
��������	�
����	��
�����������

������
����
�������
��������
���������
������� ��������!�������

�"!"�� #�$�$"��

��
��
%���&������
��'''��(
��������

© 2010, IJARCS All Rights Reserved 418

ISSN No. 0976-5697

FAST: A Fast ASIP Synthesis Technique

Manoj Kumar Jain
Assistant Professor in Computer Science

Mohanlal Sukhadia University,

Udaipur, Rajsthan, India

 manoj@cse.iitd.ernet.in

Abstract: Interest in Application Specific Instruction Set Processors (ASIPs) has increased considerably in recent years. However, one of the

design metrics of embedded systems is the time to market of a product, which includes the design time of an embedded processor, is an

important consideration in the deployment of ASIPs. While the design time of an ASIP is very short compared to an ASIC it is longer than when

using a general purpose processor. There exist a number of tools which expedite this design process, and they could be divided into two: first,

tools that automatically generate HDL descriptions of the processor for both simulation and synthesis; and second, tools that generate instruction

set simulators for the simulation of the hardware models. While the first one is useful to measure the critical path of the design, die area, etc. they

are extremely slow for simulating real world software applications. At the same time, the instruction set simulators are fast for simulating real

world software applications, but they fail to provide information so readily available from the HDL models. The framework presented in this

paper, FAST, addresses this issue by integrating an automatic HDL generator with a well-known instruction set simulator. Therefore, embedded

systems designers who use our FAST framework will have the benefits of both a fast instruction set simulation and fast hardware synthesis at the

same time.

Keywords: Application Specific Instruction Set Processor (ASIP), simulation, synthesis, time to market, instruction set simulator

I. INTRODUCTION

Embedded systems are ubiquitous, and are present in low-

end systems such as wireless handsets, networked sensors, and

smart cards, to high-end systems such as network routers,

gateways, firewalls, and servers. Embedded systems are seen

as application specific equipment and they differ from general

purpose computing machinery since they execute a single

application or a class of applications repeatedly.

The heart of an embedded system is usually implemented

using either general purpose processors, ASICs or a

combination of both. General Purpose Processors (GPPs) are

programmable, but consume more power than ASICs.

Reduced time to market and minimized risk are factors which

favour the use of GPPs in embedded systems. ASICs, on the

other hand, cost a great deal to design and are

nonprogrammable, making upgradability impossible.

However, ASICs have reduced power consumption and are

smaller than GPPs.

Recently a new entrant called the Application Specific

Instruction-set Processor (ASIP) has taken centre stage as an

alternative contender for implementing functionalities in

embedded systems. These are processors with specialized

instructions, selected co-processors, and parameterized caches

applicable only to a particular program or a class of programs.

An ASIP will execute an application for which it was designed

with great efficiency, though they are capable of executing any

other program (usually with reduced efficiency). ASIPs are

programmable, quick to design and consume less power than

GPPs (though more than ASICs). ASIPs in particular are

suited for utilization in embedded systems where

customization allows increased performance, yet reduces

power consumption by not having unnecessary functional

units. Programmability allows the ability to upgrade, and

reduces software design time. Tools and customizable

processors such as ASIPmeister [1], Xtensa [2], LISATek [3],

ARCtangent [4], Jazz [5], Nios [6], and SP5-flex [7] allow fast

creation of ASIPs. The advent of tools to create ASIPs has

greatly enhanced the ability to reduce design turnaround time.

However, there exists a limitation. The tools listed above

except the one presented in [4] will either generate the

hardware description language (HDL) model of the embedded

processor or a model where only Instruction Set Simulation

(ISS) could be performed. The HDL models are good for

precise synthesis and power measurement of the processor, but

fail to provide fast simulation results such as the clock cycle

count of an application that runs on such a model. The ISS

models are good for faster simulation of applications, but fail

to provide synthesis results which are essential in embedded

system design. Even though tools such as the one from

Tensilica [2] try to address this issue, they do not provide the

flexibility (such as accurate power measurement using the

HDL model, full control of the instruction set of the processor,

etc.) expected in other ASIP design tools such as ASIPmeister.

