
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4299

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 484

ISSN No. 0976-5697

TWO-WAY-TRACKER- A GIS ANCHORED GRAPH SEARCHING METHOD

Subhadip Boral
Department of Computer Science

BarrackporeRastraguruSurendranath College

Barrackpore, India

Sudipta Biswas
Department of Computer Science

BarrackporeRastraguruSurendranath College

Barrackpore, India

Abstract: Reaching at the goal node in a connected weighted graph, preferably through the optimal path, starting journey from a given source

node, plays an important role in GIS. Because, utilizing GPS enabled devices, to reach at destination, is now a very common practice, without

having any prior knowledge about the journey. As number of accidents is increasing on each successive day we should prefer not only the

shortest but also the short and safe route. The novel intent of the proposed work is to find the shortest path between two places with most safety.

Basically the safety measureshave been granted for journey through ocean, but could easily be applied for roadways also, just by changing the

influencing factors. All the possible routes touching diff erent cross points could be viewed as connected weighted graph, where various cross

points; including source and destination are the nodes. As the target is to find Optimal and Safest path, so not only the length of edge (i.e.
distance between its two end points) but also various factors aff ecting the safety of the journey plays active role in determination of the edge

weight. Computation of path weightage has been executed through Regression Analysis using fifth degree polynomial curve fitting, based on
input data from historic/ geographic data. The outcome of the method has been graphically displayed which is not only cheaper with respect to

distance traversed but also safer in dodging the presence of hazardous weather. The algorithm is implemented in JAVA platform using NetBeans

IDE 8.0.2 and the Experimental Result is shown in GUI. Finally, the present techniques have been compared with various Goal Searching

techniques for connected graph such as Generate and Test, Simple Hill Climbing, Steepest Ascent Hill Climbing, Best First Search, Dijkstra’s

Method and so on.

Keywords: GIS, Weighted Connected Graph, Goal Searching, Optimal and Safest Path, Regression Analysis, Polynomial Curve fitting,
NetBeans IDE.

I. INTRODUCTION

Now the travelers are very free to find their route for avoiding
traffic congestion to reach destination timely. The present work
deals with finding route searching procedure in a connected
graph. Here it has been applied for finding the less hazardous
route in the ocean for sailing through, but it could be applied
for any other such applications. Till this twenty first century
ocean is one of the main medium of transport of goods for
many countries and multinational companies depending on
cargo ships. Not only the cargo ships but also the passenger
liners are playing an important role for travelling throughout
the world. In addition to adverse weather (such as sea storm,
Hurricane, fog, lighting, strong winds etc.) low water depth,
presence of iceberg etc. can arouse adverse situation for a
mariner while propelling the ships. Many deadly shipwrecks
have been occurred, directly or indirectly, by intricate weather
conditions, some of which could be avoided by choosing
alternative less hazardous route for travelling [3]. For any goal
searching algorithm (i.e. to reach to the destination from
source) one of the major concern is to find the shortest route.
However, for minimizing the possibility of shipwrecks, here
the basic intension is not to find an Optimal, but as well as the
Safest route between two Points – namely, SOURCE and
DESTINATION. There present many connected cross-points
through which a number of routes exist between Source and
Destination. Thus the entire problem is considered as a Graph
(Weighted) Traversal problem, between two given points. For
determination of the weight of the edges, not only its length
(i.e. distance between its two end points), but also various
influencing parameters (values are determined from various
case study or previous history) are considered. Four diff erent
existing Goal finding Approaches, namely Generate – And –
Test, Simple Hill – climbing, Steepest –Ascent Hill Climbing
and Best-First Search [1] [2] are applied for the above

mentioned safest route finding purpose and problems in each
cases are observed. Finally, a new technique Two way
Tracking (TwT) has been developed to overcome some of the
demerits of the existing techniques. While finding the Optimal
Safest route, equal importance has given to the distance (has to
traverse for reaching destination) and safety measures.

II. THE SCHEME

Most of the problems related to journey from one point to
another, touching some other intermediate points, could be
realized as Goal node searching problem in graph. The same
approach has also been incorporated here. Thus Starting point
of journey (i.e. Source), Ending point of journey (i.e.
Destination), all the intermediate points, touching (some of)
which journey has to made; all are represented by nodes of
Graph. Similarly, the paths connecting nodes are the edges. As
journey could be to any direction via edges, so the graph is
undirected one. For determination of the weights of the edges,
equal priority has given to both the length of the path (i.e.
distance between two end points) and the influencing factors
aff ecting the smoothness of travel.

The basic intension of the Shortest Path problem is to find a
cheapest path (cheap in terms of cost or distance) between a
Source node and a Goal node traversing through existent edges.
For the present purpose, instead of finding the “Shortest” Path,
the “Safest Optimal” Path is being searched for, while
traversing from a source node S, to reach a destination node D;
where D ε V(G) and S ε V(G) for an undirected graph G(V,E).
The graph G maintains the property of an OR graph mentioned
below:

Subhadip Boral al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,484-493

© 2015-19, IJARCS All Rights Reserved 485

Properties of OR Graph:

In OR Graph, vertex i ε V(G) generated from j ε V(G) will
maintain a PARENT LINK to j. It will help to recover the path
from D to S.

