
��������	�
����	�������������

��� ��������!�������

�"!"�� #�$�$"��

����%���&��������'''��(��������

© 2010, IJARCS All Rights Reserved 314

ISSN No. 0976-5697

A study on FP Tree Algorithms for Association Rules

A. Naresh* Prof Geetha Mary. A
School of Computing Science and Engineering, School of Computing Science and Engineering,

 VIT University, VIT University,

Vellore-632014, Vellore-632014,

 Tamilnadu, INDIA Tamilnadu, INDIA

 a.naresh503@yahoo.com erpgeetha@gmail.com

Abstract: A study on the performance of the FP growth method shows that it is efficient and scalable for mining both long and short frequent

patterns, and is about an order of magnitude faster than Apriori algorithm. The frequent pattern tree structure, which is an extended prefix tree

structure for storing compressed, crucial information about frequent pattern and develop an efficient FP-tree, based mining method. Efficiency of

mining is achieved with three techniques: (1) a large database is compressed into a smaller data structure; FP-tree avoids costly, repeated

database scans, (2) our FP-tree-based mining avoids the costly generation of a large number of candidate sets, and (3) The FP-tree algorithm

avoid repeated scan of database and search database in divide-and-conquer based. We also perform an evaluation study of the hiding algorithms

in order to analyze their time complexity and the impact that they have in the original database.

Keywords: Apriori algorithm, FP-tree algorithm, Frequent Pattern, FP-growth

 I. INTRODUCTION

 Frequent pattern mining is an important part in the
data mining task. It is the fastest and most popular for
finding the frequent item sets in the FP-growth algorithm
[7]. It is based on a prefix tree representation of a given
database called an FP-tree, which can save the considerable
amount of memory for storing the transaction. The main
basic idea of the FP-growth algorithm is the recursive
elimination schema: in the preprocessing step we can
eliminate all the non frequent items from the transaction.
The set of frequent items is sorted and arranged in the order
of descending support count. We can also reduce the
database scan the item sets found in the recursion share the
deleted items as a prefix. Let I be the set of items and D be
the set of transaction, where each transaction T is a set of

items such that T I. for any x I, we say that a

transaction T contains X if X T is called an item set [2].
The count of an itemset X is the number of transactions in D
that contain X. The support of an itemset X is the proportion
of transactions in D that contain X. In order to solve this
problem, we proposed the FP-growth [6]

algorithm based on
FP_tree that used the compressed FP_tree structure to store
the frequent patterns and did not generate candidate sets.
Such as suffix Span [4], Prefix Span [5] based on FP-growth
approach can mine all frequent item set in database. Apriori
employs an iterative approach known as level wise search,
where k –item sets are used to explore (K+1)-item sets [8].
The frequent pattern growth which adopts a divide and
conquers strategy as follows: compress the database
representing frequent items into a frequent pattern tree, or
FP-tree but retain the item set association information, and
then divide such a compressed database into a set of
conditional database (a special kind of projected database),
each associated with one frequent item, and mine each such
database separately.

 II. COMPRATIVE STUDY

The FP-tree stores a single item at each node and
includes additional links to facilitate Preprocessing.
Construction process begins with an initial pass to count
support for the single items [1]. The Efficient fast
algorithms for mining frequent patterns item sets [2] are
crucial for mining association rules and for other data
mining tasks. In this method the frequent item sets have
been implemented using a prefix-tree structure, known as an
FP-tree, for storing compressed information about frequent
item sets. Recently most of the mining frequent patterns
focus on improving the efficiency of frequent item sets
generations [3], but the input output cost of database
scanning has been a bottle-neck problem in data mining.
Many algorithms are recently based on Apriori and FP-tree,
and FP-growth algorithm based on FP-tree is more efficient
than Apriori because the candidates are not generated. First
scan the database only once for generating equivalence
classes of each item. Second, delete the non-frequent items
and rewrite the equivalence classes of the frequent items,
and then construct the FP-tree. It’s made of a root node
labeled as null and child nodes consisting of the item-name,
support and node link. Moreover, database scans are made
only twice [8]. First database scan is done to create frequent
item set and sorted in the order of descending support count
in the header table. Secondly, frequent items are extracted.
Afterwards, sort these items then frequent items are inserted
to the tree.

