ISSN No. 0976-5697

Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

Available Online at www.ijarcs.info

Design Code Clone Detection System uses Optimal and Intelligence Technique based on
Software Engineering

Rakesh Kumar
Principal and Associate Professor
SECG, Gharuan, India

Jasmandeep Kaur
Research (Scholar)
Department of CSE, SECG, Gharuan, India

Sukhjot Kaur
Assistant Professor
Department of CSE, SECG, Gharuan, India

Abstract: Code clones are the main source of cloned software. Now, a day’s redundancy in initial code is called clones or duplicate code caused
by copy and paste, could search consistently using code clone detection software tools. The redundancy could arise also individually, although,
not produced by copy and paste. Recently, it is not clear to define how the only Metric approach (functionally same clones) dissimilar from
duplicates made by copy and paste. In this paper, our idea is to understand and classify the syntactical dissimilates in (function same clones)
Metric based technique used with the help of swarm and artificial intelligence techniques that described them from copy and paste code clones in
a path that helps clone detection research. In this method, we discussed it by functionally using the same program in Java, C++, and MATLAB
for coding challenges. We studied syntactic correspondence with new detection software tools and discovered whether code clone detection can
perform outside other structure. We implement the metric based approach extract the code properties i.e. LOC, Function Overloading, Function
Repetition, Total number of functions, Global and Local Variable with the help of PDG and AST tree code clone techniques. The Classification
with Neural Network approach to classified the code clone and calculates percentage of the code clone as compared to original code. We
executed all tools on 100 programs and manually classified the dissimilarity in a random code sample of 60 programs files. We search non-
metric function similar codes, where complete records were syntax and syntactically same code. The major difference between metric and

crossbreed algorithm code clone detection techniques are beyond the recent code clone detection approaches.

Keywords: Code Clone, Detection Software Tool, Metric Tool, Abstract structure tree, swarm and artificial intelligence approach.

1. INTRODUCTION

Code clone have been verified as a main source of defects,
which means that duplicating the code could be a
sustainable issue during implementation and maintenance.
The result, a huge part of the research has been implemented
how to prevent or spot and change code clones. The main
issue with code clones is associated only with their similar
code that is indirectly rather than directly which creates it
problematic to identify them. Although, modifies like
updates or covers that are often meant to affect every clone
in the same path, are normally not functional to all of them
consistent. The code quality declines and modification
becomes more expensive and error-prone [1]. A code part
normally defines due to replication from one place and then
re-writes them into the additional section of code without
and with modifications/changes is software cloning and
same code copied are called clones. Several analyses have
conveyed more than 20 to 59 percent code duplication [2].
An issue with such same copied code is that an exception
detected in the real or original must be verified in each copy
for the similar error [3]. The copied code developed the
efforts to be done with the parameter code. The quality of
code analysis, virus recognize, facet mining and error
exposure are the other tasks which need the knowledge of
syntactically verified code part to facilitate code detection
importance for software detection tool analysis.

In this research paper, we have provided a comparative
survey on recently accessible clone detection techniques and
software tools. We will initialize with the introduction of

© 2015-19, IJARCS All Rights Reserved

code clones after that categories and compare the
approaches and tools in binary dissimilar paths. The
classification of code clone types, techniques and
categorization of the code detection tools [4].

The section 1 presents the introduction and issues found in
the code clone detection approach. Section 2 is related to
several clone detection techniques. After that classification
approach is explained to classify the different types of
clones. The types of clones are based on the texture
similarity and functional similarity. In the next section
proposed work is discussed to Analyse code clone software
methodology. In this section algorithms are used to detect
the clone from programs or files. In Section 5 Results are
shown with the help of tables and also compare the existing
and proposed work and in last section conclusion and future
scope is discussed.

2. RELATED WORK

There are numerous techniques for detecting code clones
which are discussed in the literature survey. Each technique
has its own benefits and limitations. While the text-based
techniques provide the easiest way of detecting code clones,
but they can detect only type-1 clones. Though the token-
based techniques can detect both type-1 and type-2 clones,
but these techniques need a lexical analyzer to transform the
code into tokens. A significant amount of time is consumed
in tokenization. In AST based techniques, it is required to
parse the source code which is a time and space consuming
process. PDG based techniques can find near-miss clones,

2092

Jasmandeep Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2092-2098

but these techniques take a huge amount of time and are
very complex. To convert a program into its PDG
representation, both its data flow graph and control flow
graph are required. Metrics based techniques are complex
because they only require comparison of some numerical
data, i.e. metrics values of program units to find code
clones. But these techniques may give false positives and

result in less precision value [5]. Code clone describes of
two segments of code that are same according to the
description of similarity. The normally, code clone detection
approaches define for extract clone is called Type-1 and
copied code with individual changes such as re-name is
called Type -2. This kind of clones is detectable in recent
years an effective and efficient way.

Table 1. Detect kinds of Code Clones

Types Description
Type -1 Clone Whitespaces added
Type -2 Clone Variable and literals changes
Type -3 clone Use functions
Type -4 clone Different logic and output will same.

Functional Same Clone

Functionality same

Solution set

Set of solution records all resolving the similar
program issues

Solution Records

Individual program in single experimenting the
solution to a programming issue.

Even the clones with extra modification could be found by
numerous detection techniques and tools. The survey of a
systematic approach and analyzed in single type 3 clones
and their dissimilar. The main focus, however on the
difference in code metrics, variable and hided them only
type substitution.

Komondoor et al. (2001) [6] author investigates the
duplicate code from a software system with slicing
technique. Duplicate modules in a software system are a
normal thing. But it increases the software maintenance cost
and efforts for stable a software system in production mode.
The proposed approach detects all the similar clones and
converted into a single module. That single module called
for all the places to reduce duplicated code from the
modules. This approach working with some graphs
technique which helps to represent clone from a software
system with the help of similar sub-graphs. Toshihiro et al.
(2002) [7] developed a novel code clone detection method,
which contains the transformation of textual information as
input on source end and token to token compare. Various
types of optimization techniques implemented or developed
the tool, namely CC Finder, which detects code cloned in
C++, JAVA, C and other source files. The design of a metric
based technique in code clones. Roy et al. (2009) [8]
proposed SOTA in code clone detection approaches and
tools and manage the huge amount of information into a
comprehensible conceptual structure. They initialize with
related concepts, a unique code detection procedure, and
overall current tools and methods. Then classify, compare
and evaluate the methods and tools in binary dissimilar
dimensions. Garg et al. (2013) [9] code obfuscation for
security enhancement is the main objective of this research.
An example of this is Java byte codes which are a form of
processed code but with the use of reverse engineering, this
code can be recovered. Kodhai et al. (2013) [10] in this
research the Clone Manager is used to detect the clones
from the software modules. The author used some kind of
unified approach to enhance the working of Clone manager
tools. Rattan et al. (2013) [11] there are dissimilar situations

© 2015-19, IJARCS All Rights Reserved

where clone detection is vital. Some of the capacities are:
feature mining, to find the cross cutting code, plagiarism
detection, software product-lines, clones in websites, origin
analysis, quality assessment, detecting licensing violations.
Though these areas are autonomous research areas, yet these
areas and clone detection can get promoted from each other.
By representing the code in an abstract depiction like PDG,
existing code clone detection tools may be modified to
detect hidden variations in the code. Clone detection helps
in sensing shared and common set of features in software
invention lines. Bansal et al. (2014) [12] author did their
research in clone detection from the large coding modules.
Here the main problem discussed in this work is time-
consuming and understanding and working complexity of
detection tools. The clones are copied code pasted around
the large modules of software without any change so that
they cause high maintenance cost and software faults. Rao et
al. (2014) [13] explain the process of recycling of software
components for faster development of large scale software
systems. In the large scale system the code development is
depends upon various languages to handle front middle and
backend views. Wagner et al. (2016) [14] conducted a result
using known functionally same programs in Java and C
from coding matches. They studied syntactic similarity with
traditional detection tools and searched whether con-colic
clone detection could go beyond syntax.

3. CLASSIFICATION OF CODE CLONES

It could be classified on the basis of tri-aspects which are
described below. Classify the clones, used for expansion re-
engineering and detect approaches. We have re-iterated on
the major prominent kind of clone, which prevents at the
quality of time interval re-engineering. Following are the
various code clones based on tri-aspects i.e. a) Similarities
b/w binary code parts. b) Object code location in program.
c) Re-factor chances with the simulated code [15].

The similarity-based fragments are the majority of binary
kinds i.e., i) Binary code part could be verified on the basis

2093

Jasmandeep Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2092-2098

of the same code of their execute program data [16] ii) It
could be same in their functionalities without being texture
verification. However, texture similarity based clones are of
four kinds as type-1, type-2, type-3, and type-4. An instance
section the methods which are similar except the name and
the techniques which are verified for the kinds of
performance parameters integrated with larger similarity
code clones. The type-4 code clone is based on the same
functionalities, same output but different logics designed.
The comparisons [17] between binary methods are of three
types which are based on four key points of compared such
as method name, deign of code, a method in lexis and flow
control of the methods. The methods of clones described the
dissimilar classification which recognizes each group of
code clone functions on the basis of previous dissimilarity
between them. The classification define the quality of
methods of content has been copied same and also what
kind of syntax tree elements have been changed.

Clones

i '

Textura (typ21,2and 3) Method Based(tvps 4) I

Figure 1. Classification of Code Clones

[Classification of Code J

The second select instance, the literal variations and
function aspects based on three types. The third stage is
based on the important if the single literal or token in the
method block and moreover the 4th stage is defined that the
token sequence description in method blocks. The three
types of clones such as extract fragments, argument clones,
and clones which have other pervasive characteristics [18].

Several research pro-types were not available or cannot be
brought to execute. Numerous simulation tools were not
added in the analyses due to their lower performance and
scalability / their decrease in support for some clone-types
[19, 20]. Clone-DR and CPMiner have less performance and
scalability evaluated to Deckard. CCFinder has less
performance than Deckard and doesn’t provision type-3
clones. At last, they select binary clone detection simulation
tools that together could study JAVA and C programs:
ConQAT and Deckard. Con-QAT is discussed in as newest,
useful and speedily open-source clone detector structure or
framework. In the analyses, they determined above, Deckard
has defined to have better performance and scalability. They
both are well described and have been used in prior studies,
especially. At the time of the analyses, those were binary
tools which were both freely available and possible to create
them work for us.

Con-QAT is a steady, free, open-source dash-board tool-kit
also used in industry. It is normal aim simulation tool for
several kinds of code measurement and analysis study. Con-
QAT, gives various specific code clone detection
configurations for several programming languages, adding
JAVA, C/C++, and COBOL. It has divide detection
methods for Type-1 or Type-2 clones and Type-3 clones.
They employed the previous method. Con-QAT has been
described in various analyses in clone detection adding the
study, they construct on [21].

Deckard uses an effective method for verifying same sub-
trees, and applies it to tree re-presentations of source code. It
normally generates a parse-tree constructor to construct
parse-trees required by its method. By a same parameter, it
is possible to control whether only Type-1, Type-2 clones
and Type-3 clones are detected. Deckard is a suitable tool
described in-other analyses in adding the study, we construct
on [22].

Table 2. Tool of Code Clones

Tools Compared

Techniques

CC Finder [19]

Suffix Tree and Token

Clone DR Abstract Syntax Tree, Hashing
Covet Abstract Syntax Tree and Metrics
Duploc Texture, Substring Matching

Dup [23] Text, Token and suffix Tree

Table 3. Comparative study of the Code Clone detection techniques

Transformation /Normalizations

Source Code Clone Matching Technique
Representation

Program Dependence Graph[24] Find Grained n-length patch matching
Suffer code to PDG PDG Dependence Graph sub-graph
comparing using program
slicing
Token and Comment Removal Text Vector defined in LSI [25]

© 2015-19, IJARCS All Rights Reserved

2094

Jasmandeep Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2092-2098

4. PROPOSED MODEL

In this section, we discussed the proposed model with key
point and phases.
4.1 Proposed Key-points

e To study and analysis various techniques and algorithms
of code clone detection and calculate vulnerabilities.

e To develop an embedded technique for BFO algorithm
based on reduction lies.

e To implement a proposed algorithm for classification
using back propagation neural network Model to do
classification of code clones.

e To evaluate the performance parameters like false
acceptance rate, false rejection rate, precision, recall and
enhance the accuracy.

4.2 Explanation of Code Clone New Approach
Step 1: We search the data of the Java, C++ and MATLAB
programming code files. We used the open access code files.

We create a three programming files. Some data access in

UCI machine learning repository dataset.
e Upload the dataset form the single language and show
that data in list box Ul-control tool used.
Step 2: Performing the Pre-processing and Feature
extraction. We apply the metric based approach to calculate
the Lines of Code, Number of repeating Function, method
overloading, global and local variable. This process is
known as Feature extraction which means to found the
unique property of the programming files.

TUpload code files (Jawva, C++ and
MATLARE)

!

Apply the feature extraction approach
{(LOC>NOF> RF>GV=>LV)

]

| Implement the Optimization algorthm ‘

1

| Classification approach ‘

!

MMatching the file code (training and
testing phase)

Figure 2. Proposed Flow chart

Step 3: Apply optimization technique to reduce the relevant
features of the code files. We applied the Bacteria Foraging
Optimization approach to reduce the properties of the
program files. In this approach data set is generated based
on the input information. The information move in two
forms i.e. swimming and tumbling form i.e., faster and
slower speed data moved.

Steps

a) Elimination and Dispersal

b) Reproduction of the information.

With the help of fit value generate the best output or given
the result optimize as compared to other techniques.

Step 4: Classification approach i.e. to add the matching
process. Back propagation Neural Network (BPNN) is used
classified the programming files. In BPNN speed is faster as
compared to other approaches as BPNN can handle the
information one too many forms. It generates the two
sections: i) Training Section ii) Testing Section. We create
the training set, to train the MATLAB code clone files based
on target. After that input is passing to testing phase, the
simulation model used to compare the code file of training
and testing section. After that match the LOC training set
and testing set if match the Lines of code in same file then
found the clone detect and calculate the percentage of the
clone code. Calculate the performance parameters i.e. false
acceptance rate, false rejection rate and accuracy. Compare
with the existing performance parameters i.e. precision and
recall.

5. SIMULATION MODEL

In this section, we discussed with the MATLAB 2013a in
the simulation tool. We implement the code clone detection
tool in graphical user interface. We add in the user interface
in the GUI tool design a code clone interface and calculate
the performance parameters i.e. FAR, FRR, Accuracy and
Percentage Rate of the code clone. If similarity exists in
code file then calculates the performance parameters and
compared with it.

Table 4. Performance NN in Proposed Work

Number of Iterations Hidden Neurons Time Best Performance (MSE)
27 10 0.1 39.83
24 0.02 34.56
20 0.001 25.67
21 0.001 24.32

Table 4 describes the number of iterations or epochs, hidden neuron used, time and base validation performance based on back

propagation neural network.

© 2015-19, IJARCS All Rights Reserved

2095

Jasmandeep Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2092-2098

Table 5. Performance Parameters in Proposed Work

FAR FRR Accuracy
0.00203 0.0078 99
0.00211 0.0067 99.1
0.00224 0.0056 98.6

Table 5 described the false acceptance rate, false rejection rate and accuracy performance parameters in the proposed work. If
wrong information is acceptable then is called FAR and correct information is reject by mistake then is known as FRR. When
FAR and FRR Value is decreasing then increase the accuracy.

Table 6. Percentage Rate with Precision and Recall

Percentage Rate Precision Recall
17.15 0.997 0.0991

56 0.995 0.992

66 0.987 0.983

Table 6 describes the percentage rate, precision and recall performance parameters in the proposed work. If the similarity code

presents in training and testing phase, then calculate the 100% percentage rate.

Table 7. Comparison between Existing and Proposed Work

Accuracy in existing Approach

Accuracy in proposed Approach

83.8 97.8
93.18 98.5
98.78 99.8

Table 7 describes the comparison between existing and proposed approach. We improve the performance parameters with the
BFOA and BPNN (Crossbreed Approach) and exiting one (NN).

= - omEm

Edit View Insert Tools Desktop Window Help ~
DEEHS RO PDEA- S (0E oD
\

FALSE ACCEPTANCE RATE

Figure 1
~| | File

FALSE ACCEPTANCE RATE

I
40 50 B0
NUMBER OF ITEARTIONS

20 30 70 80 90

Figure 3. False Acceptance Rate (Proposed Work)

Figure 3 defined the false acceptance rate (FAR) means that
incorrectly acceptable an access code from an unauthorized
user. A Far Typically is defined that the ratio of the number
of FAR divided by the number of verification attempts.

© 2015-19, IJARCS All Rights Reserved

- | Figure 2 - B ﬂ-
-1 File Edit View Insert Tools Desktop Window Help -
il | | AR BDEA- (2| 0E =m

y

FALSE REJECTION RATE

30 40 50 B0
NUMBER OF ITEARTIONS

70

Figure. 4. False Rejection Rate

Figure 4 false rejection rate (FRR) shows that will
incorrectly reject an access attempt by an authorized
user/consumer. The systems FRR normally is stated as the
ratio of the number of FRR divided by the number of
identification attempts.

2096

Jasmandeep Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2092-2098

[-#] Figare 3 - o EEIE
L . rapvt Tool Deskasy e L
- AEl =&

bl il | e | N BE L2

ACTLRACY

Figure 5. Accuracy

Figure 5 shows the best accuracy result. As False
Acceptance Rate and False Rejection Rate decreases,

Accuracy increases.
= Figwe - omem
:\=. 3 ; .'J.N‘I.k "“'.: ““’ ‘E-;;-l'utn’ = "“.'F:’_w Elel;ﬂ m I :

COMPARISON BETWEEN PROFOSED AND EXISTING WORK
100

-PROPOSED |

—— _EXISTING
[T - = TTTTT TS e e

L~
:j ... / -
;32 //

w0l / ________________________________ |
S oA

oo | N P SN NN N S S |

ACCURACTI)

Figure 6. Comparison of Existing and Proposed
Work (Accuracy)

Figure 6 defines the comparison between the existing and
proposed performance parameters i.e. accuracy. We improve
the performance parameters with the help of the new
approach (ACO+BPNN). The improvement with back
propagation neural network accuracy for 30 instance number
was calculated as 98.8%. In Artificial Neural Network
accuracy for 30 instance number was evaluated as 90%. We
improved the performance of the accuracy with back
Propagation Neural Network.

6. CONCLUSION AND FUTURE SCOPE

The existence of code clones in a program enhancement is
conservation cost as their existence makes the execution
program complex and generates the issue of redundancy.
The study of prior research work suggests the major focus of
their research work on implementation approaches for
detection of identified clones. In the current research study,
the main focus is on the development of a noble approach to
detect if same code blocks exist in any other file. The code
clones have been clone detected in two phases:

e In the initial phase we implement the metric based
approach to extract the features of LOC, Repeated
Function and Function Overloading etc. After that, the
BFOA algorithm is applied to optimize the feature set.
BFOA algorithm is used two phase rotations

= Tumble

© 2015-19, IJARCS All Rights Reserved

= Swim.
Tumble rotation means slowly reduce the feature set data
and swim rotation means fastly reduce the extracted
features. In BFOA, we can use the cost best solution
function to identify best output in the form of 0’sand 1’s.
¢ In the second phase the classification approach (BPNN)
is introduced to detect the clone in the code files based
on training and testing section. The consequence of the
second phase is to improve accuracy with the
enhancement of several objects.
We increases accuracy with back propagation neural
network for 30 instance number is from 90% to 98.8%.
Using JAVA, C and C++ that gives graphical user interface,
the complete tool is recommended for the classification of
the input file as interchanging and non-interchanging
targets. The title of record could be used for other
executable programs to search the presence of clones.
In further research work, the proposed field would give a
more generalized introduction of the code clone detection in
an executable program.

REFERENCES

[1] Roy, C., Cordy, J., (2007), "A Survey on Software Clone
Detection Research”, Technical Report 2007-541, Queen’s
University at Kingston Ontario, Canada, p. 115.

[2] Koschke, R., (2007), “Survey of research on software clones,
in: Duplication, Redundancy, and Similarity in Software,”
Dagstuhl Seminar Proceedings, p. 24.

[3] Kitchenham, B., Charters, S., (2007), * Guidelines for
performing systematic literature reviews in software
engineering.” Technical Report EBSE-2007-01, School of
Computer Science and Mathematics, Keele University,
Keele and Department of Computer Science, University of
Durham, Durham, UK, p. 65.

[4] Antoniol, G., Cassaza, G., Penta, M., Merlo (2001),
Modeling clones evolution through time series, in:
Proceedings of the 17th International Conference on
Software Maintenance (ICSM ’01), pp. 273-280.

[5] Bellon, S., etal. (2007), Comparison and evaluation of
clone detection tools. IEEE Transactions on Software
Engineering vol33(9),pp.577-591.

[6] Komondoor, R., and Horwitz, S.,(2001), "Using slicing to
identify duplication in source code."In International Static
Analysis Symposium, pp. 40-56.Springer Berlin Heidelberg.

[7]1 Toshihiro, K., Kusumoto, S., and Inoue, K., (2002),
"CCFinder: a multilinguistic token-based code clone
detection system for large scale source code." IEEE
Transactions on Software Engineering 28, no. 7 ,pp. 654-
670.

[8] Roy, C.K., Cordy, J.,and Koschke, R., (2009), "Comparison
and evaluation of code clone detection techniques and tools:
A qualitative approach."” Science of = Computer
Programming 74, no. 7 ,pp. 470-495.

[9] Garg, V., Srivastava, A., and Mishra, A., (2013) ,
"Obscuring Mobile Agents by Source Code
Obfuscation.” International Journal of Computer
Applications 61, no. 9.

[10] Kaodhai, E., and Kanmani, S., (2013), "Method-Level code
clone modification using refactoring techniques for clone
maintenance.” Advanced Computing 4, no. 2 (2013): 7.

[11] Rattan, D., Bhatia, R., and Singh, M., (2013), "Software
clone detection: A systematic review." Information and
Software Technology 55, no. 7 ,pp. 1165-1199.

2097

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Jasmandeep Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2092-2098

Bansal, G., and Tekchandani, R., (2014), "Selecting a set of
appropriate metrics for detecting code clones."
In Contemporary Computing (IC3), 2014 Seventh
International Conference on, pp. 484-488. |IEEE.

Goda, G., and Damodaram, A., (2014), "An efficient
software clone detection system based on the textual
comparison of dynamic methods and metrics
computation.” International Journal of Computer
Applications 86, no. 6.

Wagner, S., Abdulkhaleq, A., Bogicevic, I., Ostberg, J., and
Ramadani, J., (2016), "How are functionally similar code
clones syntactically different? An empirical study and a
benchmark." PeerJ Computer Science 2: e49.

Gode, N., and Koschke, R., (2009), "Incremental clone
detection."In Software Maintenance and Reengineering,
2009.CSMR'09. 13th European Conference on, pp. 219-228.
IEEE.

Zhenmin, L., Lu, S., Myagmar, S., and Zhou, Y., (2006),
"CP-Miner: Finding copy-paste and related bugs in large-
scale software code." IEEE Transactions on software
Engineering 32, no. 3 ,pp. 176-192.

Koschke, Rainer, RaimarFalke, and Pierre Frenzel. Clone
detection using abstract syntax suffix trees. In Reverse
Engineering, 2006.WCRE'06. 13th Working Conference on,
pp. 253-262. IEEE, 2006.

Yang, Y., and Guo, Y., (2012), "Boreas: an accurate and
scalable token-based approach to code clone detection."
In Automated Software Engineering (ASE), 2012
Proceedings of the 27th IEEE/ACM International
Conference on, pp. 286-289. IEEE.

© 2015-19, IJARCS All Rights Reserved

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Gabel, M., Jiang, L., and Su, Z., (2008), "Scalable detection
of semantic clones."In Software Engineering, 2008.1CSE'08.
ACM/IEEE 30th International Conference on, pp. 321-330.
IEEE.

Cory, K., and Godfrey, M.,. (2006), " Cloning considered
harmful" considered harmful." In Reverse Engineering,
2006.WCRE'06. 13th Working Conference on, pp. 19-28.
IEEE.

Denis, K., Koskinen, J., Sakkinen, M., and Markkula, J.,
(2010), "Exploratory analysis of the relations between code
cloning and open source software quality.” In Quality of
Information and Communications Technology (QUATIC),
2010 Seventh International Conference on the, pp. 358-363.
IEEE.

Kim, M., Sazawal, V., Notkin, D., and Murphy, M.,
(2005), "An empirical study of code clone genealogies.”
In ACM SIGSOFT Software Engineering Notes, vol. 30, no.
5, pp. 187-196.ACM.

Kim, H., Jung, Y., Kim, S, and Vi, K., (2011), "MeCC:
memory comparison-based clone detector." In Software
Engineering (ICSE), 2011 33rd International Conference on,
pp. 301-310.1EEE.

Mubarak, A., and Sulaiman, S., (2014), "A hybrid technique
in pre-processing and transformation process for code clone
detection.” In Software Engineering Conference (MySEC),
2014 8th Malaysian, pp. 102-107.1EEE.

Bari, M.A., and Ahamad, S., (2011), "Code Cloning: The
Analysis, Detection and Removal." International Journal of
Computer Applications 20, no. 7 34-38.

2098