Thus for the present considered graph also, a vertex i ε V(G)
generated from j ε V(G) will maintain a PARENT LINK to j,
which helps to recover the path from D to S. In the current
methodology, two lists are maintained:

One is UNPROCESSED, containing the unvisited nodes
and the other is SUCCESSORS, containing the adjacent nodes
of any chosen one. Initially, Source node is picked. At each
step, the best node n (in terms of cost of reaching) among the
adjacent nodes of the presently considered nodes is selected
from UNPROCESSED and its SUCCESSORS are generated,
iff the node n has not been generated previously. However, if it
has already been generated, then after comparing the previous
cost from node n to D and the latest cost of the same, the best
path is assigned. But in this case, node n is not being
regenerated. In this strategy, the single path generated first from
Source S to Destination D is produced as searching result. Thus
the strategy does not imply the fact that, the produced path is
the shortest one.

To overcome this problem, the strategy of AND-OR graph
has also been considered in addition, where at each vertex
possibility of reaching Goal is solved or in other words whose
successors are fully traversed to reach the goal and then the
algorithm decide which of its successor arcs is the most
promising and mark it as part of current node. By following
these steps for every node and ultimately for the root node, the
best way to reach the goal node is generated.

To get a more detailed overview of the technique adapted,
let us define the following symbols: [3]

 Ri – Symbolize path and enumerated by i.

 Ri(n) – Signifies path from source s to node n and
enumerated by i.

 f(n) – Denotes the minimum cost from source s to node
n.

 fRi(n) – Cost to reach node n from source s maintaining
the path Ri.

 fR(n) – Set of all fRi(n), i.e. set of all possible paths
from source s to node n.

 B - It is the solution cost generated by the search
technique.

 Bj – Denotes the cost of reaching node j from source s.

 The proposed algorithm profess order preserving
hallmark. If R1(n), R2(n) are any two paths from source
s to n such that the pointers from n to s lie along the

path R1 and R2 and fR1(n)≤fR2(n) and if Ri(k) consists

node n then R1(n) will be a part of Ri(k) .

 R1(n) is known to be the path assigned to n at
termination if fR1(n) = min fR(n)

Terminating Condition for Goal Searching :

 At any time before the proposed algorithm terminates,
there exists on UNPROCESSED list, a node n’ that is

on some solution path and for which f(n’)≤B

 Let Rj(D) be the solution path with which the proposed
algorithm terminates; then any time before termination,
there is an UNPROCESSED node n on Rj(D) for which
f(n) = fRj(n).

 If there is a solution path and f is such that fRi(n) is
unbounded along any infinite path R, then the proposed
algorithm terminates with a solution, i.e. the proposed
algorithm is complete.

Reduction of Backtracking:

Here,afunctionSUCCESSORS_LEFT_FOR_EXPLORATION(

Q) has been defined, which returns the number of successors of
node Q, till remaining for be explored (visit). In other words,

SUCCESSORS_LEFT_FOR_EXPLORATION(Q)=(Number

of adjacent nodes of Q except it’s immediate ancestor from

which Q has been succeeded - Number of adjacent nodes of Q

has been traversed having Q as their immediate ancestor).

Let B is a node from where BACKTRACKING is to start
(i.e. have to move back to some already traversed node) and
has to roll back to some already traversed node for further
exploration. So, if X is already a traversed node and
SUCCESSORS_LEFT_FOR_EXPLORATION(X) > 0 and
every node between X and B is of

 SUCCESSORS_LEFT_FOR_EXPLORATION(Node)=0,
then we can directly JUMP to X from B skipping all the nodes
in between.

Elaboration of the Backtracking Reduction Process:

Case Study 1: Following figure (Figure 1) shows a graph

G1 in which the node X is of degree > 0 and the node B is

of SUCCESSORS_LEFT_FOR_EXPLORATION(B) = 3.

After exploration of node B

SUCCESSORS_LEFT_FOR_EXPLORATION(B) will

become 0 and for BACKTRACKING, a direct JUMP to

node X could be made without exploring any other nodes

lying in between as because for all thenodes between X and

B SUCCESSORS_LEFT_FOR_EXPLORATION(Node)=0

If there are m nodes of degree 2 lying between X and B and

n is the total number of vertices in the graph then m(n-1)

unit time due to adjacency checking during

BACKTRACKING could be saved, by incorporating the

mentioned methodology.

Figure 1: Case Study 1 (Graph G1)

Case Study 2:G2 (Figure 2) is a linear graph where the

source node S is of degree 2 and the destination node D is at

any side of the source node and D is either of degree 2 or 1.