An extensive survey on ASIP design methodologies is

available in [8].

In this paper, we present a framework, named FAST, which

provides both an ISS model for fast simulation and an HDL

description for fast synthesis of an embedded processor during

its design. We make use of ASIPmeister [1], an automatic

processor generation tool for preparing the HDL model and

SimpleScalar tool-set [9] for preparing the ISS model. The

detail of how these are integrated to form the FAST.

The rest of this paper is organised as follows. Section 2

summarizes the previous work related to embedded processor

simulation and synthesis. Section 3 details our framework.

Section 4 explains how our framework incorporates processor

customization and Section 5 discusses a typical experimental

setup of our framework. Finally, Section 6 concludes the

paper.

Manoj Kumar Jain, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,418-421

© 2010, IJARCS All Rights Reserved 419

II. RELATED WORK

With the demand for shorter design turnaround times, many

commercial and research organizations have provided base

processor cores, so that fewer modifications have to be made

on the design to achieve particular performance requirements.

This has led to the emergence of reconfigurable and extensible

processors. Xtensa [2], Jazz [5] and PEAS-III (used by

ASIPmeister) [1] are examples of processor template based

approaches which build ASIPs around base processors.

Xtensa [2] is a configurable and scalable RISC core. It

provides both 24-bit and 16-bit instructions to freely mix at a

fine granularity. The base processor supports 80 base

instructions of the Xtensa Instruction Set Architecture (ISA)

with a 5-stage pipe-line. New functional units and extensible

instructions can be added using the Tensilica Instruction

Extension (TIE) language. Synthesizable code can be obtained

together with the software tools for various architectures

implemented with Xtensa. However, it fails to provide the

flexibility for altering the base processor.

The Jazz Processor [5] permits the modelling and

simulation of a system consisting of multiple processors,

memories and peripherals. Data width, number of registers,

depth of hardware task queue, and addition of custom

functionality are its input parameters. It has a base ISA which

supports addition of extensible instructions to further optimize

the core for specific applications. The Jazz processor has a 2-

stage instruction pipeline, single cycle execution units and

supports interrupts with different priority levels. Users are able

to select between 16-bit or 32-bit data paths. It also has a

broad selection of optional 16-bit or 32-bit DSP execution

units which are fully tested and ready to be included in the

design. However, Jazz is suitable only for VLIW and DSP

architectures.

ASIPmeister [1] is able to capture a target processors

specification using a GUI. A micro-operation level simulation

model and RTL description for logic synthesis can be

generated along with software tool chain. It provides support

for any RISC architecture type and a library of configurable

components. The core produced follows the Harvard style

memory architecture. Even though it provides both the

simulation and the synthesisable models, the simulation model

could only be used with an HDL simulator such as ModelSim

and therefore, real world applications will take hours (if not

days) for simulation. Researchers have proposed extensions to

ASIPmeister, such as the one presented in [10], so that it could

be used as a fully fledged simulation system with system call

support, file handling, etc. However, they failed to solve the

problem of the extended simulation time taken to simulate real

world applications as explained earlier.

The FAST framework we propose here uses similar

techniques to that of [11] to generate the synthesis model of

the processor. However, we propose to use an independent

instruction set simulator which is derived from the

SimpleScalar tool-set [9] for faster simulation of the same

processor.We show how the instruction sets could be altered

(reduced/amended/added) in both the simulation and the

synthesis models of a target processor by taking PISA, the ISA

used in the SimpleScalar tool-set as an example.

Therefore, in summary, the contributions are:

• a framework that performs both fast simulation and

synthesis of an embedded processor model; a fully

flexible and fast ASIP design flow based on our

framework; and,

• a scheme on how an instruction set could be altered to

explore the design space of both the simulation and

synthesisable models.

However, there exist the following limitations:

• Designing the initial models of the processors might

take a longer time (a day or two to a familiar

designer). However, this is a one-time process and the

same model could be used later for fast design

development.

• It is assumed that the compiler tool-set is available as

open source for the instruction set used in the design.

