
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4245

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 298

ISSN No. 0976-5697 ISSN No. 0976-5697

REQUIREMENT UNDERSTANDABILITY QUANTIFICATION MODEL OF
OBJECT ORIENTED SOFTWARE

Mohammad Zunnun Khan

Departement of Computer Science & Engineering,
Integral University,

Lucknow, India

M Akheela Khanam
Department of Computer Science & Engineering,

Integral University,
Lucknow, India

M H Khan

Department of Computer Science & Engineering,
 IET, Sitapur Road,

Lucknow, India

Abstract: Understandability has significant role in development of quality software; it incredibly impacts cost, quality and unwavering quality at
the time software development (especially at early stages of development). Wrong interpretation prompts ambiguities, misconception and thus
the misinterpretations of further development process and the related records, which frequently results to defective development.
Notwithstanding the way that understandability is essential and very critical viewpoint for software development process. Understandability is
considered as basic building block for delivering high quality and reliable software. It greatly influences cost, quality and reliability at the time
of software evolution. In this paper, author highlights the importance of understandability early at requirement phase in general and as a factor
of software testability. The paper quickly portrays the proposed model for understandability quantification of object oriented software [RUMOOS]
by establishing multiple linear regressions. Finally the proposed model has been validated using experimental tryout.

Keywords: Understandability, UML, Software Testability, Requirement Quality, Object Oriented Software

1. INTRODUCTION

 In the recent years, software developers have put special
attention to guarantee the quality characteristics of object
oriented systems [1] ,[27] . Quality has turned out to be
more essential with our expanding reliance on software. In
the most recent decades the interest for quality in a software
product has been progressively underscored [29] . Software
industry has been conveying exponential change in cost,
execution, yet the issues with software are not declining.
According to the one of the IBM report, around 30% of the
undertakings get drop before they are finished, 52% over-
run their cost gauges by a normal of 189%, and for every
100 projects, there are 94 restarts [31] [2] . A key issue of
software industry is its absence of capacity to create bug
free software. On the off chance that software engineers are
asked to authoritatively express that the created software is
sans bug, no product would have ever been discharged.
Target of software engineering is to make great final
software product in time and within proposed budget. On
the off chance that an item is meeting its necessities, we
may state it is an unrivalled quality product. The entire thing
is measured concerning requirements and in the event that it
matches, product is a quality product [3] [27] .
Software has turned out to be a key to progression in every
aspect of human attempt. The capacity of programming just
is no longer tasteful to build extensive projects. There are
real issues in the cost, opportunity, support and nature of
numerous software products. Software engineer has the
objective of taking care of these issues by creating great
quality, testable, maintainable software, on time, inside

spending plan [4] ,[27] . As per software engineering
standards, if the procedure for development of any software
product is correct, the possibility of accomplishment of the
software product undertakings is enormously increased. To
accomplish this target, study has to focus in a trained way
around both the quality of the product and on the procedure
used to build up the product. Nonetheless, because of
increment in cost of testing and upkeep of software, goal is
presently changing to convey quality software [5] ,[31] .
Software testing is an essential and fundamental movement
of development life cycle for delivering great quality
software.
Testing is critical and testing errand. The time spent and
exertion required for testing of software is extremely huge
and expends around 40% to half of the aggregate cost for the
complete development life cycle. The most imperative issue
amid testing is that before revising a program (error), the
developer should first follow and comprehends it and it is
conceivable with the assistance of its understandability [5]
[6] . It is vital that cost effective testing procedure must be
connected amid development life cycle and maintenance.
The essential component adding to the development of these
practical strategies is the testability of software [27] .
Software testability is characterized as a measure of the
exertion required to palatably test the program as per some
very much characterized testing criteria[7] [31] . To a huge
viewpoint, testing relies upon how troublesome the mistake
is to follow. Software testability and fault or error
traceability are two most essential ideas: the more
troublesome a blunder is to follow, the more troublesome it
is with a specific end goal to be settled [29] . The more