If the lower cost path exists on the opposite side of the

destination node (here it is of cost 4) then at first traversal
will made to the opposite side of the destination node D up

to node Q, from there a direct jump to node S is made,

incorporating. During the BACKTRACKING it has to

check adjacency (n-2) (n+m-1) times. But with incorporated

methodology of direct JUMP from node Q to S (as all the

intermediate nodes have

SUCCESSORS_LEFT_FOR_EXPLORATION(Node) =

0), it could be done in 1 unit time

Figure 2: Case Study 2 (Graph G2)

Subhadip Boral al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,484-493

© 2015-19, IJARCS All Rights Reserved 486

Incorporation of Two-way-Tracking:

To make the searching procedure even faster, concept of

Two-way-Tracking has been incorporated. To implement the

concept of TWO-WAY SEARCH, two searching processes-

one originated from the SOURCE node and the other one from

the DESTINATION node, executed in parallel. In the

searching process triggered from SOURCE, the process will

try to reach the DESTINATION. Similarly, the searching

process triggered from DESTINATION, it will try to reach the

SOURCE. The whole procedure will terminate when any of

the process able to achieve its goal successfully or meet one

another in midway. Both of the searching process maintain

their own UNPROCESSED, PROCESSED and PARENT list.

When the searching process PS, triggered from SOURCE,

will progress to a node P then it will check whether P is in the

PROCESSED list of process PD, searching triggered from

DESTINATION, or not. If P is not in the PROCESSED list of

PD then no action will be taken. But if it is in the

PROCESSED list of PD and PARENT of P is not initialized

then using PARENT list of PD, process PS will reach its

GOAL node (i.e. node being searched for). When PARENT of

P is already initialized then it will check whether progressing

in the path maintaining the PARENT list of PD towards the

GOAL is beneficial or not for every intermediate nodes in

between P and GOAL along with GOAL node by means of

optimal path generation. If following the path is beneficial
then it will follow the path generated by PD in opposite

direction otherwise the consideration of the generated path by

PD will be stopped.

The whole procedure, in a similar way, will also be

maintained by process PD and it will reach its GOAL node

following the same procedure.

Elaboration of the Two-way-Tracking Process:

Case Study 1: Following figure (Figure 3) shows a graph

G4 in which the node K is an intermediate node between S,

source and D, Destination and exploring K by PS and PD and

maintaining PARENT list of PD and PARENT list of PS

respectively will be beneficial. But exploring M and
maintaining PARENT list of PD is not beneficial as PS will be
follow parent of M in PARENT list of PS then which is not

desirable.

Figure 3: Case Study 1 (Graph G4)

Case Study 2: Following figure (Figure4) PS will follow

the path S-C-A-K-D and it will update the parent of K. But

exploring path S-C-B-K and following PARENT list of PD in

opposite direction finding K in the PARENT list of PD is not
beneficial as maintaining the path will not follow the theory of
optimality.

Figure 4: Case Study 1 (Graph G5)

Maintenance of UNPROCESSED and PROCESSED list:

Let S is a vertex and it have n adjacent vertices and there

are total N nodes in the graph. So for first time S will check
adjacency with (N-1) nodes and it may traverse to node i, i ε n,
total number of adjacent vertices of S, and after full

exploration of i it will return to S and check adjacency with

(N-1) node for next successor j, j ε n and j 6= i and so on. So
for n times, at S the algorithm has to check adjacency for n(N-

1) times. But if we implement UNPROCESSED list using a

LAST-IN-FIRST-OUT principle and insert adjacent node id in

monotonic decreasing order by means of their cost then after

full exploration of the node being at the TOP of the list, it will

be released and the next item will be traversed. Thus by

incorporating this methodology, checking adjacencies for n(N-

1) times is eliminated, instead it is being done only N times.

Here, after fetching and fully exploring node i, the algorithm

will automatically progress to node j.

Let us consider the graph G3 shown in Figure 5, in which

S is the source node and D is destination node. At first, S will
check adjacency with all other seven nodes and only the

adjacent nodes will be inserted in the following manner: D, P,

M (as the path connecting M is of least cost, so M is at TOP).

After full exploration of M (i.e. visiting N and O), the process

will not move back to S, instead M will be removed from the

list, so that P will be the TOP and will be considered next.

Figure 5: Graph G3

Subhadip Boral al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,484-493

© 2015-19, IJARCS All Rights Reserved 487

The proposed Algorithm of Two-way-Tracking thus could

be summarized as follows:

1. Initialize CURRENT node = SOURCE node

2. Insert CURRENT node in UNPROCESSED list

3. If UNPROCESSED list is NOT EMPTY Then

 (i) If there are no SUCCESSOR to be traversed or

CURRENT node is GOAL node Then

 (a) CURRENT node = LAST node in the

PROCESSED list

(b) Remove LAST node from PROCESSED

list

(ii) Else

(a) Insert all the remaining SUCCESSOR in

UNPROCESSED list in ascending order in

terms of cost

(b) Select the BEST node from the

remaining SUCCESSOR to be traversed

(c) If the number of remaining

SUCCESSOR is > 1

 • Insert CURRENT node in the
PROCESSED list

(d) End If

(iii) Remove CURRENT node from

UNPROCESSED list

(iv) CURRENT node = BEST node

(v) End If

(vi) Goto 3

4. End If

5. End.

Influencing Criteria of the Route:

While searching for the safest route at first it is needed to
find the factors influencing the safety of the route. These
factors vary from application to application (i.e. factors

changes if being shifted from route through ocean to route

through roadways). As here, safest route for sailing through

ocean is targeted; among a lot of influencing factors 5 factors
have found to play very important role. These are:

– Depth of water

 – Air flow

 – Water current

 – Visibility

 – Presence (possibility) of Iceberg/Storm

It is the discretion of the implementer that how much

weightage should be given for choosing shortest path and how

much to safety measures. For the present purpose, without

compensating with any one among them equal weightage has

to both. For the present purpose, the measure has carried out in

a 100 point scale, among which 50 is emerging from

distanceand remaining 50 from safety measures.

For each route-let (i.e. part of the route, existing between

one cross-point to another. During graph representation, it is

simply the edge between two nodes) the values of the

influencing factors may be fed by the user or be achieved from
satellite images. While fixing up the relative weightage of
diff erent influencing factors, which one should be prioritize
over which, is on the basis of historical data/case studies. For

the present purpose, Depth of Water has given 20 points,

where next threes have given 10 points each. Presence of

Iceberg/Storm has a Boolean result. Thus each of the five
factors has been adjusted to a 10 point scale, so that sum of

these five is scaled in 50. Lesser is the value, cheaper is the
route.

Setting up the Weightage of influencing factors

Depth of Water: While selecting a smooth route for sailing

through ocean, the choice is very much aff ected by the depth

of water. Sailing reports tells that route having depth more

than 50 mt. is the best choice (so given 0 point to make it

cheapest), whereas route with depth 12 mt. is quiet bad one

choice and hence awarded 10 point. To sidetrack routes with

depth less than 12 mt., these routes are avoided by giving point

20 in the 20 point scale, to make them costlier. Finally, route

with depth 25 mt. is also quite good choice (thus given point 5

in the 20 point scale). These data enable to obtain the

following table:

Table 1: Depth of Water

x(mt.) 70 60 50 25 12 11 10

y(scale) 0 0 0 5 10 20 20

The relationship between x and y from the data presented in

TABLE 1 has buttoned up using the Regression Analysis

strategy. The intended work is fit a Parabolic Curve or
Polynomial function of degree m in this data. Here we

consider 5th degree polynomial curve fitting for Regression

Analysis [4], which is of the form:

y = c0 + c1x + c2 x
2
 + c3x

3
 + c4x

4
 + c5x

5
 (1)

In-order-to cook out (1), the following simultaneous

equations are needed to be executed:

 ∑𝑛 = n.c0 + c1∑𝑛 + c2∑𝑛 + c3∑𝑛 + c4∑𝑛 +c5∑𝑛

 (2)

 ∑𝑛 = c0 ∑𝑛 + c1∑𝑛 + c2∑𝑛 + c3∑𝑛 + c4∑𝑛

+c5∑𝑛 (3)

 ∑𝑛 = c0 ∑𝑛 + c1∑𝑛 + c2∑𝑛 + c3∑𝑛 + c4∑𝑛

+c5∑𝑛 (4)

 ∑𝑛 = c0 ∑𝑛 + c1∑𝑛 + c2∑𝑛 + c3∑𝑛 + c4∑𝑛

+c5∑𝑛 (5)

 ∑𝑛 = c0 ∑𝑛 + c1∑𝑛 + c2∑𝑛 + c3∑𝑛 + c4∑𝑛

+c5∑𝑛 (6)

 ∑𝑛 = c0 ∑𝑛 + c1∑𝑛 + c2∑𝑛 + c3∑𝑛 + c4∑𝑛

+c5∑𝑛 (7)

The next step is to calculate the unknowns i.e., c0 , c1 , …, c5 of

(1). To accomplish this task, Gauss Elimination method is

used. The final values of the unknowns are listed below:

Table 2: values of the unknown variables used in (1) for Table

1

Co-efficient Values

c0 47.7784331324361

c1 −4.0045389395348

c2 0.12416784919141

c3 −0.00140244183634885

c4 −6.74518773914788E−07

c5 7.23394231515351E− 08

Subhadip Boral al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,484-493

© 2015-19, IJARCS All Rights Reserved 488

Thus the polynomial (equation) obtained for the parameter

Depth of Water is:

y =

47.7784331324361+(−4.0045389395348).x+(0.124167849191
41).x

2
+

(−0.00140244183634885).x3+(−6.74518773914788E−07).x4
+(

7.23394231515351E− 08).x5

The graphical nature of the polynomial is as shown below

(Figure 6):