.

 III. THE APRIORI ALGORITHM

Apriori is an influential algorithm for mining

frequent item sets for Boolean association rules. The name
of the algorithm is based on the fact that the algorithm uses

A. Naresh et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 314-318

© 2010, IJARCS All Rights Reserved 315

prior knowledge of frequent item sets properties. It is an
iterative approach known as a level wise search, where K
item sets are used to explore (K+1) item sets. First the set of
frequent 1 item sets is found this is denoted as L1. L1 is used
to find L2. The set of frequent 2 item sets which is used to
find L3. So on more frequent K item sets can be found.
Finding of each Lk requires one full scan of the database.
Improving the efficiency of the level wise generation of
frequent item sets an important property called the Apriori
property used to reduce search space. If an item set I does
not satisfy the minimum support threshold, min_sup; then I
is not frequent, p (I) < min_sup. If an item A is added to the
item set I, then the resulting item set (IUA), cant occur more
therefore IUA is not frequent with P(IUA)< min_sup.
Apriori property used in the algorithm is a two step process
is followed consist of join and prune action. In join
component LK-1 is joined with Lk-1 to generate potential
candidates. Prune component apriori property to remove
candidates that have a subset that is not frequent.

Table1: an example the transaction database and min_sup=2

The Apriori heuristic can prune candidates dramatically.
Based on this property, a fast frequent item set mining
algorithm, called Apriori, was developed. It is illustration in
the following example.
Example 1 (Apriori) let’s give an example with five
transactions DB and support threshold is set to 3 in Table 1.
The process of Apriori Algorithm to find the complete
frequent patterns in DB as follows, Figure 1 illustrates this
process.
1. Scan DB once to generate length-1 frequent item sets,
labeled as F1. In this example, they are {1, 2, 3, 5}.
2. Generate the set of length-2 candidates, denoted as C2
from F1.
3. Scan DB once more to count the support of each item set
in C2. All item sets that turn out to be frequent in C2 are
inserted into F2. In this example, F2 contains {(1; 2); (1; 3);
(1; 5); (2; 3); (2; 5); (3; 5)}.
4. Then, we form the set of length-3 candidates from F2 and
frequent 3-itemsets
F3 from C3. The similar process goes on until no candidates
can be derived or no candidate is frequent.
Apriori performs a BFS by iteratively obtaining candidate
item sets of size (k+1) from frequent item sets of size k, and
check their corresponding occurrence frequencies in the
database. Many variants that improve Apriori have been
proposed by reducing the number of candidates further, the
number of transactions to be scanned, or the number of
database scans, the process is still expensive as it is tedious
to repeatedly scan the database and check a large set of
candidates by pattern matching, which is particularly true if
a long pattern exists. In short, the bottleneck for Apriori-like
methods is the candidate-generation-and-test operation.

Figure.1 The Apriori algorithm - example

Figure.1 The Apriori algorithm - example

IV. FREQUENT-PATTERN TREE: DESIGN AND

CONSTRUCTION

Let I ={a,b,c……s} be a set of items, and a
transaction database DB={100,200…..600}, where Ti (i =
[1 . . . n]) is a transaction which contains a set of items in I .
The support (or occurrence frequency) of a pattern A, where
A is a set of items, is the number of transactions containing
A in DB. A pattern A is frequent if A’s support is no less
than a predefined minimum support threshold, �. Given a
transaction database DB and a minimum support threshold
�, the problem of finding the complete set of frequent
patterns is called the frequent-pattern mining problem [9].

