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Abstract— The primary goal of e-commerce network is to sell goods and services online. Increasing usages of e-commerce network increases 
the security loop holes in the network. Nodes of an e-commerce network can be easily compromised by various types of malware. The nature of 
the spread of malware among the nodes of an e-commerce network can be easily compared with the spread of biological viruses (infectious 
diseases) within human population of any locality. So we can easily apply the epidemic model for the spread of infectious disease within human 
population into the spread of malware among the nodes of a computer network. Various types of malware are used to attack the network of an 
organization, but, here, in this paper we concentrate and formulate a dynamic model for the propagation of bots in an e-commerce network and 
study its dynamic behavior. After categorizing the nodes of the network, based on their interface to the Internet, we have proposed two sub-
models to formulate the overall architecture of the model. A schematic compartmental model is designed to represent the propagation of bots 
within the network and then differential equation model is formulated to represent the dynamics of all the compartments, respectively. The 
proposed system is solved and the basic reproduction number is also calculated to analyze the stability of the system. At the end, we have shown 
the result of numerical simulations using MATLAB to support the dynamism of our proposed model.  
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I. INTRODUCTION 

 
 E-commerce has presented a new way of doing business all 
over the world using Internet. It refers to a wide range of 
online business activities for products and services. It is a 
powerful tool for business transformation that allows 
companies to enhance their supply-chain operation, reach 
new markets, and improve services for customer as well as 
for providers [10]. Commercial activities over the Internet 
have been growing in an exponential manner over the last 
few years. As the world becomes more electronically 
connected, systems running on network become more 
vulnerable to cyber-attack and this has posted a serious 
challenge for information security. Web based attacks are 
considered to be the greatest threat to any business or state 
as it is related to the confidentiality, availability, and 
integrity of the data for the business and the state, 
respectively. 
 
Major types of cyber-attacks on e-commerce network 
includes fraudulent-email, pharming, snooping the shopper’s 
computer, malware, man in the middle attack, Cross Site 
Scripting (CSS), password attacks, etc. Here, in this paper, 
we concentrate on a specific type of malware attack, known 
as bots attack, which is the basis for formulation of our 
proposed model and its solution, is discussed throughout the 
remaining portion of this paper. 
 
There are many different classes of malware that have 
varying ways of infecting systems and propagating 
themselves. Some of the more commonly known types of 
malware are viruses, worms, Trojans, bots, back doors, 
spyware, and adware. A malicious bot is self-propagating 
malware designed to infect a host and connect back to a 
central server or servers that act as a command and control 
(C&C) center for an entire network of compromised 
devices, known as "botnet”. The term botnet comes from  

 
robot net

 In this section we will develop a model on the attack and 
spread of bots among the nodes within an e-commerce 
network. Several mathematical models have been developed 
which give clear view of attacking behavior as well as the 
transmission of malicious codes in network [1-9]. A typical 
e-commerce network consists of various types of computers, 
viz.; workstations, servers, routers and other devices also. 
Server may be of different types, viz.; web server, database 
server, application server, mail server, etc. All the servers 
are internal to the network, i.e.; they are not directly 
connected to the outside world. Apart from the servers there 
are some other workstations which are internal to the 
network and forms the backbone of the network, i.e.; an 
attacker or a valid client can’t directly interact with those 
nodes also. But there will be some other computers (external 
nodes) which are the interfaces to the backbone of that 
network, i.e.; an attacker or a valid client can directly 
connect to those computers with the help of the Internet. A 

work. The computers under the botnet are the 
collection of computers that are connected to the internet 
and have been compromised by a cracker, computer virus, 
bots or Trojan horse and can be used to perform malicious 
tasks of one sort or another under the control of a remote  
server known as “bot herder” or “bot master” or “command-
and-control (C&C) server”. In most of the cases the owner 
of the systems of botnet are unaware that their systems are 
being used in this way and hence, these computers are 
metaphorically compared to zombies. The zombie 
computers of the botnet, which are controlled by a C&C 
server, are used to forward transmissions, including spam, 
viruses or worms to other computers on the e-commerce 
network. Bots have all the advantages of worms, but are 
generally much more versatile in their infection vector, and 
are often modified within hours of publication of a new 
exploit [14].  