III. THE FAST FRAMEWORK

FAST is a hardware-software co-design framework, where

both the software binary of a target application as well as the

hardware model to run such a binary are designed and

implemented. In this section, we explain the process of

software binary generation a target ISA, and then we describe

the generation of the hardware models, for instruction set

simulation and for synthesis.

A. Software Generation

 SimpleScalar cross compiler (such as sslittle-na-sstrix-gcc)

is used to generate the instruction and the datamemory dump

(we call it the binary) fromthe application program. In the

HDL models, both memories will communicate with the CPU

model to function as a complete processor, executing the

program. Further details on the memory generation can be

found in an earlier publication [10].

 Figure 1 depicts the typical software generation process. A

C/C++ application is compiled to the target binary by using

the SimpleScaler compiler tool-set using a cross compiler.

 As depicted in Figure 1, if necessary, support for new

instructions (to the ISA) is added to the assembler of the

SimpleScalar cross compiler. Given that the cross compiler is

a derivative of the well understood open source GNU/GCC

compiler tool-chain; this task can be performed with relative

ease. When the support for new instructions is available in the

assembler, application programs can be written either in a

higher level language like C with inline assembly (for new

instructions) or in the target assembly language by using the

new instructions.

Figure. 1. The software generation process: Support for new

instructions can be added to the assembler and programs can be

written with either in-lined or added new assembly instructions

Manoj Kumar Jain, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,418-421

© 2010, IJARCS All Rights Reserved 420

 Here, the new instructions will both be designed and

inserted (to the application) manually by the designer. Even

though, this could be considered a limitation of the FAST

framework (as pointed out earlier under limitations), we argue

that it gives better control of the design flow to the designer. If

absolutely necessary, support for such automation can be

established by extending the compiler tool-set.

B. Hardware Generation for Simulation

Figure 2 depicts the generation process of hardware models

in FAST framework. As depicted, FAST framework generates

three hardware models of an ASIP from two input set of

specifications.

All three models depicted as derived in Figure 2 can be

used for simulation of an application program. However, as

these three models vary in the level of detail used for

implementing the hardware, the times taken to perform the

simulation vary significantly. For example, while a typical

embedded system application would take days (if not weeks)

to be simulated using gate level simulation, it can be done in

seconds or minutes using an instruction level simulation.

Therefore, the FAST framework uses the ISS to run

complete application program simulations. Given that these

simulations are cycle accurate, they will be used to count the

number of clock cycles taken to simulate applications. The

number of clock cycles along with the clock period (that is

calculated from the synthesis discussed in the next subsection)

is used to compute the execution time of an application, one of

the main design metrics of any ASIP design.

SimpleSim, the ISS of the SimpleScalar tool-set is used to

derive the ISS for FAST. The modular design of SimpleSim

allows us to add/remove/amend instructions of the target ISA.

As depicted on the right hand side of Figure 2, the machine.def

file of SimpleSim is altered to change the target ISA.

Figure. 2. The generation process of hardware models: On the left

side is the HDL generation (both gate [ASIP - Gate Level Model] and

behavioural [ASIP - Behaviour Model] models) with the help of

ASIPmeister and on the right is the ISS generation for cycle accurate

simulation.

C. Hardware Generation for Synthesis

 An ASIP design tool, ASIPmeister, generates a model in

HDL (both gate level and behaviour models) for a given ISA.

As shown on the left side of Figure 2, to generate a processor

using ASIPmeister, the first step is to create a suitable

description of the processor, including the hardware resources

(such as register file, ALU, divider, etc.) and pipeline stages.

The instructions, their formats and addressing modes and the

tasks to be performed by each instruction at run-time are

defined as micro-operations (RTL operations), where each

pipeline stage of the instruction is coded.

 FAST uses the Portable Instruction Set Architecture (PISA:

as implemented in SimpleScalar tool-set [9]) as its base

processor. However, the base ISA could be of any other RISC

processor. When the processor models (both gate level and

behavioural) are generated, they are integrated with HDL

models of memory modules to complete the ASIP models.

Additional hardware can now be added to the design such as

cache and memory mapped I/O.

