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Abstract: Knapsack problems have been extensively studied in operations research for last few decades. We review the method of mapping 

geometric knapsack problems into facility location problems. Then it is shown that a wide class of problems in geometric optimization and facility 

location can be represented as geometric knapsack problems. 
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I. INTRODUCTION 

Classical knapsack problems have been extensively 

studied in operations research [42] for last few decades. It has 

also attracted both theorist and practitioners in the field of 

algorithmic research in computer science communities. This 

name is derived from the maximization problem of best 

selection of essentials that can fit into a bag to be carried on a 

tour. Knapsack problem [42] is in the class of combinatorial 

optimization problems and one of its classical version can be 

defined as follows. We are given n  items and a knapsack. 

Each item has weight iw  and W  is the knapsack's 

capacity. If i -th object is placed into the knapsack then a 

profit ip  is earned. The objective is to fill the knapsack 

such that maximum profit is earned. Formally, the problem is 

fomulated as: 
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This classical version is also called the  0 -1 knapsack 

problem. In 0 -1 knapsack problem, each item must either 

be chosen or not chosen. Moreover, it is not allowed to take a 

fractional amount of an item or take an item more than once. 

For the special case ii pw = , the objective is to find 

SS ⊆′  from a set S  of nonnegative integers such that it 

adds up to exactly W . This special case of 0 -1 knapsack 

problem is known as  Subset Sum problem [42]. Both subset 

sum problem and 0 -1 knapsack problem are NP-hard [42]. 

In  fractional knapsack problem [10], it is allowed to take a 

fraction of an item to fill the knapsack. Besides above two 

versions, Martello and Toth [42] also considered  bounded 

and  unbounded knapsack problem. The bounded knapsack 

problem restricts the number jx  of copies of each kind of 

item to a maximum integer value jb . For unbounded 

knapsack problem, there is no restriction on the number of 

copies of each kind of item. Since our area of interest is 

related to 0 -1 knapsack problem so from now on, we will 

not consider  fractional knapsack problem. Generally, a 

classical 0 - 1  knapsack problem is defined with one 

knapsack. This version is also known as 0 - 1   single 

knapsack problem. Sometimes, it is allowed to have more 

than one knapsack and problem is referred as 0 -1  multiple 

knapsack problem. In this discussion, the term multiple 

knapsack problem means 0 -1 multiple knapsack problem. 

Martello and Toth [42] define multiple knapsack problem in 

the following ways. Given a set of n  items and m  

knapsacks ( nm ≤ ) with the information of profit jp  and 

weight jw  of j -th item, and capacity ic  of i -th 

knapsack, the objective is to select m  disjoint subsets of 

items so that the total profit of the selected items is 

maximized, and each subset can be assigned to a different 

knapsack whose capacity is no less than the total weight of 

the items in the subset. Formally,   
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For 1=m , multiple knapsack problem reduces to 0 -1 

single knapsack problem. Different versions of a knapsack 

problem have been studied extensively in last few decades. In 

this discussion, we concentrate on various geometric 
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optimization problems related to a classical knapsack 

problem.  

II. CLASSICAL KNAPSACK TO EOMETRICAL 

KNAPSACK: A MAPPING 

Arkin and et al. [3] mapped classical knapsack problems 

into a new class of   geometric knapsack problems. For their 

[3] purposes, a knapsack is a simple closed curve, its  

capacity is its perimeter or area and item may be point, 

polygon, line segment etc. In classical knapsack problem, the 

selection of an item depends upon its weight and capacity. 

But in geometrical knapsack problem, the selection of an 

item depends not only upon its weight and capacity but also 

on the positions of other items. This geometric feature leads 

to a new direction in solving such problems with the tools in 

computational geometry. 

In this survey, we study on some types of geometric 

multiple knapsack problem where the knapsack is a 

rectangular object, its capacity is its size, the item to be 

placed within knapsack is a point with arbitrary weight, the 

number of knapsack may be more than one but each of them 

have same capacity. There are many variations in this 

problem. For example, the rectangular objects may be axis 

parallel or are allowed to rotate but must remain parallel to 

each other or allowed to rotate independently. 

In other variations, capacity of the knapsack can be 

defined by the area of the rectangular object instead of its 

size. This problem is somewhat more difficult as we can 

generate infinite number of rectangular objects of different 

sizes having same area. Here, it should be mentioned that 

positions of the items are fixed and recall that items are points 

in two dimensional plane with arbitrary weights. Our 

objective is to pack the knapsacks so that total weight of the 

points packed is maximized. In other words, find a placement 

of the knapsacks such that the total weight of the points 

covered or enclosed by the knapsacks is maximized. 

Therefore, some covering location problems in facility 

location [18], can be seen as geometrical multiple knapsack 

problem. 

In the next section, we will briefly overview the existing 

literature on geometric multiple knapsack problem and some 

related problems which can be seen as geometric multiple 

knapsack problem.  

A. First Work 

Although a lot of works on geometric version of classical 

knapsack problem were done in last few decades, Arkin and 

et al. [3] first posed these problems with title geometric 

knapsack problem. 

