varying 
elasticity. Rayleigh waves in a semi-infinite incompressible 
medium where a layer in which rigidity varies linearly with 
depth is underlain by a uniform elstic substratum were 
investigated by Newlands [73], who also extended the 
investigations to compressible media. Stoneley [94] derived 
the period equation of Rayleigh waves in non-homigeneous 
incompressible medium. 
 
 In many respects, wave propagation in elastic 
plates is analogous to propagation in layered spaces. 
Oscillations of an elastic plate, the surfaces of which are free 
of stresses, were investigated by Rayleigh [84], Prescott [81] 
and Stato [87]. Lamb [61] has considered the propagation of 
plane waves in an infinite plate and analysed the dispersion 
equation for the lowest symmetric and anti symmetric 
modes. 

 
Basic Equation: 
S 
1). Let the elastic body be the Cartesian region 3x 0>  

and the boundary plane 3x 0=  is a material boundary 
surface. If the body is assumed to be homogeneous and 
isotropic, then, within the frame  work of Linearized 
theory, the displacement ( )iu x, t

and stress ( )ijt x, t
 

( )3in x 0>  in the absence of body forces satisfy 

ij, j it u= ρ     
           (1) 

( )ij k,k ij i, j j,it u u u= λ δ +µ +   ( i,j,k 

= 1,2,3)          (2) 
where comma denotes differentiation with respect to jx  and 

ijδ  is kronecker delta. Further the surface stress tensor 
is given by  
 

( ) ( )( ), 0 , , ,u u u uαβ αβ 0 γ γ α β β α α β Σ = δ σ+ λ +σ + µ −σ + +σ 
         (3) 
 3 3,uβ βΣ = σ     
           (4) 
in which , ,α β γ  take the values 1,2 only. 
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 If the boundary is free of external loads, the 
balance of linear momentum takes the form 
 i , i3 o i 3t u on x 0α αΣ + = ρ =  
         (5) 
 
2). Let two elastic bodies occupy respectively the regions 

3x 0>  and  3x 0<  and that the plane 3x 0=  be an 
elastic material interface. If the interface supports an 
interfacial stress given in terms of the tensor 

( )i x, tαΣ then the balance of linear momentum takes 
the form 

( ) ( )1 2
i , i3 i3 0 i 3t t u on x 0α αΣ + − = ρ =   

         (6) 

where ( ) ( )1
i3 3t in x 0>  and ( ) ( )2

i3 3t in x 0< are the 
stresses satisfying 
( ) ( )1 1
ij, j 1 it u ,= ρ     in x3 > 0 
( ) ( )2 2
ij, j 2 it u ,= ρ   in x3 < 0   

         (7) 
and the term αβσδ  (involved in iαΣ ) is the residual 
interfacial stress. On the interface (x3 = 0) 

( ) ( )1 2
i i iu u u= =  

We assume the following restrictions on physical 
constants 

0 00, 2 0, 0, 0, 0ρ > λ + µ > µ > ρ > µ >  
      (8) 

 

3x 0≥

Rayleigh wave propagation in non-homogeneous elastic 
half-space with material boundary 
 
 Let a non-homogeneous isotropic elastic medium 
occupying the region  be under an isotropic 
homogeneous elastic boundary surface (x3 = 0). We assume 
a simple harmonic wave train traveling in the x1 – direction 
such that: 

(i) the disturbance is independent of the x2 – 
coordinate. 

(ii) It decreases rapidly with distance x3 from the 
material surface. 

 

 
Fig 1: Geometry of the problem 

 
Hence the displacement u1 and u3 are of the form 

 1
1 3

u
x x
∂φ ∂ψ

= −
∂ ∂

 

 3
3 1

u
x x
∂φ ∂ψ

= +
∂ ∂

   

                (9) 
Where φ  and ψ  are potential functions satisfying the 
above condition which are functions of x1, x3 and t. 
 
 For  two-dimensional motion in non-homogeneous 
elastic body the equation of motion (1) takes the form 

1 1 3
1

1 1 3 3 1

u u u2 Pu
x x x x x

   ∂ ∂ ∂ ∂ ∂
λ∆ + µ + µ + =   ∂ ∂ ∂ ∂ ∂    



    

1 3 3
3

1 3 1 3 3

u u u2 Pu
x x x x x
    ∂ ∂ ∂ ∂ ∂
µ + + λ∆ + µ =    ∂ ∂ ∂ ∂ ∂    



             (10) 
 
 
where  

1 3

1 3

u u
x x
∂ ∂

∆ = +
∂ ∂

 is the cubical dilatation. 

 
The non-vanishing components of surface stress of 

the material boundary (3) and (4) are 

( )11 o o 1,12 u= σ + λ + µ∑  

31 3,1u= σ∑     

              (11) 
And the equations of the balance of supporting stress (6) are 

 11,1 13 0 1t u+ = ρΣ   

 31,1 33 0 3 3t u , on x 0+ = ρ =Σ   
               (12) 
 To make the mathematical calculation simple let 
the half-space be assumed to consist of incompressible solid 
for which λ→∞  as 0∆→  in such a manner that lim 

( )λ∆ = − π  remains finite. 
 