Mohammad Zunnun Khan et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,298-302

© 2015-19, IJARCS All Rights Reserved 299

troublesome it is to remedy, the higher its testability hazard
is. The general exertion spent on testing not just relies upon
human components; prepare issues, test methods, and test
tools, additionally on attributes of the software development
curios [8] [27] . How much a product ancient rarity
encourages test assignments in a given test context is called
testability.[13]
On the off chance that we need to enhance testability we
need to follow those parts of a development that need
testability [15] . In perspective of the reality, obviously
adaptability holds a critical place as a component of
testability and traceability is an essential paradigm of
adaptability [8] [9] . The analyzer can utilize testability data
to decide on what code to centre amid testing [9] .
Testability has been recognized as one of the significant
issues in the field of programming building for delivering
excellent programming. It gives experiences that are
observed to be particularly significant for the length of
programming configuration, coding, testing and quality
confirmation [10] .

2. SOFTWARE TESTABILITY

Testability is a standout amongst the most vital quality
pointers; its estimation prompts to the possibilities of
encouraging and enhancing a test procedure. The knowledge
gave by software testability is important amid designing,
coding, testing, and quality assurance[17] . The qualities of
testable software like sufficient multifaceted nature, low
coupling and great partition of concerns make it less
demanding for reviewer to comprehend the product
antiquities under survey [5] . Testability comes about
because of good Software Engineering rehearse and a viable
software process[10] [11] In spite of the fact that, testability
is most clearly significant amid testing, however focusing on
testability right on time in the development process, testing
proficiency and adequacy may possibly be progressed[17]
[18] . Testability can be seen as the property or potentially
trademark that measures the simplicity of testing a bit of
code or usefulness, and an arrangement included
programming so test plans and scripts can be executed
systematically [12] . Testability investigation can include
data that is helpful both for surveying the general quality
and for finding software bugs [13] .Consequently; it gives a
trade‐off investigation instrument to creators to help them
in choosing whether they will pay the punishment for
testability at the cost of different advantages.

3. OBJECT ORIENTED CHARACTERISTICS

In today's development environments, Object oriented
analysis & very next stages are the well known ideas. They
are frequently proclaimed as the silver shot for taking care
of software problem while as a general rule there is no silver
slug. In any case, it has demonstrated its esteem for system
that must be maintained & modified [16] [22] .
Requirement choices are made for various reasons, so the
wording is interpreted in an unexpected way [19] . For
example, in requirement modeling we discuss
decomposition, abstraction as well as separation of concerns
–all of which were initially design techniques for making
elegant, modular designs[21] [23] . We decompose
requirements specification along separate concerns to

simplify the result based model and make it easier to read &
understand [25] . Interestingly, we decompose a design
outline to enhance the framework's quality attributes such as
modularity, maintainability, performance & time bound
delivery [26] [27] [28] .The requirements name and oblige
those attributes, but decomposition has no role in this
specification aspect. Thus, although we use the terms
decomposition and modularity in specification as well as
design, the decomposition decisions we make at each stage
has different aspect because they have different goals[15]
.Early in the requirement stage, it is less demanding to build
an applied model of the issue that distinguishes what objects
or entities are included, what they resemble (by
characterizing their attributes), and how they identify with
each other[16] . Such a model assigns names for the
fundamental components of the issue [29] [30] . These
components are then reused in different depictions of the
requirement.

A. Establishing Relationship.To build up a relevant
effect relationship between Object Oriented (OO)
Software attributes and testability factors, the impact of
OO characteristics on every factor of testability was
inspected by a few scientists [31] . The vast majority of
the studies cantered their endeavor to inspect the effect of
OO characteristics and have effectively settled established
with quality factors [30] . Be that as it may, we inspected
and evaluated their effect on the specific part of study i.e.
testability and by associatively and congruence viewpoint,
finished up on recognizing testability factors influenced by
Object characteristics [31] [32] . It was watched that each
of these attributes, either have positive or negative effect
on the factors that influence testability of OO
development. After a thorough survey of accessible
writing on the theme, the connection between OO
development attributes and testability elements (as
delineated in Figure1) has been set up[31] [5] [17] [18]
[20] . In light of the relationship demonstrated as follows,
a model has been created in area (condition 2) for
assessing Understandability. Promote the relative
noteworthiness of individual plan properties that impact
software testability is weighted relatively [31] [32] . The
idea of various straight relapses has been utilized to get the
coefficients that build up a relationship between ward
factors and numerous independent variables.