In particular, they considered the following  fence 

enclosure problem. Given a set S  of items in the plane, 

with the i -th item having a given value, iv , fence enclosure 

problem wishes to construct one or more fences that encloses 

some or all of the items obeying capacity constraints and/or 

costs associated with the fences such that ``net profit'' is 

maximized. The net profit is defined [3] to be the sum of the 

values of the items enclosed  minus the cost (if any) of the 

fence used. They [3] solved many different problems in this 

general class, depending on item type, values of iv , length of 

the fence or area enclosed by the fence. For example, item 

may be point, iv  may be unrestricted in sign and upper 

bound +∞≤L  of the length of fence is available. A 

pseudopolynomial-time algorithm was proposed to solve 

fence enclosure problem when each iv  has integral value. 

At the time of developing this pseudopolynomial-time 

algorithm, they proposed an efficient solution to find the 

smallest perimeter polygon that encloses k  points from a 

set S  of n  points. Their solution requires )( 3
knO  time 

and )( 2
knO  space. This solution can also compute 

smallest area convex polygon enclosing k  points within 

same time and space complexities. These k -enclosure 

problems can be seen as geometric single knapsack problem. 

For these k -enclosure problems, knapsack is a convex 

polygon, its capacity is defined by those k  points and item 

is a point with unit weight. Recall that, in this case, the net 

profit is k   minus the cost of enclosure. Therefore, to 

maximize the net profit, the knapsack of smallest parameter ( 

respectively area) is required.  

B. k -enclosure and Geometrical Knapsack: A Mapping 

k -enclosure problems of many variations involving a 

point set },,,{= 21 npppP �  have been extensively 

studied in computational geometry [8]. Efrat and et al. [24, 

47] studied the problem of computing smallest k -enclosing 

circle and k -enclosing homothetic copy of a given convex 

polygon. Eppstein and Erickson [23] studied a number of 

extensions including finding subsets of size k  from the 

given set P  that minimizes area, perimeter, diameter, and 

circumradius. Problems of computing k -enclosing 

rectangles and squares are also studied [1, 19, 17, 23, 57] 

extensively. In contrast with minimum k -enclosing 

problem, Eppstein and et al. [25] studied the maximum area 

or perimeter enclosure whose vertices come from the given 

set S  of n  weighted points. For their problem, the 

enclosure is convex k -gon or empty convex k -gon or 

convex polygon that contains exactly k  points from S . An 

)( 3
knO  time and )( 2

knO  space algorithm was proposed 

to solve these problems. Boyce and et al. [6] considered the 

problem of locating maximum perimeter/area k -gon whose 

vertices come from a given set S  of n  points and 

proposed an algorithm that runs in )log( nnknO +  time 

and )(nO  space.  

C. Covering Location Problem and Geometrical napsack: 

A Mapping 

In particular, for nk = , the motives of k -enclosure 

problem and covering location problem in facility location 

[18] are same. The set covering location problem (LSCP) 

[18] is an example of classical covering location problem 

[18] that can be viewed as enclosure problem. This problem 

computes the locations of least number of facilities such that 

each of demand node has at least one facility sited at a node 

within a specified maximum distance. Problems of 

computing smallest enclosing circle [51], triangle [12, 38, 

50], square and rectangle [58] are well known. In facility 

location, the problem of finding smallest enclosing circle is 



Priya Ranjan Sinha Mahapatra, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,331-335 

© 2010, IJARCS All Rights Reserved   333 

referred as 1-center problem [61]. 1-center problem and its 

different  constraint versions are well studied [7, 32, 53, 39]. 

The problem of finding the smallest enclosing convex 

polygon is the famous convex hull problem. Another 

important variations of enclosure problem are Euclidean and 

Rectilinear p -center and p -piercing problems. Megiddo 

and Supowit  [48] have shown that both the above problems 

are NP-complete. Each of the problem stated above is an 

optimization problem that covers a point set P  by a 

geometrical object. All these k -enclosure problems are also 

known as  single k -enclosure problem or  full covering 

problem. 

A lot of work has been done when  two geometrical 

objects are used to cover a set P  on n  points in a plane. 

Considering geometrical objects as squares, the problem is 

called  square 2-center problem [35]. In discrete version of 

this problem, the centers of the geometrical objects are points 

of P , whereas for non-discrete case, there is no restriction 

on the placement of geometrical objects. More results on 

related problems are available in [35, 36, 37, 4, 54, 55, 34]. 

Katz and et al. [35] studied discrete square 2-center problem 

with the area of the larger square is minimum for three cases. 

First they considered the squares as isothetic and computed 

them in )log(
2
nnO  and )(nO  space. In case, squares 

are allowed to rotate but remain parallel, their algorithm to 

compute these two squares runs in )log(
42
nnO  time and 

uses )( 2
nO  space. Finally, each square is allowed to rotate 

independently and proposed an algorithm that runs in 

)log(
23
nnO  time and )( 2nO  space. 