A. Frequent-pattern tree

To design a compact data structure for efficient
frequent-pattern mining, let’s first examine an example.
Example.2: Let the transaction database, DB, be the first
two columns of Table 2, and the Minimum support
threshold be 3 (i.e., � = 3).
A compact data structure can be designed based on the
following observations:
1. The frequent items will play a role in the frequent-pattern
mining, it is necessary to perform one scan of transaction
database DB to identify the set of frequent items.
2. The set of frequent items of each transaction can be stored
in some compact structure, it may need to repeatedly scan
the database and check a large set of candidates by pattern
matching.
3. If multiple transactions share a set of frequent items is
sorted in the order of descending support count.

.

TID Item

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

A. Naresh et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 314-318

© 2010, IJARCS All Rights Reserved 316

4. If two transactions share a common prefix, according to
some sorted order of frequent items, the shared parts can be
merged using one prefix structure as long as the count is
registered properly. If the frequent items are sorted in their
frequency descending order, there are better chances that
more prefix strings can be shared.
First, scan of the database is the same as Apriori, which
derives a set of frequent items, {(f: 4), (c: 4), (a: 3), (b: 3),
(m: 3), (p: 3)} (the number after “:” indicates the support),
and there support counts (frequency). The set of frequent
items is sorted in the order of descending support count.
Second, create the root of the tree, labeled with “null”. Scan
database D a second time. The items in each transaction are
processed in L order and a branch is created for each
transaction.
1. The scan of the first transaction, “T100: f, a, c, d, g, i, m,
p”. Which contains five items (f, c, a, m, p) in L order.
2. For the second transaction, T200, contains the items a, b,
c, f, l, m, o in L order, which would result in branch since its
frequent item list {f, c, a, b, m} shares a common prefix {f,
c, a} with the existing path {f, c, a, m, p}, the count of each
node along the prefix is incremented by 1, and one new
node (b:1) is created and linked as a child of (a:2) and
another new node (m:1) is created and linked as the child of
(b:1).
3. For the third transaction, since its frequent item list { f, b}
shares only the node { f } with the f -prefix sub tree, f ’s
count is incremented by 1, and a new node (b:1) is created
and linked as a child of (f :3).
4. The scan of the fourth transaction leads to the
construction of the second branch of the tree, {(c: 1), (b: 1),
(p: 1)}.
5. For the last transaction, since its frequent item list {f, c, a,
m, p} is identical to the path is shared with the count of each
node along the path incremented by 1.

To facilitate tree traversal, an item header table is built in
which each item points to its first occurrence in the tree via
a chain node-link. After scanning all the transactions, the
tree, together with the associated node-links, are shown in
figure.2:

Figure.2 FP-tree the minimum support= 3

Figure.3 FP-tree to Conditional Pattern Base

• Starting at the frequent header table in the FP-tree.

• Traverse the FP-tree by following the link of each

frequent item.

• Accumulate all of transformed prefix paths of that

item to form a conditional pattern base.

• Construct the FP-tree for the frequent items of the

pattern base.

Algorithm 2 (FP-tree construction):

1. Scan the transaction database DB once. Collect, the set of
frequent items F, and their supports. Sort F in support
descending order as L, the list of frequent items.
2. Create the root of an FP-tree, and label it as “null”. For
each transaction Trans in DB do the following. Select the
frequent items in Transaction according to the order of L.
Let the sorted frequent-item list in Trans be [p | P], where p
is the first element and P is the remaining list.
3. The function insert tree ([p | P], T) is performed as
follows. If T has a child N such that N.item-name = p.item-
name, then increment N’s count by 1; else create a new node
N, and let its count initialized to 1, its parent link be linked
to T, and its node-link to the nodes with the same item-name
via the node-link structure. If P is nonempty, call insert tree
(P, N) recursively.

A. Naresh et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 314-318

© 2010, IJARCS All Rights Reserved 317

V. ANALYSIS

The efficient data structure for mining frequent

patterns is FP tree [10], [11] have been used and its
fluctuations used for “iceberg” data computation [12]. The
most important work is a novel technique that uses a special
data structure, called an FP array, and it is used to improve
the performance of the algorithms operating on FP-trees.
The FP array technique drastically speeds up the FP-growth
method on sparse data sets and it now scan each FP-tree
only once for each recursive call proceed from it. This
technique is then applied to the other algorithm FP max for
mining maximal frequent item sets in the data base. In FP
max the technique for checking if a frequent item set is
maximal is also introduced, for which a variant of the FP-
tree structure MFI-tree, is used. For mining closed frequent
item sets, the design of an algorithm FP close which uses
another variant of the FP-tree structure, called a CFI-tree,
for Checking the closeness of frequent item sets [13].

VI TREE PARTITION ALGORITHM

A. Master/Slave Model

In the multi-thread environments, we make one

thread as the master thread, and the remaining threads as
slave threads [14]. The master thread’s task is for to load
each line of transaction from the database and distribute it to
each slave threads. Each slave thread has its own transaction
queue. It gets a transaction from the queue each time the
master thread put one transaction into it, and disposes the
transaction to build the tree. Thus the master thread is a
producer, which produces transactions for each slave thread
to consume. This model makes it possible for master thread
to do some preliminary measures of the transaction before
receiving at the slave thread. According to the results of the
preliminary measures, the master thread can also decide to
which slave thread the transaction should be sent.

B. Content based tree partition

The most important point is to partition the tree

equally so that each thread can get equal workload and equal
amount of transactions to process. In a database the data
contains 8 items: A, B, C…., H where A, B and C are the
first three most frequent items. Assume the partitioning of
all transactions according to the content of first N most
frequent items Here we set N = 3 for simplicity and the
transactions are partitioned into 2^3 = 8 chunks according to
items “A”, “B” and “C” See Table 3 for an example of the
distribution chunks. e.g. 110 means the chunk contain
transactions all have items “A” and “B”, but not “C”. If
there are two threads available, i.e. need to group the chunks
into two groups, a heuristic search algorithm can be
employed to group the 8 chunks into two groups, and make
each group contain equal number of transactions. The result
can be {111, 110, 101, 011} and {100, 101, 001, 000}, each
group contains 40 transactions. Two sub-branches circled
with red dashed line are the group assigned to thread 1, and
two other sub-branches circled with blue solid line are the
group assigned to thread 2.

Figure.5 Content based tree partition and grouping

Table 3: Transaction Distribution by Contents

Advantage of FP-growth Algorithm

The major advantages of FP-Growth algorithm is,

• Uses compact data structure

• Eliminates repeated database scan
FP-growth is a faster than other association mining
algorithms and is also faster than tree- Researching. The
algorithm reduces the total number of candidate item sets by
producing a compressed version of the database in terms of
an FP-tree.
The algorithm consists of two steps:

• Compresses a large database into a compact,
Frequent-Pattern tree (FP-tree) structure

• Develop an efficient, frequent pattern mining
method (FP-growth)

 A divide-and-conquer methodology: decompose mining
tasks larger ones to smaller ones and
avoid candidate generation.

Advantage of FP-tree Structure

The most significant advantage of the FP-tree structure is
the algorithm scans the tree only twice.

� Completeness:
- The FP-tree contains all the information related to
frequent pattern mining.

� Compactness:
 – The size of the tree is bounded by the occurrences of
frequent items.

A. Naresh et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 314-318

© 2010, IJARCS All Rights Reserved 318

 – The height of the tree is bounded by the maximum
number of items in a transaction.
Three major steps performed are starting the processing
from the end of list L:

� Construct conditional pattern base for each item in
the header table.

� Construct conditional FP-tree from each
conditional pattern base.

� Recursively mine conditional FP-trees and grow
frequent patterns obtained. If the conditional FP-
tree contains a single path, simply enumerate all the
patterns.

VII. CONCLUSION

In a novel data structure, frequent pattern tree (FP-

tree), for storing and compressed of crucial information
about frequent patterns, and developed a pattern growth
method, for efficient mining of frequent patterns in large
databases. There are several advantages of FP-growth over
other approaches: (1) it may need to repeatedly scan the
database and check a large set of candidates by pattern
matching. (2) It applies a pattern growth method which
avoids costly candidate generation. The major operations of
mining are count accumulation and prefix path count
adjustment, which are usually much less costly than
candidate generation and pattern matching operations
performed in most Apriori algorithms. (3) It applies a
partitioning-based divide-and-conquer method which
dramatically reduces the size of the subsequent conditional
pattern bases and conditional FP-tree. Several other
optimization techniques, including direct pattern generation
for single tree-path and employing the least frequent events
as suffix, also contribute to the efficiency of the method.

VIII.REFERENCES

[1] Christian Borgelt,” An Implementation Of the FP

growth Algorithm”, ACM Proceedings, OSDM’05-
Knowledge Discovery and Data Mining, 2005

[2] Go Sta Grahne, and Jianfeizhu,”Fast Algorithms for
Frequent Item set Mining using FP-Trees” Transactions
On Knowledge and Data Engineering, VOL. 17,
No10,October 2005.

[3] Jiao-Minliu, Shengguo, Zhen- Zhou Wang,” A Fast
Algorithm for Constructing FP-Tree” Proceedings of
The Sixth International Conference on Machine

Learning and Cybernetics,Hong Kong, 19-22 August
2007.

[4] J.Han, J.Pei, and B.Mortazavi, “Free-Span: Frequent
Pattern-projected Sequential pattern Mining”, of the 6th
ACM Sigkd Int.Conf. on Knowledge Discovery and
Data Mining, Boston, New York, ACM Press, pp. 355-
359, 2000.

[5] J.Pei, J.Han, and H.Pinto, “Prefix Span: Mining
Sequential Patterns Efficiently by Prefix-projected
Pattern Growth”, of the 17th Int. Conf. on Data
Engineering, Heidelberg, Germany, Los Alamitos, CA,
Computer Society Press, pp. 215-224, 2001.

[6] J.Han, J. Pen, and Y.Yin, “Mining Frequent Patterns
without Candidate Generation: a Frequent-Pattern tree
Approach”, Proc. ACM-SIMOD Int., pp.53-87, 2004.

[7] J.Han, H.Pei, and Y.Yin,” Mining Frequent
Patternswithout Candidate Generation” In: Proc. Conf.
on theManagement of Data. ACM Press, New York,
NY,USA 2000.

 [8] Jiayi Zhou, Kun-Ming Yu,” Balanced Tidset-based
Parallel FP-tree Algorithm for the Frequent Pattern
Mining on Grid System”, Fourth International
Conference Semantics, Knowledge and Grid, IEEE
Computer Society, 2008, Pages 103-108.

[9] Jia Weihan, “Mining Frequent Patterns without
Candidate Generation: A Frequent-Pattern Tree
Approach” Data Mining and Knowledge Discovery,
Kluwer Academic Publishers. Vol. 8, pp.53–87, 2004.

[10] J.Han, J. Pei, and Y. Yin, “Mining Frequent Patterns
without Candidate Generation,” Proc. ACM-Sigmod
Int.l Conf. Management of Data, pp. 1-12, May 2000.

[11] J. Han, J. Wang, Y. Lu, and P.Tzvetkov, “Mining Top-
K Frequent Closed Patterns without Minimum
Support,” Proc. Int’l Conf. Data Mining, pp. 211-218,
Dec. 2002.

[12] D. Xin, J. Han, X. Li, and B.W. Wah, “Star-Cubing:
Computing Iceberg Cubes by Top down and Bottom-
Up Integration”, VLDB '03 Proceedings of The 29th
international Conference on Very large data bases
Volume 29, pp. 476-487, Sept. 2003.

[13] B. Goethals, and M.J. Zaki, Proc. ICDM Workshop
“Frequent Item set Mining Implementations“CEUR
Workshop Proc., vol. 80, Nov. 2003 Vol-90.

[14] R. Jin, G. Yang, and G. Agrawal, “Shared memory
parallelization of data Mining Algorithms” Techniques,
programming interface, and Performance. Data Eng,
17(1):71–89, 2005.