FIGURE 1. Requirement Understandability

Quantification Model

The descriptive quality model (Jagdeesh Bansiya’s

hierarchal quality model [29]) has been thought-about as a
basis to develop the Requirement Understandability Model
for Object Oriented Software as shown in Figure 1. The
proposed model establishes discourse impact relationship
between Understandability and object oriented
characteristics of software and their related metrics. The
values of these metrics can be easily identified with the help

Mohammad Zunnun Khan et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,298-302

© 2015-19, IJARCS All Rights Reserved 300

of UML diagram. This model used the low level object
oriented metrics namely Afferent Coupling (CA), Measure
of functional Abstraction (MFA), Direct Class Metric
(DAM)[10] [27] [29] , to describe a range of measurement
for software and defined in terms of design characteristic
and also helpful for quantitative assessment of degree to
which system, component or process hold a given attribute.
Using Statistical Analysis software named as ‘SPSS’ values
of all its independent variables (metrics), regression
intercept and coefficient of the respective independent
variables are calculated. On the basis of the multiple linear
regression equation concepts, Requirement
Understandability model has been developed that is given in
equation (2). Factor of a class depend upon one or more
number of object oriented software metrics, quality factor
may be fixed by using model ‘Requirement
Understandability Quantification Model of Object oriented
Software- RUMOOS.’
Understandability = α0± β1 * Inheritance ± β2 * Cohesion ±
β3 * Coupling (1)

Where this equation has
- β1, β2 and β3 are the coefficients of respective

independent variables ‘Requirement _ Inheritance,
Requirement _Cohesion and Requirement _Coupling’
related to understandability.

- α0 is the intercept.
The data used for establishing Understandability model is

taken from [32] that have been collected through large
commercial object oriented systems as shown in Table1.

TABLE 1: Understandability Computation Table

Proje
ct

C
A

MFA CAM Standard
Understandabili
ty

P1 1 0 0.3469
39

1.582283

P2 0 0 0.6 1.53945

P3 0 0 0.5 1.5054

P4 0 0 0.5 1.5054

P5 1 0 0.2125 1.536506

Understandability = 1.50 + 0.0070 * ca + 0.35 * mfa +

0.121 * cam (2)

4. ANALYSIS OF UNDERSTANDABILTY
 QUANITIFCATION MODEL

4.1Statistical Significance of Model
TABLE 2.Statistical Significance of Requirement
Understandability Model- RUMOOS

Descriptive Statistics

 Mean Std. Deviation N

CAL 1.6308 .13688 10

CA 1.000000 .9428090 10

MFA .2289 .36859 10

CAM .3359 .19362 10

The descriptive table is very important for further research
work. It gives the valuable record of descriptive statistics
that are mean, standard deviation and number of samples
selected for model validation.

TABLE 3. Correlation between Independent Variables

Correlations

 CAL CA MF
A

CAM

Pearson
Correlation

C
A
L

1.00
0

.649 .985 .293

C
A

.649 1.00
0

.729 -.401

M
F
A

.985 .729 1.00
0

.134

C
A
M

.293 -.401 .134 1.000

Table 4. Model Summary for Understandability Model

Model Summary

Mo
del

R R
Square

Adjusted R
Square

Std. Error
of the

Estimate

1 .999a .998 .997 .00733

a. Predictors: (Constant), CAM, MFA, CA

Summary table 4 for Understandability Quantification

Model proves that all the four selected metrics are
statistically significant at confidence level of 95%.