II. MODELING THE SYSTEM 
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bot master or C&C server first target those interface nodes 
of that network and turn them to zombie computers with the 
help of bots and turn them to the part of its botnet. Now 
those zombies will be controlled by the bot master. The bot 
master, with the help of those zombies, can infect other 
computers of that network by transmitting bots throughout 
the network and can reach and infect the targeted server of 
that network to make the entire network to crash. This 
scenario can be represented schematically as shown in the 
following fig. 1.  
 

 

 
 Considering the above discussed scenario, we have created 
a schematic model consisting of two different, but 
interactive models. Before we proceed with the 
mathematical modeling of the above mentioned framework, 
we briefly discuss the basic assumption which will guide our 
formulation of equation system as follows. 
Dynamic model for infectious diseases are mostly based on 
compartment structures that were initially proposed by 
Kermack and McKendrick [11-13] and later developed by 
other mathematicians. To formulate a dynamic model on the 
transmission of an epidemic disease, the entire population in 
a given region is often divided into several different groups 
or compartments. In this paper we apply “S-I-S” model for 
the population of the external computers which are directly 
connected to the Internet. Initially all the external nodes 
which are directly connected to the outside of the network 
through Internet are placed in “S” class. But, once a node of 
“S” class is infected by the bots sent from a “C&C server” to 
turn it into a zombie computer, that node is transferred into 
the “I” class. As the non-availability of the external node 
directly affect the services it provides to its client nodes, the 
nodes in the “I” class of our “S-I-S” model are repaired 
immediately with the help of antimalware software or any 
other means of repair and hence it is transferred back to the 
“S” class to resume its operation. 
 The population of the internal nodes of our e-commerce 
network is used to form the “S-I-Q-S” model. Initially all 
the internal nodes of our network are placed into the “S” 
class. The nodes of that “S” class may be affected by the 
zombies of the “S-I-S” model. Once, a node from “S” class 
is infected by the zombies of “S-I-S” model, it is transferred 
into the “I” class. The nodes of the “I” class are quarantined 
and transferred into “Q” class. The non-availability of the 
internal nodes may hamper the communication process 
within the network and hence the quarantine nodes are 
repaired immediately and transferred to the “S” class again 
to resume their operation. The entire population of the 
computers of our network is divided into the following five 
compartments: 

(i) Susceptible-External (Se): represents the external nodes 
which are susceptible to direct attack from bots of an 
existing botnet. 
(ii) Infectious-External (Ie): represents the infected external 
nodes which are infectious and are capable of spreading the 
bots to other susceptible nodes. 
(iii) Susceptible-Internal(S): represents the internal nodes 
which are susceptible to the attack from the zombie 
computers of the botnet. 
(iv) Infectious-Internal (I): represents the infected internal 
nodes which are infectious and are capable of spreading the 
bots to other susceptible nodes. 
(v) Quarantine (Q): represents the internal nodes which are 
infected and separated. 
 
     The study of epidemic dynamics is an important theoretic 
approach to investigate the transmission dynamics of 
infectious diseases. It formulates mathematical models to 
describe the mechanism of disease transmissions and 
dynamics of infectious agents. Different transmission rates 
which are used to show the dynamism of our model are as 
follows: b: birth rate as well as death rate of the suspected 
external nodes; β: transmission rate coefficient; α: 
quarantine rate coefficient; σ:  loss of immunity rate 
coefficient; µ: death rate of external nodes due to attack.  
 The corresponding model equations for Internal Nodes of 
an E-Commerce Network (S–I–Q-S) are given in the 
following system equation: 

.