Figure 6: Polynomial for Depth of Water

Air Flow:While selecting a better route through ocean,

another criterion affecting the choice is Air Flow. Reports tell

that route with air flow 89 KM/H (in any direction, positive or
negative) should be avoided (thus given point 10 in the 10

point scale [5], to make it costlier). Routes with Air flow 45
KM/H in positive direction is a very good choice (so given 0

point to make it cheapest). However, routes with very minimal

Air Flow is a moderate choice (given point 5 in the 10 point

scale) and routes with Air Flow 45 KM/H in negative direction

makes the situation worsen (thus given point 7 in the 10 point

scale). Thus the following table is obtained:

Table 3:Air Flow

x(mt.) 89 45 0 -45 -89

y(scale) 10 0 5 7 10

Using the same procedure of Regression Analysis, discussed

above, the following values of the unknowns is obtained:

Table 4: Values of the unknown variables used in (1) for Table 3

Co-efficient Values

c0 4.99994410760793

c1 −0.104490894607928

c2 −0.00121189124100473

c3 0.0000131916319554311

c4 2.3268915510016E−07

c5 −9.76631790679625E− 17

Thus the polynomial (equation) obtained for the parameter Air

Flow is:

y =

4.99994410760793+(−0.104490894607928).x+(−0.001211891
24100473).x

2
+

(0.0000131916319554311).x
3
+(2.3268915510016E−07).x

4
+(−

9.76631790679625E− 17).x
5

The graphical nature of the polynomial is as shown below

Figure 7):

Figure 7: Polynomial for Air Flow

Water Current:Water current also plays a crucial role in ocean

route selection. Path with current less than 0.4 m/s or more

than 2.5 m/s should be avoided. Hence given 10 points, for

making it costlier. Paths with current 1.3 m/s is best choice

and awarded with 0 points to make it cheapest. Finally, path

with current 0.85 m/s or 1.9 m/s is a moderate choice, with

point 5 in 10 point scale. Thus the following table is reached:

[6]

Table 5: Water Current

x(Mt./sec) 0.4 0.85 1.3 1.9 2.5

y(scale) 10 5 0 5 10

Using the procedure of Regression Analysis, discussed before,

the following values of the unknowns is obtained:

Table 6: values of the unknown variables used in (1) for Table 5

Co-efficient Values

c0 3.14324

c1 40.77444

c2 -71.75304

c3 31.7

c4 0.63035

c5 -1.70556

Thus the polynomial (equation) obtained for the parameter

Water Current is:

y = 3.14324 +(40.77444).x+(-71.75304).x
2
+

(31.7).x
3
+(0.63035).x

4
+(-1.70556).x

5

Thee graphical nature of the polynomial is as shown below

(Figure. 8):

Figure 8: Polynomial for Water Current

Subhadip Boral al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,484-493

© 2015-19, IJARCS All Rights Reserved 489

Visibility:During choosing a route through ocean, one also

must consider the factor visibility. If it is even less than 1 KM,

then the path should has to be avoided for sidetracking

mishaps, hence given point 10 to make the route costlier.

When visibility is near about 5 KM, makes the route a

moderate one choice; thus given weightage point 5 and finally
visibility 10 KM or more makes the route a best choice, so

why weightage point 0 is associated then to make it cheapest.

The following table illustrate the fact:

Table 7: Visibility

x(KM) 10 5 0

y(scale) 0 5 10

Without losing its generality, this data could be fit to a Linear

Equation of the form:

 y = ax +b

Putting the values, 3 simultaneous equations are obtained-

 0=a.10+b (9)

 5=a.5+b (10)

 10=a.0+b (11)

Thus finally the equation takes the form as:

 y = (-1)x +10

The graphical nature of the polynomial is as shown below

(Figure 9):

Figure 9: Polynomial for Visibility

Possibility of presence of Sea Storm or Iceberg: Keeping

mind the famous incident of “TITANIC”, any route with

possibility of presence of Iceberg or Sea Storm is strongly

being avoided. Thus here if no such possibility is there

weightage 0 point is awarded and for such possibility, a very

high sentinel value 99 is awarded, so that the route becomes so

much costly, such that it would not come into crease even its

distance factor is low. In other words, the path with such risks

are strongly avoided even they are very short. Thus the

following table is readily being achieved:

Table 8: Possibility of presence of Sea Storm or Iceberg

x (Is There any such Possibility?) 0 1

y(scale) 0 99

This procedure of finding OPTIMAL and SAFEST Route at
first takes the Raster Map of any Sea/Ocean. It may be any

scanned image/ Satellite image, which is not needed to digitize

anyhow, making it less time consumed process. The reference

cross points are marked by simply clicking onto them and

parametric values like Depth of Water, Air Flow, Water

Current, Visibility etc. are directly fed for each of this route-

let. For the present method user-friendly GUI is there for

accommodating these values.

Finally, upon entering the Starting and Destination point of

journey the technique performs Two-way-Tracking goal

searching method and marks the Safeand Shortest Route by

RED Line.