5. EMPIRICAL VALIDATION OF
 UNDERSTANDABILITY MODEL.

This section of work proves that how significant proposed
study, where metrics and model are able to estimate the
understandability quality index of object oriented at
requirement time. The empirical validation is important
phase of research to evaluate the proposed understandability
quality model for high level acceptability and appropriate
execution. Empirical validation is the fine approach and best
practice for claiming the model acceptance [19] . To justify
claiming approach for acceptance of model, an experimental
validation of the proposed understandability quantification
model at requirement time has been carried out using
samples.

A. Data Set for Ten Projects. This paper describes an
analysis that was conducted on collected repository with 92
versions of 38 proprietary, open-source and academic
projects[32] [6] . In view of this fact, an experimental
validation of the proposed model for Understandability
evaluation has been carried out using sample tryouts. In
order to validate proposed Understandability quantification

Mohammad Zunnun Khan et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,298-302

© 2015-19, IJARCS All Rights Reserved 301

model, the value of metrics are available by using [6] [32]
data set for following 10 projects in table 5.

TABLE 5. Known and Calculated Understandability Index
Values and Ranking for 10 Projects

Project CA MFA DAM STD_UN

DERST
ANDAB
ILTY

CAL_
UNDERS
TANDAB
ILTY

P1 2 0.77 0.3 1.82 1.73
P2 1 0 0.14 1.52 1.51
P3 1 0 0.15 1.53 1.52
P4 1 0 0 1.51 1.46
P5 1 0.76 0.5 1.84 1.67
P6 0 0 0.5 1.58 1.51
P7 3 0.76 0.32 1.82 1.87
P8 1 0 0.35 1.56 1.58
P9 0 0 0.6 1.57 1.54
P10 0 0 0.5 1.56 1.51

It is compulsory to test the validity of proposed model for
acceptance. A 2 sample t test applies for check the
significance between standard Understandability and
calculated Understandability. 2t-test is handy hypothesis
tests in statistics when compare means.

TABLE 6. 2 t- tests between Std_ Understandability & Cal_
Understandability

Paired Samples Statistics

 Mea
n

N Std.
Deviatio
n

Std. Error
Mean

Pai
r 1

C
A
L

1.630
8

10 .13688 .04328

K
N
O

1.589
1

10 .12777 .04040

Null hypothesis (H0): There is no significant difference

between STD_UNDERSTANDABILTY and CAL_
UNDERSTANDABILTY; H0: μ1-μ2 = 0

Alternate hypothesis (HA): There is significant
difference between STD_UNDERSTANDABILTY and
CAL_ UNDERSTANDABILTY; HA: μ1-μ2 ≠ 0

In the above hypothesis μ1 and μ2 are treated as sample
means of population. Mean value and Standard Deviation
value have been calculated for specified two samples and
represented in table 6. Correlation comes out to be 0.901,
that shows the standard Understandability and calculated
Understandability is highly correlated. The hypothesis is
tested with zero level of significance and 95% confidence
level. The p value is 0.055. Therefore alternate hypothesis
directly discards and the null hypothesis is accepted. The
developed equation used for Understandability estimation is
accepted.

6. CONCLUSION
 The paper highlighted the importance of software
Understandability and an approach is presented for assessing
Understandability of requirements based on the collection of
requirement quality measures of object oriented software at
low level. Understandability is obviously relevant to the
context of software testability and plays a highly significant
role for delivering quality software. Subsequently, proposed
an Understandability equation to obtained multivariate
linear model have been measured for the Understandability
of requirement. It has been shown that model-RUMOOS is
able to quantify the Understandability of the software
requirement. Hence, therefore, the model has been validated
theoretically as well as empirically using experimental try-
out. However, the model is validated on a small data set and
it is to be done further on live industrial projects for better
acceptability and utility.