 Assuming the rigidity of the non-homogeneous 
half-space as 1 2 3d d x .µ = + and using (12), the 
equations of motion (10) take the form 
 

2 1 3
1 2 1

1 3 1

u uu d u 0
x x x

 ∇ − ∂Π ∂ ∂
+ µ∇ + + −ρ = ∂ ∂ ∂ 



 

2 1
3 2 3

3 3

uu 2d u 0
x x

∇ − ∂Π ∂
+ µ∇ + −ρ =

∂ ∂
  

              (13) 
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Differentiating the first of equations (13) with respect to x1 
and the second with respect to x3 and then adding, we get 
 

 2 32d u .π = −ρφ    
              (14)  
 
Using this value of π , the equations (13) can be written as  

 ( )2 2

3 1

0
x x
∂ ∂ µ∇ ψ −ρψ −µ ∇ φ = ∂ ∂

  

 ( )2 2

1 3

0
x x

−∂ ∂ µ∇ ψ −ρψ + µ ∇ φ = ∂ ∂


              (15) 
For an incompressible material, 

 1 3

1 3

u u 0
x x
∂ ∂

∆ = + =
∂ ∂

 

 i.e., 2 0∇ φ =     
              (16) 
If we set 

 2F 0= µ∇ ψ −ρψ =   
              (17) 
the equations (15) take the form 

1 3

F F0, 0
x x
∂ ∂

= =
∂ ∂

   

              (18) 
Thus, finally we have to solve the equation (16) and (17) to 
get φ  and ψ . 
 If we assume the functions 

 1ik(ct x )
oe

−φ = φ  

 1ik(ct x )
oe

−ψ = ψ    
              (19) 
the equations (16) and (17) become (on omitting the 
subscript 0) 

 
2

2
2
3

d k 0
dx
φ
− φ =    

              (20) 

 
2 2

2
2
3 1 2 3

d ck 1 0
dx d d x

 ψ ρ
− − ψ = + 

 

              (21) 
Solving (20), we get 

 ( )3kx
1Ae Cos K ct x−φ = −  

              (22) 
The equation (21) can be transformed into 

 
2

1
2

d q 1 0
d 4

 ψ
+ − ψ = ξ ξ 

  

              (23) 
Where 

 ( )
o

2
2

3 2 1
q

q c2 kx q q ,
2

ξ = + − =  

 1 1
2 0

2

kd dq , q 1/ 2.
d c

 = =  
 

 

 
The equation (23) is satisfied by Whittakar’s function 

( )
1qw ,1/ 2 .ξ  Therefore the solution of (23) is 

 
 

( ) ( )
1 2q 3 q 1BW ,1/ 2 2kx 2 Sink ct x .ψ = + −

             (24) 
 
Substituting the values of φ  and ψ  in (9) we get the 
expressions for displacements. The equations of balance of 
supporting stresses (12) in terms of φ  and ψ  are (on x3 = 
0). 
 

( )
3 3 2 2 2

0 0 13 2 2 2
1 3 1 1 3 3 1

2

0 2
1 3

22 d
x x x x x x x

0
t x x

   ∂ φ ∂ ψ ∂ φ ∂ ψ ∂ ψ
λ + µ + + − +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂φ ∂ψ
−ρ − = ∂ ∂ ∂ 

   (25) 
 

3 3 2 2

12 3 2
1 3 1 3 1 3

2

0 2
3 1

2d
x x x x x x

0
t x x

   ∂ φ ∂ ψ ∂ φ ∂ ψ
σ + −Π + +   ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂φ ∂ψ
− ρ + = ∂ ∂ ∂ 

     (26) 
 
On substituting andφ ψ  from (22) and (24) the above 
equations give 
 
* 

( ) ( )2 2 2 2 2 2
1 0 1 0k 2d k c k A 2 k w ' 4kw" kd w 2 c k w ' B 0+ −ρ + − Γ + + + ρ =

 
 

( ) ( )2 2 2 2 2 2 2
2 2 0 2 1k 2d kc 2d k c k A k w 2d w 4kd w k c w B 0σ + −ρ + −ρ + σ + − −ρ =

 
 
Where 0 0. 2 .Γ = λ + µ  
 
Eliminating the constants A and B from the above 
equations, we get the dispersion equation. 
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( )
( )

* 2 * 2
2

1 1 2 2

4w ' 2qk k 22
kd kd q w 2q

  Γ σ
+ + −  

  
 

( )
( )

2 * 2 * 2 2
2

2 2
0 1 2 1 2 0

W ' 2qc 2 k k 2 c2 2
q kd W 2q kd q q

  Γ σ
= − − + + −  

  
             (27) 
Where  

 

* 2
0

* 2
0

c

c .

Γ = Γ −ρ

σ = σ −ρ
 

 
 If the boundary is of the conventional stress free 

type, we have * *0 .σ = = Γ  the equation (27) reduces to  
 

( )
( )

2 2
2

2 2 2 2
0 0 0 2

8w ' 2qc 2 c 42 2
q q q q w 2q

  
− + − = −  

  
 

 
Conclusion:  
This equation agrees with the period Equation  and  the 
waves continue to be Dispersive in this case also. Further, 

because of appearance of * *,σ Γ in the equation (27), the 

surface stress plays an important role in determining the 
characteristic quantities like velocity and wave length. The 
behaviour of the propagation may be attributed to the 
various possibilities appropriate to the values assumed by 
the parameters 0, , .σ Γ ρ  
 
 The period equation of Rayleigh waves in non-
homogeneous incompressible medium under the effect of 
surface stress is derived and it is seen that this dispersion 
equation is in agreement with its classical counterpart in the 
absence of surface stress. 
 
 While studying the wave propagation in non-local 
elastic infinite plate, the period equation is derived and the 
long and short wave approximations are made to seek the 
nature of symmetric and Anti-symmetric oscillations. It is 
observed that these long and short waves depend on wave 
number whereas these waves in classical case are 
independent of wave number except the Anti-symmetric 
long waves. 
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