,

,
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For the above system (1), we may assume the following 
equation, 

    .1
1

ISQ
QIS

−−=⇒
=++                                                 (a) 

 In the above equation (a), S, I and Q represents the fraction 
of the total nodes from susceptible, infectious and 
quarantine categories, respectively, present in the internal 
part of an e-commerce network of an organization. 
     The corresponding model equations for External Nodes 
of an E-Commerce Network are given in the following 
system equations: 
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For the above system (2), we may assume the following 
equation, 

  .1
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(b)               

     In the above equation (b), Se, and Ie represents the 
fraction of the total nodes from susceptible and infectious 
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categories, respectively, present in the external part of an e-
commerce network of an organization. By using the 
equations (a) and (b), respectively, we may simplify the 
above mentioned two systems equations, viz.; (1) and (2), 
into the following system equation: 
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dt
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dt
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(3) 

Let U be used to represent the feasible region for the 
corresponding system (3) for the model given in the fig.1. 
Hence we may write U as follows: 

).1,1,0,0,0:),,(( 3 ≤≤+≥≥>∈= eee IISIISRIISU
 

III. SOLUTION AND BASIC REPRODUCTION 
NUMBER 

 
 In this section, we discuss about the solution of the system 
developed and find out the basic reproduction number, 
which helps us to analyze the stability of the system. 
  
A. Solution of the System (Calculation of Equilibrium 
Points) 
To calculate the equilibrium points for the proposed model, 
we set the right sides of the model equations of system (3) 
equal to zero, that is, 

0=
dt
dS

,  
0=

dt
dI

,  
.0=

dt
dIe  

 Using the above mentioned three equations, the trivial bots 
free equilibrium is obtained at point E1 ≡ (1, 0, 0) and the 
endemic equilibrium  is found at point E2 ≡ ( S*, I*, Ie

*), 
where, 
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B. Basic Reproduction Number 
 
 The basic reproduction number, also known as threshold 
number, is defined by the average number of secondary 
infections produced by one infected node of a network 
during the mean course of infection in completely 
susceptible nodes of the network. This is also simply known 
as reproductive number and is denoted by R0. The essential 
condition for an epidemic to occur is that the number of 

infected nodes should increase i.e.  .0>
dt
dI  

  We get the following equation for the changes of infected 
nodes over time from system (1) as follows: 

  
.ISI

dt
dI

e αβ −=                                                (1.1) 

     By applying the above condition for an epidemic to occur 
on the above mentioned equation (1.1) we get 
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The above condition is satisfied when 10 >=
α
βR , because 

the transmissions to infectious nodes are greater than the 
transmission to quarantine node. Similarly from the system 
(2) we have the following equation 
                                 

.)( eeee
e IbIIS
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     By applying the condition for an epidemic to occur on 
the above mentioned equation (2.1) we get, 
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IV. STABILITY OF THE SYSTEM 
 

 In this section we discuss the local stability at bots free 
equilibrium as well as at endemic equilibrium. 
 
Theorem 1. The malware free equilibrium E1 of system (3) 
is locally asymptotically stable in U if 10 <eR  and is 
unstable if 10 >eR . 
 
Proof. Linearizing system (3) around the malware free 
equilibrium point E1 ≡ (1, 0, 0), we obtain the following 
Jacobian matrix 


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     To examine the local stability of the equilibria of system 
(3), for its Jacobian matrix JE1, we need to find out its 
eigenvalue. The characteristic equation for the above matrix 
(JE1) is given as follows: 
 

.0)))()(()(( =−−−−−++− λαλσλµαβ b  
 

     Hence the characteristic roots are 
.,),( 321 αλσλµαβλ −=−=++−= b   As we know 
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that, σ and α are always positive, so the second (λ2) and third 
(λ3) Eigen values are negative.    
Let us assume that the first Eigen value (λ1) is also negative, 
i.e. 0)( <++− µαβ b , which is equivalent to 10 <eR  
and that can be proved as follows: 
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b

b
b
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     Hence our assumption is true, that is the first Eigen value 
is also negative. Thus all the Eigen values of the Jacobian 
Matrix JE1 at the equilibrium )0,0,1(1 ≡E  are negative, and 
hence the malware free equilibrium is locally asymptotically 
stable, if   10 <eR . On the other hand, 
if )( µαβ ++> b , then the first Eigen value (λ1) is 
positive, i.e.  

 

         

 

 

 

 Hence the equilibrium point E1 ≡ (1, 0, 0) becomes 
unstable, if 10 >eR . 
Theorem 2.The endemic equilibrium E2 of system (3) is 
locally asymptotically stable in U, if 10 >eR . 
Proof. Following the same way as above Theorem 1, the 
system (3) is linearized at the endemic equilibrium point 
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     The characteristic equation for the above matrix (JE2) is 
given as follows: 
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     One of the Eigen values of the Jacobian Matrix JE2 at the 
equilibrium ),,( ***

2 eIISE ≡ is found as follows: 
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 Let us assume that 01 <λ , i.e. 
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        That is,  .10 >eR  
     Hence the above assumption is true, i.e.; the first Eigen 
value )(2 *

1 µαββλ ++−+−= bIe is negative. The 
other two Eigen values (λ2, λ3) will be the roots of   
 

0)))()(()(2( *** =++++−++−+− eee IIbI σβλαλσβλµαββ  
 
, which is the characteristic equation of JE2. Since the sum of 
those two roots (λ2, λ3) is negative and the product of the 
roots is positive, therefore suggesting that both of its roots λ2 
and λ3 are negative. So, all the three Eigen values of JE2 are 
negative when 10 >eR  . Hence the endemic equilibrium E2 
is locally asymptotically stable, if 10 >eR . 

 
V. SIMULATION AND DISCUSSION 

     
     In this section we will show the result of numerical 
simulations using MATLAB to support the dynamism of our 
formulated model. 
 
A. Stability at Bots Free Equilibrium 
  The dynamic behavior of the entire population of system 
(3) is examined through simulation and the result is 
displayed in fig.2. The simulation is done for three different 
initial conditions, (S, I, Ie) ≡ ((0.3,0.5,0.2), (0.5,0.3,0.2), 
(0.7,0.2,0.1)) and we get the resultant data about the number 
of computer in different classes for all of the above three 
conditions as follows, (S, I, Ie) ≡ ((1.000,0.000,0.000), 
(1.000,0.000,0.000), (1.000,0.000,0.000)), i.e., final states are 
same for all the conditions and there are no infectious nodes 
present in the system when R0e < 1. At this point the system 
is stable because all the bots are wiped out from the system 
and hence our proposed model is found to be asymptotically 
stable at R0e < 1. 

.1

1

)(

0 >⇒

>
++

⇒

++>

eR
b

b

µα
β

µαβ



Biswarup Samanta et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,387-392 

© 2015-19, IJARCS All Rights Reserved                     391 

                                 

 
Fig. 2 Local stability for bots free equilibrium of system equation (3), when 

10 <eR  (when, β=0.012; α=0.010; b=0.020; μ=0.010). 

    
 
 
B. Stability at Endemic Equilibrium 
 
 The stability of endemic equilibrium point is shown in fig. 3 
for three different initial conditions same as fig. 2. Here 
also, we get the unique final states for all the given 
conditions as follows: (S, I, Ie) ≡ ((0.0100, 0.2475, 0.9250), 
(0.0100, 0.2475, 0.9250), (0.0100, 0.2475, 0.9250)). Hence 
the system is stable at this point, though the bots exists in 
the system. It is also found from the fig.3 that the system is 
asymptotically stable at this point when R0e > 1. 
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Fig. 3 Local stability for endemic equilibrium of system equation (3), when 

10 >eR  (when, β=0.800; α=0.030; b=0.020; μ=0.010)
 

           
C. Bots Free Equilibrium for System (1) & (2) 
 
     To observe the effect of increase in β on the dynamisms 
of the classes of nodes in system (1) & (2), we simulate the 
models using two different values of β (0.12, 0.92) for a 
given initial point (S, I, Q, Se, Ie) ≡ (0.4, 0.2, 0.1, 0.2, 0.1) 
and the given value of (σ, α, b, μ) ≡ (0.01, 0.03, 0.02, 0.01) 
and we get two different set of values of (S, I, Q, Se, Ie) ≡ 
((0.1667, 0.1333, 0.4000, 0.5000, 0.2000) and (0.0149, 
0.0173, 0.5138, 0.0652, 0.03739)).  
     From our resultant data we can say that our proposed 
system become stable at R0 > 1 due to the increase of 
quarantine nodes from Q1 to Q2, where Q2 > Q1, as β is 
increased from 0.12 to 0.92. It is also observed from fig.4, 

that the system is asymptotically stable at R0 > 1, but bots 
till exists in the system. 
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Fig. 4  Effect of increasing β on system dynamics at R0 > 1. 

 
 
 
D. Dynamics of Infectious-Internal (I) nodes while 
changing the value of β 
 
Fig.5. shows the result of simulation for the evolution of I 
over time at initial point (S, I, Ie) ≡ (0.7, 0.2, 0.1). We get 
the following five sets of values of (S, I, Ie) ≡ ((0.0968, 
0.2258, 0.5385), (0.0857, 0.2268, 0.5714), (0.0769, 0.2308, 
0.6000), (0.0698, 0.2326, 0.6250), (0.0638, 0.2340, 
0.6471)), for five different values of β = (0.13, 0.14, 0.15, 
0.16, 0.17) and fixed value of σ = 0.01, α = b, μ = 0.01. It is 
found from fig. 5. , that the number of bots increases as β 
increases over time but the system becomes stable after a 
certain point of time and it proves that the endemic 
equilibrium is asymptotically stable at R0e > 1. 
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Fig. 5 Evolution of I over time, while β increases at R0e > 1; (β = 
0.13/0.14/0.15/0.16/0.17, σ = 0.01, α = b, μ = 0.01). 

 

E. I VS Q by changing the values of β and α 

     The dynamisms of I vs. Q while changing the values of β 
and α to satisfy the following two conditions, i.e. R0e ≤  1 
and R0e  > 1, are shown in fig. 6 and the resultant data of the 
simulation are presented in Table 1. 
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Fig. 6 Dynamics of I Vs Q when R0e  > 1 and  R0e ≤  1 
 
             
      It is found from the following Table 1, that there will be 
no bots in the system when R0e ≤ 1, which is a bots free 
equilibrium state and bots exists when R0e > 1, i.e.; endemic 
equilibrium state. Fig. 6 also shows that the bots free 
equilibrium is asymptotically stable when R0e ≤ 1 and 
endemic equilibrium is also asymptotically stable when R0e 
> 1. 

TABLE 1. RESULT OF “I” vs. “Q” SIMULATION 

σ μ b α β   R0e S I Q Se Ie

0.01 0.01 0.01 0.19 0.1 < 1 0.5073 0 0.0927 0.6999 0

0.01 0.01 0.01 0.15 0.14 < 1 0.4909 0 0.1091 0.6912 0

0.01 0.01 0.01 0.14 0.16 = 1 0.4813 0 0.1187 0.6853 0

0.01 0.01 0.01 0.11 0.18 > 1 0.4497 0.0012 0.1491 0.6619 0.0014

0.01 0.01 0.01 0.09 0.2 > 1 0.3879 0.0099 0.2022 0.6023 0.0123  

 
VI. CONCLUSION 

 In this paper, we have formulated an epidemic model to 
study the dynamics of the spread of bots in an e-commerce 
network through botnet. Categorizing the nodes of the 
networks based on their interface to the Internet, we have 
formulated two sub systems to represent the entire system 
for the propagation of bots. We have observed that if the 
basic reproduction number is less than unity, then the system 
is bots free and the bot free equilibrium is locally 
asymptotically stable. It is also found that when the 
reproduction number is greater than one, the system is also 
stable although bots persist in the system. During the 
analysis of the dynamism of the proposed model it is also 
found that the Infectious-Internal nodes are increased up to a 
certain peak over a period of time, but after a certain point 
of time it stabilizes. And while analyzing the dynamism of 

Infectious nodes over the Quarantine nodes by increasing 
the infectivity contact rate, it is found that  bots can exists in 
the system if R0e > 1, but the system is bots free when R0e ≤  
1. 
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