Acknowledgment. I would like to express my sincere
gratitude to Integral University, Lucknow that provides me
such a wonderful opportunity(with Communication no
IU/R&D/2017-MCN0001)and to my supervisor Associate
Professor Dr. M Akheela Khanam & Co-supervisor Prof.
(Dr.) M. H. Khan for the continuous support of my PhD
study and research, motivation, enthusiasm. Their guidance
helped me in all the time of research. Last but not the least; I
would like to thank my parent for their patience,
understanding and support that drive me to complete my
study.

REFERENCES

[1] I. Sommerville, Software Engineering, 9th edition. Boston,

Massachusetts: Addison- Wesley, 2010, pp. 27–74.
[2] D. Gallin, Software Quality Assurance from Theory to

Implementation. Edinburgh Gate: Pearson Education, 2004.
[3] J. Ramos, Ricardo; Piveta, Eduardo K; Castro, Jaelson;

Moreira, Ana; Guerreiro, Pedro; Pimenta, Marcelo S; Price,
R. Tom; Araujo, “Improving the Quality of Requirements
with Refactoring,” in Simposio Brasileiro de Qualidade de
Software, 2009.

[4] D. Firesmith, “Common Requirements Problems, Their
Negative Consequences, and the Industry Best Practices to
Help Solve Them,” J. OBJECT Technol., Vol 6, No. 1, pp.
17–33, 2007.

[5] Mohammad Zunnun Khan, M.Akheela Khanam, M. H. K.
(2016). Software Testability in Requirement Phase: A
Review. International Journal of Advanced Research in
Computer and Communication Engineering, 5(4), 1031-
1035. DOI 10.17148/IJARCCE.2016.54252

[6] Genero, M., Piatini, M., & Manso, E. (2004, August).
Finding" early" indicators of UML class diagrams
understandability and modifiability. In Empirical Software
Engineering, 2004. ISESE'04. Proceedings. 2004
International Symposium on (pp. 207-216). IEEE.

[7] R. V. Binder, “Design for Testability in Object-oriented
Systems,” Commun ACM, vol. 37, no. 9, pp. 87–101, Sep.
1994.

[8] S. Hesari, R. Behjati, and T. Yue, “Towards a systematic
requirement-based test generation framework: Industrial
challenges and needs,” in Requirements Engineering
Conference (RE), 2013 21st IEEE International, 2013, pp.
261–266.

[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The WEKA Data Mining Software: An
Update,” SIGKDD Explor Newsl, vol. 11, no. 1, pp. 10–18,

http://blog.minitab.com/blog/adventures-in-statistics/understanding-hypothesis-tests%3A-why-we-need-to-use-hypothesis-tests-in-statistics�
http://blog.minitab.com/blog/adventures-in-statistics/understanding-hypothesis-tests%3A-why-we-need-to-use-hypothesis-tests-in-statistics�
http://blog.minitab.com/blog/adventures-in-statistics/understanding-hypothesis-tests%3A-why-we-need-to-use-hypothesis-tests-in-statistics�

Mohammad Zunnun Khan et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,298-302

© 2015-19, IJARCS All Rights Reserved 302

Nov. 2009.
[10] Davis, A.; Overmyer, S.; Jordan, K.; Caruso, J.; Dandashi,

F.; Dinh, A.; Kincaid, G.; Ledeboer, G.; Reynolds, P.;
Sitaram, P.; Ta, A.; Theofanos, M., "Identifying and
measuring quality in a software requirements specification,"
Software Metrics Symposium, 1993. Proceedings, First
International, vol., no., pp.141,152, 21-22 May 1993

[11] Boehm, Barry, Guidelines for Verifying and Validating
Software Requirements and Design Specifications, vol. Euro
IFIP 79. North Holland, 1979.

[12] Cleland-Huang, Jane, Adam Czauderna, Alex Dekhtyar,
Olly Gotel, Jane Huffman Hayes, Ed Keenan, Greg Leach et
al. "Grand challenges, benchmarks, and TraceLab:
developing infrastructure for the software traceability
research community." In Proceedings of the 6th international
workshop on traceability in emerging forms of software
engineering, pp. 17-23. ACM, 2011.