III. IMPLEMENTATION AND RESULTS

The results of enactment, design of GUI and all the required
operations have been done using Net Beans IDE 8.0.2 (Java),
which is based on flat-file systems without using databases,
hence have increased its portability.

The work begins with selection of a map (may be a scanned
image or likewise) from any location of the computer. The
start-up screen, Buttons for loading or adding new map
selection of map, selecting new map are shown in the following
figures (Figure 10, Figure 11, Figure 12).

Figure 10: Start-up Window

Figure 11: Loading New Map

Figure 12: Selecting New Map

Subhadip Boral al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,484-493

© 2015-19, IJARCS All Rights Reserved 490

Next by clicking “DRAW POINTS” button, the reference
cross-cross points are marked (Figure 13).

Figure 13: Digitizing Points

In the next step, the adjacencies of all the points to
incorporate for analysis (i.e. Source, Destination and
intermediate cross-points) along with distance between those
adjacent points and values of the influencing factors for those
paths are entered by clicking onto the “SET DISTANCE”
(Figure 14) and “SET PARAMETER”(Figure 15) buttons
respectively, after which the information being fed is saved by
clicking “SAVE” button (Figure 16).

Figure 14: Setting Distance

Figure 15: Setting Parameters

Figure 16: Saving Data

Among the fed digitized point, any two can be selected as
source and the destination points, which being fed by clicking
“SELECT SOURCE” (Figure 17) and “SELECT DISTANCE”
(Figure 18) buttons respectively.

Figure 17: Selecting Source

Figure 18: Selecting Destination

At the final step, by clicking onto the “GENERATE
PATH” button, the suggested Optimal Safest path from source
to destination is displayed graphically by a red line (Figure 19
and 20).

Figure 19: Optimal Safest Path

Subhadip Boral al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,484-493

© 2015-19, IJARCS All Rights Reserved 491

Figure 20: Optimal Safest path

The above two figures depicts the fact that in diff erent
season, due to change in various influencing factors, the path
between a pair of Source and Destination may also change.

IV. ANALYSIS AND COMPARISON

For analysis of the performance of the proposed TwT
Method, the number of nodes varied from 2 to 1200 and the
time was recorded. The following table (Table 9) summarizes
the result.

Table 9: Performance of the TwT Method with increasing number of nodes

Number of Nodes Time Taken in
Milliseconds

10 5842

40 23725

100 47328

200 90883

300 132982

400 178943

500 223456

600 557223

700 869783

800 1572891

900 1934901

1000 2479541

1100 2815938

1200 3657892

Figure 21 shows the graphical representation of the data

reflected in Table 9

Figure 21: Performance of the TwT Method with increasing number of

nodes

All the graph-based-Goal-search algorithms start there
searching from Source node and traversing through the edges,
finally reaches at Destination node (or sometimes reverse).

Heuristic graph search algorithms have exponential time and
space complexities as they store complete information of the
path including the explored intermediate nodes. Hence many
applications involving heuristic search techniques to find
optimal solutions tend to be expensive. Despiteof these, the
researchers have strived to find optimal solution in best
possible time. Among many such existing algorithms, presently
four algorithms- Generate – And – Test, Simple Hill –
climbing, Steepest –Ascent Hill Climbing and
BestFirstSearch[7], all of which are applied for finding the
shortest path, have considered for comparison with the present
technique Two-way-Tracking.

Generate – And - Test Method:

This algorithm first generates a path from the start state.
Then check whether it is a solution or not. If it a solution, then
quit otherwise generate another path from start state. But there
is a limitation that there is no guarantee to find a solution.
Hence a comparison could be made as follows:

Table 10: Comparison between Generate – And – Test with Proposed

Algorithm

Generate – And – Test Proposed Technique (TwT)

There is no guarantee to
find a solution.

There is guarantee to find a
solution.

Simple Hill Climbing Method:

The algorithm Hill climbing expands a particular node at

the beginning of the search with the node which is considered
as the source node. Every time it explores only the best
possible node which is adjacent with present node. For that
reason, this method does not undergo any complicated
calculation and this phenomenon does not ensure the
completeness of the produced results. The Hill climbing
method does not give a desired result because this procedure
may abort with a non-final state.

It can be noticed that, when algorithm is unable to reach to
the destination node, then this state is denoted as failure state.
This situation is occurred when the algorithm reached to a node
from where no future exploration is allowable i.e. no new best
node is available to expand. Thus the following comparison can
easily be drawn:

Table 11: Comparison between Simple Hill Climbing with Proposed

Algorithm

Simple Hill Climbing Proposed Technique (TwT)

May not find Complete
Solution i.e.it may not
reach to the Goal node.

Definitely find Complete
Solution i.e. it must reach
to the Goal node.

Steepest – Ascent Hill Climbing Method:

In this method, every node from present node is taken under
consideration and among them the best one is to expand. In
Simple hill climbing, the better successor comes first is selected
and may neglect the best one. On the other hand, steepest
ascent hill climbing method explore the better state maintaining
the steepest slope. This method finds the best successor node
among every available successor node without considering the
first best node as the desired one.

Optimal solution may not be found by the Simple hill
climbing and Steepest – hill climbing. A number of
backtracking is required in some situation where the algorithm
may not reach to the goal node. The backtracking is done to
choose the next best node. Due to the huge number of

Subhadip Boral al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,484-493

© 2015-19, IJARCS All Rights Reserved 492

backtracking this procedure will be very much time absorbing.
As the method does not find the optimal solution i.e. does not
catch the goal state so the process after reaching a state from
where there are no nodes are able to generate for further
exploration. This will happen if the processing has meet with
one of the following situations: (Figure22):

1. Selecting the node, better than its neighbors, may

overlook few better nodes. This defined as local maxima.
2. Selection of next best node between two same edge-

weight successor nodes is seems to be difficult. This
phenomenon is termed as plateau.

3. In a scenario where maintaining the local maximum
drives to a particular node from where further exploration
impossible, is termed as ridge.

Figure 22: Plateau, Ridge, Local Minima

Table 12: Comparison between Steepest – Ascent Hill
Climbing Method with Proposed Algorithm

Steepest – Ascent Hill
Climbing

ProposedTechnique (TwT)
Method

May not find Complete
Solutionand also face
problems due toRIDGE ,
PLEATUE and absence
ofGLOBAL MINIMA.

Definitely find Complete
Solutionand also does no
face problems dueto
RIDGE , PLEATUE and
alwaysgive GLOBAL
MINIMA.

Best – First Method:

In graph search method Best first search [7] , a single node

gets explored at each time simply by choosing minimum edge-
weight. This minimum edge-weight is the outcome of
estimating function which gives a demarcate of distance to the
goal node.

Best first search may look like a combination of Breadth-
First-Search and Depth-First-Search as it endures all the good
notions of both the techniques. Depth-First-Search reaches goal
without considering every node, in other hand, Breadth-First-
Search method arrives at goal by exploring level by level. As
Best-first search is a hybrid of these two it permits swapping
between best paths. The Best-First Search method involves the

properties of OR graph, in which vertex i∈ V(G) generated

from j ∈ V(G) will maintain a PARENT LINK to j that will

help to recover the path from Destination to Source. It needs
two diff erent lists for execution. The nodes with determined
heuristic cost kept in list OPEN to explore in future. Already

traversed nodes are kept in CLOSE list. Hence, the following
comparisons could be made with the proposed technique:

Table 13: Comparison between Best – First Method with
Proposed Algorithm

Best – First Method Proposed Technique (TwT)

Does not find optimal
solution.

There is guarantee to find a
solution.

Comparison with AND-OR Graph:

Although the present TwT method has used some properties

of ANDOR-Graph, but to increase the efficiency of the present
method several measures has incorporated to reduce the
number of Backtracking. Hence the following comparison can
be made:

Table 14: Comparison between AND-OR Graph with Proposed
Algorithm

AND-OR Graph Proposed Technique (TwT)

Several Backtracking
involves,making it more
time consuming.

Comparatively a large
amount of Backtracking is
reduced.

Comparison with Chandel’s Bi-Directional Search [7]:

Chandel et.al.introduced a new graph search technique,

known as Bidirectional Search which traverses the graph in
both the direction, just like the present method. But the
problem with bidirectional search is that it has not incorporated
any method for reducing times due to backtracking or likewise;
causing it to take a lot of execution time. Moreover, this
technique doesn’t always work properly; because if the graph is
more connected then it is less beneficial in case of applying
bidirectional search. But in case of TwT; two way search has
been used to decrease execution time and it does not get
restricted for any type of graphs.

 Comparison with Dijkstra’s Method:

For some graph searching problems, TwT reaches the Goal

node faster (using fewer numbers of iterations) than using
Dijkstra’s Method. The following graph (Figure 23) presents
one such scenario:

Figure 23: Graph for comparison with Dijkstra’s Method

Here Source node is S and Destination node is D. Here
starting from S, Dijkstra’s Algorithm will touch the nodes N,
M, O respectively in the first three iterations. Searching
triggered from S of the proposed TwT Method will return back
to S after third iteration, but the other parallel searching part of
the proposed TwT Method, triggered from Destination D, after
second iteration will reach at Source S and hence result in a

Subhadip Boral al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,484-493

© 2015-19, IJARCS All Rights Reserved 493

successful search. Thus here TwT completes searching just
after second iteration, much before than that of Dijkstra’s
method. This has been elaborated in the following table(Table):

Table 15: Moves made in the Graph shown in Figure 23

Number
of
Iteration

Dijkstra’s
Algorithm

Proposed Algorithm

Triggered
fromsource S

Triggered
fromdestination
D

First N N Q

Second M M S (Successful
& Terminates)

Third O S -

The output produced by the Goal Searching Algorithm can

be considered as Boolean, either Success (able to find the Goal
node) or Failure (Unable to find the Goal node). Some
algorithms might get stuck in an infinite loop and never return
an output.

For comparing diff erent Graph-based-Goal-Searching
Algorithms, the following metrics are useful:

Completeness: This depicts the fact that whether the

algorithm guaranteed to find a solution when there is one.
Obviously, algorithms having Completeness property are of
prime interest, both for theoretical and practical applications.

Optimality: This points to the fact that whether the
algorithm is able to find an Optimal Solution or not. Surely,
algorithms able to find optimal solutions are of particular
interest than others.

Time Complexity: This is related to the execution time of
the algorithm. Generally, the order of search time complexity
of the algorithm is expressed as a function.

The following table reflects a concise comparison among

various Graph-based-Goal-Searching Algorithms, in addition to
the present technique.

Table 16: Comparison among various Graph-based-Goal-
Searching Algorithms

Breadth First Search O(n
m
) Yes Yes

Depth First Search O(n
m
) No No

Simple Hill Climbing O(n
m
) No No

Steepest Ascent Hill Climbing O(n
m
) No No

Best-First Search O(n
m
) Yes No

Bi-Directional Search O(n
m/2

) Yes Yes

Proposed Algorithm (TwT) O(n
m/2

) Yes Yes

Where,
m = depth of solution with in search tree
n = branching factor of search tree

V. CONCLUSION

The present technique is a kind of goal searching algorithm
in a weighted graph, where the Optimal and safest route
between Source and Destination has been found. So this
technique can be applied in a number of challenging fields in
GIS. Presently one such application area, finding shortest as
well as safest route through ocean has outlined.

The proposed work is in a way to stretch its helping hand
for minimizing these heart breaking incidents. It foretells the
captain about the safest route for propelling. The graphical
outcome makes it very much understandable to anybody.

This technique cannot only be applied for the avoidance of
road accidents and plane crashes due to selection of wrong
route or decrepit road for traveling, by simply changing the
influencing factors; but could play as a guide while solving
Land Acquisition problem. While acquiring land for the
purpose of new constructions, like Highway or Rail-route
deserted/ low fertile lands should be preferred but this should
not enlarge the route.Thus finally this is also a goal reaching
problem through cheapest (in terms of factors considered)
route.

VI. ACKNOWLEDGMENT

The authors are thankful to Department of Computer
Science, BarrackporeRastraguruSurendranath College,
Kolkata-700 120,W.B., India for providing all the
infrastructural support to carry out the intended work.

VII. REFERENCES

[1] Elaine Rich, Kevin Knight, Shivashankar B Nair, ARTIFICIAL
INTELLIGENCE, PHI, Third Edition

[2] Isra’a Abdul-Ameer Abdul-Jabbar, Suhad M. Kadhum, Adaptive
Backtracking Search Strategy to Find Optimal Path for Artificial
Intelligence Purposes, Computer Engineering and Intelligent
Systems ,ISSN 2222-1719 (Paper) ISSN 2222-2863
(Online),Vol.5, No.2, 2014

[3] RINA DECHTER ,JUDEA PEARL ,GENERALIZED BEST
FIRST SEARCH STRATEGY AND OPTIMALITY OF
A*,Report No.CSD – 840068 , December 1984

[4] Dr. S A MOLLAH , NUMERICAL ANALYSIS and
COMPUTATIONAL PROCEDURES , PHI, Fourth Edition

[5] www.baynews9.com/content/news/baynews9/weather/hurricane
center/wind- speeds.html

[6] hypertextbook.com/facts/2002/EugeneStatnikov.shtml

[7] Mr. Girish P Potdar1, Dr.R C Thool COMPARISON OF
VARIOUS HEURISTIC SEARCH TECHNIQUES FOR
FINDING SHORTEST PATH, International Journal of Artificial
Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

	I. Introduction
	II. THE SCHEME
	Properties of OR Graph:
	Terminating Condition for Goal Searching :
	Reduction of Backtracking:
	Elaboration of the Backtracking Reduction Process:
	Case Study 1: Following ﬁgure (Figure 1) shows a graph G1 in which the node X is of degree > 0 and the node B is of SUCCESSORS_LEFT_FOR_EXPLORATION(B) = 3. After exploration of node B SUCCESSORS_LEFT_FOR_EXPLORATION(B) will become 0 and for BACKTRACKI...
	If there are m nodes of degree 2 lying between X and B and n is the total number of vertices in the graph then m(n-1) unit time due to adjacency checking during BACKTRACKING could be saved, by incorporating the mentioned methodology.
	Case Study 2:G2 (Figure 2) is a linear graph where the source node S is of degree 2 and the destination node D is at any side of the source node and D is either of degree 2 or 1. If the lower cost path exists on the opposite side of the destination no...
	Incorporation of Two-way-Tracking:

	III. Implementation and Results
	IV. Analysis and Comparison
	V. CONCLUSION
	VI. Acknowledgment
	VII. References