Bespamyatnikh and Segal [9] solved the problem of 

covering a set S  of n  points in d -dimensional space, 

2≥d , by two axis-parallel boxes such that the measure of 

the largest box is minimized where measure is a monotone 

function of the box. They proposed a simple algorithm to find 

boxes that runs in )log( 1−
+

dnnnO  time and )(nO  

space. Recently, Saha and Das [55] studied the problem of 

locating two parallel rectangles in arbitrary orientation to 

cover a set of n  points in a two dimensional plane, such that 

area of the larger rectangle is minimum. They proposed an 

algorithm to solve the problem that runs in )( 3nO  time 

using )( 2
nO  space. 

If we ignore the cost of enclosing and consider the 

knapsack as a rectangular object of fixed size or a circular 

object with fixed radius then our objective is to fill the 

knapsack in such a way that total weight of the packed items 

is maximized. In other words, our objective is to locate 

knapsacks those maximize the sum of the weights of points 

enclosed. Therefore, maximum covering location problem  

[52] can also seen as geometrical multiple knapsack problem. 

For facility location problem having limited number 

facilities, maximum covering location model may not 

provide service to each client due to high recurring cost or 

installation cost that requires for large number of facilities. 

D. MCLP and Geometrical Knapsack: A Mapping 

Alternatively, limited number of facilities are installed to 

address maximum demand. In this formulation, the condition 

for addressing the total demand is relaxed and the objective is 

to locate p  facilities such that maximum demand can be 

addressed, for a given covering distance. Maximum Covering 

Location Problem (MCLP) was originally stated and solved 

by Chruch and ReVelle, [14]. They proposed three 

approaches to solve the problem; dubbed greedy adding, 

greedy adding with substitution and linear programming. 

Mauricio and Resende [45] also proposed a greedy 

randomized adaptive search procedure to facilitate maximum 

clients, though not necessarily optimum. Besides above 

methods, several heuristic approaches [49, 30, 2] were 

developed to solve maximum covering location problem. 

The formulation for planar maximum covering 

problems, where facilities can be placed anywhere on the 

plane, have also been studied by several authors [33, 15, 11, 

43, 46, 48, 44]. For the Euclidean distance measure, 

candidate points would be the points of intersection of circles 

drawn around the demand points. Similarly, for rectilinear 

distances, the candidate facility locations would be the points 

of intersection of diamond shaped boundaries around demand 

points [11]. In [46], Maherez and et al. developed an 

algorithm for a facility that is ``somewhat desirable" and 

named it ``maximin-minimax" facility location problem. 

Their method computes the set of intersection points of any 

two lines forming the equi-rectilinear distances from the 

demand points. The techniques used in [11, 43, 48, 46] and in 

the standard location problem models discussed in books on 

location theory [27, 28, 40] are based on equidistance shapes. 

Ventura and Dung [59] studied parts inspection with 

rectangular and square shapes. Their technique used a 

Euclidean least-square methods to determine the optimal 

parameters of the straight lines defining the edged of the part 

being inspected. 

A closely related problem is to locate one or more 

convex objects to maximize the size k  ( || P≤ ) of the 

subset covered. These so called problems of maximum 

covering by convex objects (squares, rectangles, 

parallelograms, convex polygon, circles) have also received 

attention of many researchers. Korte and Lovasz [41] studied 

the following problem. Given a set of n  points with 

arbitrary weight and a polygon of fixed size, find a placement 

of the polygon that maximizes the sum of the weights of 

enclosed points. They proposed a dynamic programming 

algorithm that runs in )( 5nO  time. Barequet and et al. [5] 

studied convex polygon translation to maximize point 

containment and proposed an algorithm to cover maximum 

number of points (i.e k ) from a planar point set P  by a 

given convex polygon with m  vertices in O(

mmknk +)(log ) time using O( nm + ) space. The work 

of Barequet and et al. [5] was extended by Dickerson and 

Scharstein [21] for the case of both translation and rotation of 

polygon shapes. In both [5] and [21] only one polygon shape 

was considered for maximum containment of points. The 

complexity of covering in the plane by squares or rectangles 

was discussed by Fowler and et al. [26]. Younies and 

Wesolowsky [60] introduced a zero-one mixed integer 

formulation for maximum covering problem where point set 

was covered by inclined parallelograms in a plane. 

Alternatively, Drezner and Wesolowsky [20] solved for the 

minimum weight containment in a circle or rectangle. They 

introduced a mixed integer formulation to solve for the case 

of axis parallel rectangle. Katz and et al. [37] also studied the 
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minsum coverage problem to place undesirable facility 

within an isothetic rectangle of fixed size. They proposed an 

algorithm that runs in )log( nnO  time and )(nO  space. 

In the context of bichromatic planar point set, Diaz-Banez 

and et al. [22] proposed algorithms for maximal covering by 

two disjoint isothetic unit squares and circles in O(
2

n ) and 

O( nn log3
) time respectively. They later improved the 

complexities to O( nn log ) and O( nn
28/3 log ) time 

respectively [16]. Some more results on related problems are 

available in Hale and Moberg [31], Serra and Marianov [56], 

Galvao [29] and Chung [13]. 
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