IV. CUSTOMIZED ASIPS

When the base models are designed in FAST, they can be

customized in a number of ways either to explore the design

space with different configurations or to add a totally different

domain of tasks (such as instruction changes to perform

security checks [12]) to the models. We discuss such

customizations in this section.

Most of the applications hardly utilize the whole instruction

set of a processor, thus the need for ASIPs. If an application

does not need a specific instruction, it would be quite useful to

turn off that instruction from the processor. This will reduce

the area usage and power consumption, benefiting an

embedded system [10].

ASIPs are famous for ’special instructions’, instructions that

are not available in the base ISA. FAST allows its users to

have their own instructions. Special instructions can be

utilized to add new customized hardware modules to perform

repeated tasks and therefore make the processing faster [12].

V. SIMULATION AND SYNTHESIS SETUP

Figure 3 depicts the simulation and synthesis setup used by

FAST framework. The behavioural model is typically used

during the design stage for debugging and testing of the ASIP

(by performing simulation in ModelSim). The debugging and

testing is performed by running test applications to cover all

the instructions in our target ASIP. The completed gate level

model is used with Synopsys Design Compiler to create the

synthesized version, which is ready to be fabricated. The

software binary is an input to the synthesis model, by which

the memory size of the ASIP can be computed. Synthesis

reports include power consumption, clock period and, area in

gates and cells.

Figure. 3. Simulation and Synthesis: Simulations are performed by

using the SimpleSim ISS and ModelSim. Synthesis is performed by

using Synopsys Design Compiler.

Manoj Kumar Jain, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,418-421

© 2010, IJARCS All Rights Reserved 421

 Simulation is performed with SimpleSim to count the

number of clock cycles (CC) particular software binaries

would take. CC is multiplied by clock period (a metric

computed from the synthesis using Synopsys Design

Compiler) to compute the total execution time of the

application. Comparing the design time of large design

problems with and without the FAST framework is currently

being performed. We propose this as a future work for this

paper.

VI. CONCLUSION

In this paper, we reported FAST, a simulation and synthesis

framework for fast hardware-software co-design of ASIPs.

FAST framework integrates an automatic HDL generator with

a well-known instruction set simulator to support fast

processor development.

VII. REFERENCES

[1] Itoh, M., Higaki, S., Sato, J., Shiomi, A., Takeuchi, Y.,

Kitajima, A., Imai, M.: Proceedings of 2000 International
Conference on Computer Design, pp 430–436 (2000)

[2] Tensilica Inc., Xtensa Processor, http://www.tensilica.com

[3] CoWare Inc., LISATek,
http://www.coware.com/products/

[4] ARC International, ARCtangent, http://www.arc.com

[5] Improv Inc., Jazz DSP, http://www.improvsys.com

[6] Altera Corp., NIOS Processor, http://www.altera.com

[7] 3DSP Corp., ARCtangent, http://www.arc.com

[8] M.K. Jain, M. Balakrishnan, and A. Kumar. ASIP Design
Methodologies: Survey and Issues. In Proceedings of the
IEEE / ACM International Conference on VLSI Design.
(VLSI 2001), pages 76–81, January 2001.

[9] Burger, D., Austin, T.M.: The SimpleScalar tool set,
version 2.0. SIGARCH Computer Architecture News
25(3), 13–25 (1997)

[10] Peddersen, J., Shee, S.L., Janapsatya, A., Parameswaran,
S.: Rapid Embedded Hardware/Software System
Generation. In: Proceedings of the 18th International
Conference on VLSI Design held jointly with 4th
International Conference on Embedded System Design
(VLSID 2005), pp. 111-116 (2005)

[11] Ragel, R.G., Parameswaran, S.: IMPRES: Integrated
Monitoring for Processor REliability and Security. In:
Proceedings of the Design and Automation Conference
2006 (DAC 2006), pp. 502–505. ACM Press, New York
(2006)

[12] Choi, H., Kim, J.-S., Yoon, C.-W., Park, I.-C., Hwang,
S.H., Kyung, C.-M.: Synthesis of application specific
instructions for embedded DSP software. IEEE
Transactions on Computers 8(6), 603–614 (1999)