[13] Cleland-Huang, Jane, Raffaella Settimi, Xuchang Zou, and
Peter Solc. "Automated classification of non-functional
requirements." Requirements Engineering 12, no. 2 (2007):
103-120.

[14] Sultanov, Hakim, and Jane Huffman Hayes, "Application of
reinforcement learning to requirements engineering:
requirements tracing." In Requirements Engineering
Conference (RE), 2013 21st IEEE International, pp. 52-61,
IEEE, 2013.

[15] Shahid Iqbal and Naeem Ahmed Khan M. Yet another Set of
Requirement Metrics for Software Projects. International
Journal of Software Engineering and Its Applications. 2012;
6.1:19-28.

[16] Bokhari Mohammad Ubaidullah and Shams Tabrez
Ubaidullah Siddiqui. Metrics for Requirements Engineering
and Automated Requirements Tools. Proceedings of the 5th
National Conference, INDIACom-2011.

[17] Ali Mohammed Javeed. Metrics for Requirements
Engineering. 2006. Available from: www.cs.umu.se/educa-
tion/examina/Rapporter/JaveedAli.pdf.

[18] Voas and Miller, "Software Testability: The New
Verification". IEEE Software, Vol. 12(3), p. 17-28, 1995.

[19] J.M. Voas, "Object-Oriented Software Testability", In
proceedings of International Conference on Achieving
Quality in Software, January 1996.

[20] Bach, J. (1999). James Bach on risk-based testing. STQE

Magazine, 1, 6.
[21] R.V. Binder, "Design for testability in object-oriented

systems‖, Communications of the ACM Vol. 37(9), p. 87 -
101, 1994.

[22] ISO /IEC25010: Software engineering– system and software
quality requirement and evaluation (SQuaRE)- system and
software quality model; 2011.

[23] Esaki K. System quality requirement and evaluation,
importance of application of the ISO/IEC 25000 series,
Global Perspectives of Engineering Management.2013;
2(2):52-59

[24] Lewis, W. E. (2016). Software testing and continuous
quality improvement. CRC press.

[25] Leach, R. J. (2016). Introduction to software engineering.
CRC Press.

[26] L. Zhao, ―A new approach for software testability
analysis‖, International Conference on Software
Engineering, Proceeding of the 28th international conference
on Software Engineering, Shanghai, pp. 985–988, 2006.

[27] M. Nazir, Khan R. A. & Mustafa K. (2010): Testability
Estimation Framework, International Journal of Computer
Application, Vol. 2, No. 5, pp.9-14. June 2010.

[28] Drown DJ , Khoshgoftaar TM, Seiya N. Evaluation any
sampling and software quality model of high assurance
systems, IEEE Transaction on systems, Mean and
Cybernetics, Part A: Systems and Human. 2009;39(5):1097-
1107.

[29] Huda, M., Arya, Y.D.S. and Khan, M.H. (2015) Evaluating
Effectiveness Factor of Object Oriented Design: A
Testability Perspective. International Journal of Software
Engineering & Applications (IJSEA), 6, 41-49.
http://dx.doi.org/10.5121/ijsea.2015.6104

[30] Krruchtem P. The rational unified process: an introduction,
Addison Wesley; 2000..

[31] Huda, M., Arya, Y.D.S. and Khan, M.H. (2015) Metric
Based Testability Estimation Model for Object Oriented
Design: Quality Perspective. Journal of Software
Engineering and Applications, 8, 234-243.
http://dx.doi.org/10.4236/jsea.2015.84024

[32] Robert V. Binder “Testing object-oriented systems: models,
patterns, and tools”, Addison-Wesley Longman Publishing
Co., Inc., 1999.

http://dx.doi.org/10.5121/ijsea.2015.6104�
http://dx.doi.org/10.4236/jsea.2015.84024�

