
Volume 8, No. 5, May – June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 2658

ISSN No. 0976-5697

Input Based Attacks on Web Applications

Prof. Daljit Kaur
Department of Computer Science and IT

Lyallpur Khalsa College
Jalandhar, India

Dr. Parminder Kaur
Department of Computer Science

Guru Nanak Dev University
Amritsar, India

Abstract: Web applications have become exponentially popular and significant in our daily life with the growth of Internet. At the same time,
there is an increase in number of attacks on web applications targeted by hackers and cyber crooks. Attacks like injection vulnerabilities such as
SQL Injection, Cross site Scripting, Cross site Request Forgery(CSRF) are common and caused due to inputs performed by a user which are not
properly validated across the web applications. This paper specially focuses on input based attacks and their mitigation. Here, we have
implemented various attacks on a Giftshop web application and also classified their countermeasures with respect to Software Development
Life Cycle. Finally, the result of vulnerability scanners are shown and analyzed before and after the implementation of the countermeasures.

Keywords: SQL Injection; XSS; Input Attacks; Threats; Web application; Security

I. INTRODUCTION
Web is most widely applied for the supplying service to the
clients like online shopping, baking, reservation and many
more. But with the growth of World Wide Web and increase
in these online services, attacks on web have also grown.
Security has been the critically important part of most of the
web applications. Therefore, effective security mechanisms on
web applications and addressing them seem to be very
important in these days. SQL injection (SQLi) and Cross –
Site-Scripting (XSS) continue to be the most predominant web
application threats as they have affected large number of
websites including those of some high profile companies.
SQLi allows attackers to obtain unauthorized access to the
back-end database to change the intended application-
generated SQL queries. This type of attack exploits
vulnerabilities existing in web applications or stored
procedures in the back-end database server [1,2]. It allows
attackers to inject crafted malicious SQL query segment to
change the intended effect, so that attacker can view, edit or
make the data unavailable to other users, or even corrupt the
database server. When an application becomes susceptible to
SQLI Attack (SQLIA), attacker can get total control and
access to database [3]. Threats like SQLi, XSS, Data Exposure
and misconfigurations are still among the top[4-6]. Major web
services such as Google Analytics, Facebook and Twitter have
had XSS issues in recent years despite intense research on the
subject [7-8]. The major cause behind these vulnerabilities is
the improper validation of the input and output supplied
through these applications. This research paper implements
various attacks that can be performed on the such vulnerable
web applications that are not properly validating their input
and output and further provides the countermeasures in
Software Development Life Cycle (SDLC) to prevent from
these attacks and vulnerabilities. Section II reviews the
literature for known input based vulnerabilities SQLi and XSS.
Section III gives the brief overview of SQLi and XSS
vulnerabilities and their counter measures in development life
cycle. Section IV implements various attacks on a vulnerable
web application. Section V tests for the effectiveness of
countermeasures and result are shown with the help of

vulnerability scanners. In this research work, vulnerability
scanner OWASP-ZAP is used to confirm the SQLi and XSS
vulnerability. This vulnerability scanner is available with
operating system Kali Linux and also freely available at
www.owasp.org. Kali Linux is an open source project that is
maintained and funded by Offensive Security, a provider of
world-class information security training and penetration
testing services[9].Section VI concludes the result and gives
the future directions.

II. LITERATURE REVIEW
Input based attacks are among the most popular, challenging
and serious threatening attacks. Year after Year, this
vulnerability is ranked as the top security vulnerability of the
Internet which is responsible for countless data breaches and
lot of research is done the respected area to detect and avoid
these attacks
Juillerat, N. in [10], has shown that common vulnerabilities
like SQL injection, XSS and URL injection in database web
applications can be controlled by enforcing code security audit
library in java . Finally he has compared his library-based
approach to security with other available approaches and has
shown that they don’t only allow secure code to be written, but
also enforce it.
.Lomte V.M, et.al have presented different web attacks and
provided some tricks used by hackers to hack websites and
also mitigation techniques of these attacks in [11]. They have
analysed two applications: with and without security, and also
found the impact of Sql injection, XSS, DoS, and Request
Encoding attacks in terms of request time, response time and
throughput.
Chavan B, et al. have described in [12] the classification of the
attacks and vulnerabilities that can affect website, its data
or/and its users. These vulnerabilities are classified with
respect to the phase of the development life cycle in which
they arise. Vulnerabilities like Broken Access Control,
authentication, Improper error handling, XSS, XSRF(Cross
Site Request Forgery), Information Leakage, content spoofing,
buffer overflow, injection related and many others have been
presented. Also the countermeasures of the vulnerabilities and
their weaknesses is discussed in tabular form.

https://www.offensive-security.com/�

Daljit Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2658-2664

© 2015-19, IJARCS All Rights Reserved 2659

Garg, A. et al. have presented in [13], five common and simple
vulnerabilities in web applications. These vulnerabilities
include Remote Code execution, SQL injection, Format String
vulnerabilities, XSS, and username enumeration. Type of
criticality and countermeasures of each vulnerability are also
discussed.
In 2011, Kai-Xiang Zhang et al. [14] suggest SQL injection
attacks, a class of injection flaw in which specially crafted
input strings leads to illegal queries to databases, are one of
the topmost threats to web applications. Based on their
observation that the injected string in a SQL injection attack is
interpreted differently on different databases, they propose a
novel and effective solution TransSQL to solve this problem.
TransSQL automatically translates a SQL request to a LDAP-
equivalent request. After queries are executed on a SQL
database and a LDAP one, TransSQL checks the difference in
responses between a SQL database and a LDAP one to detect
and block SQL injection attacks. Their Experimental results
show that TransSQL is an effective and efficient solution
against SQL
injection attacks.
In 2013, Amir Mohammad Sadeghian et al. [15] suggest that a
successful SQL injection attack interfere Confidentiality,
Integrity and availability of information in the database. Based
on the statistical researches this type of attack had a high
impact on business. Finding the proper solution to stop or
mitigate the SQL injection is necessary. To address this
problem security researchers introduce different techniques to
develop secure codes, prevent SQL injection attacks and detect
them. They present a comprehensive review of different types
of SQL injection detection and prevention techniques. They
criticize strengths and weaknesses of each technique.

III. INPUT BASED VULNERABILITY AND ITS MITIGATION
Vulnerability is a weakness in the application which

can be a design flaw or an implementation bug. An attacker
can use such vulnerabilities, to harm the stakeholders of an
application. SQL Injection Attack, Cross-Site Scripting (XSS),
Cross- Site Request Forgery (CSRF), Broken Authentication
and Session Management are some of the application layer
vulnerabilities targeting most of the current web applications
[16]. According to reports that are provided by OWASP [17]
and WHID [18], among all these attacks SQLIA and XSS are
very common. Also according to our previous research,
SQLIA is one of the major attacks after Defacement and
followed by XSS, Account Hijacking and DDoS(Distributed
Denial of Service) Attack[19]. SQLi and XSS are considered
as severe of attacks affecting confidentiality, integrity and
availability of information. SQL injection vulnerability is a
type of attack which adds Structured Query Language code to
a web form input box to gain access or make changes to data.
XSS attackers may use encoding, encryption, confusion and
other technologies to evade the server-side filtering. The
current major browsers, such as the latest version of Internet
Explorer, Google Chrome, Safari, Opera, etc. have provided
the defense components of XSS attacks, but the realistic
effects are not ideal. For instance, Internet Explorer 9 prohibit
the cross-domain access as a default setting which prevents the
JavaScript from one site sending POST requests to different
sites. But this setting permit the JavaScript sending GET
requests to any sites. As a consequence, an attacker can still
steal the user's sensitive information as the GET request
parameter.

These attacks have been around years now and lot of research
in the field has been done by Industry and academic experts. In
literature, there are many methodologies, algorithms and
techniques proposed to provide solutions for SQLi and XSS
attacks. Analysis of these attacks reveals that they are caused
due to improper coding of web applications and inability to
filter or sanitize input [20]. So, here are mitigation activities
from various researchers classified in phases of SDLC.

Design Phase

• Use minimum text boxes and try radio
buttons/drop down list/check boxes instead [21].

• Use principles of least privileges and disable
default accounts and passwords [1,3,22-25]. Also
use Read only views for SQL statements that do
not require any modification.

• Choose names for tables and fields that are not
easy to guess [24].

• Identify the list of SQL statements that will be
used by application and only allow those[24].

Coding Phase

• Sanitize/Validate Input by ensuring that data is
properly typed and does not contain escaped
code [1,21-23,25-28]. Validate inputs with Data
Type, Data Length and Data Format [3,24,29].

• Validation of all inputs must be done at both
client and server side [3,23].

• Encode string in such a way that all meta-
characters are interpreted by the database as
normal characters [3,18,28,31,36].

• Use Stored procedure with static SQL wherever
possible[1,3,23-25,28,33]

• Use parameterized queries instead of dynamic
queries [24].Use Prepared statements in
programming languages like Perl, Java
[1,3,24,25,37].

• Use POST method instead of GET method for
form submission [21].

• Ensure that Error Messages do not disclose any
internal database structure, table names, or
account names. Use proper error handling
mechanism (Custom errors) also keep error
messages and usable [3,22,27,28,32].

• For filenames, use stringent whitelists that limit
the character set to be used. If feasible, only
allow a single "." character in the filename to
avoid weaknesses, and exclude directory
separators such as "/". Use a whitelist of
allowable file extensions.

• Use proper output encoding, escaping, and
quoting. For any data that will be output to
another web page, especially any data that was
received from external inputs, use the appropriate
encoding on all non-alphanumeric characters.

Testing Phase

• Conduct penetration tests against applications,
servers and perimeter security[3,35].

Daljit Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2658-2664

© 2015-19, IJARCS All Rights Reserved 2660

Configuration &Implementation Phase
• Install the database on different machine than

Web server or Application server [34].
• Update and Patch production servers (including

operating system and application) [3,24,30,36].
• Disable potentially harmful SQL stored procedure

calls[21,24].
• Delete system stored procedures [23].
• Delete/Disable unnecessary stored

procedures/prepared statements [37,39].

IV. THREATS DUE TO INPUT VULNERABILITY
Many web applications are at the risk because of financial
constraints and time, narrow understanding of the
programming, limited knowledge security awareness,
misconfiguration that is meant lack of cognizance of the
protection configuration deployment on the gathering of the
coder. With the tending of input validation attacks, the attacker
can take the confidential data which reduce the security of the
system and increases risk. This means vulnerability is caused
by a malicious user to utilize the data without the legitimate
user’s prior permission. All organizations who maintain a web
presence are at risk of being attacked. However, the level of
risk is different for each organization with respect to
intellectual property or personally identifiable information
stored by the organization [38]. The purpose of a web based
attack is significantly different than other attacks. SQLi Attack
is most commonly associated with extraction of valuable data
through web applications. Input vulnerability is also utilized as
a platform for launching other types of attacks. The other types
of attacks include Denial of Service(DoS), Defacement,
Account Hijacking, cookie stealing, session hijacking and
Authentication Bypassing. For the case study of these attacks,
a Giftshop web application is selected. Below described
attacks are performed on Giftshop web application manually
as well as with the help of automated tool SQL Map. SQL
Map is an automated tool that performs SQLI attack and is
capable of capturing active database management system
fingerprint, enumerating entire database and much more[20].
This tool actually makes the process of attacking web
applications easy, even the unprofessional attackers on the
Internet can perform this attack in few seconds. It is illegal to
use this tool on live sites on the web, thus, we have used this
tool on our local web server running XAMPP server and host
our dummy vulnerable application ‘giftshop’. Various attacks
on the application with Input vulnerability are performed and
discussed here:

A. Database Fingerprinting: This is actually a pre-attack
preparation by an attacker and this type of attack is performed
by entering some inputs which results in as an illegal or
logically incorrect queries. The error messages reveal the table
and column names that cause error and attacker can come to
know about the database used in the backend server.
For database fingerprinting in Giftshop application,
vulnerable columns are found using ‘order by ‘ clause and
then database, its version are displayed at vulnerable column.
Database, version and tables are revealed with just a single
command in automated tool SQL Map as shown in figure 1.

Fig.1. Fingerprinting with SQL Map

B. Authentication Bypass: In this attack, an attacker exploits
an input field that is used in a SQL statement’s ‘WHERE’
conditional part. For example, in login form of the website that
takes username and password parameter to enable access to
certain section of website by validating entries in the back -end
database. When attacker enters the username as ‘abcd’ or 1=1
- -‘ and password =’passwd’, then the SQL Query becomes:
Select * From Users WHERE username = ‘abcd’ or 1=1 - -‘
and password =’passwd’
Double hyphens character is interpreted as a comment by the
SQL Server, and everything after ‘--‘ is ignored. Since 1=1 is
always true so login is always validated. Giftshop application
is also found vulnerable and allows authentication bypass.

C. Injection with UNION Query :In this attack, an attacker
exploits the vulnerable parameter to change the data set
returned for a given query. It is extraction of data from table
but not as the intention of developer.
Information about the database, its version and users in the
backend can also be revealed with the help of UNION query.
Also the extraction of the data from table is possible as shown
in figure 2.

D. Account Hijacking: This attack lets the attacker gain
access to administrative or user credentials. This is again
extraction of data from table. As figure 2 depicts the extraction
of the data from the table, and the credentials received this
way with SQLI lead to account hijacking as administrative
password can be changed by the attacker after logging or even
deleted from the database.

Fig.2. Extracting data with SQLmap

E. Denial of Service (DoS):This attack is to halt the web
application by shutting down the backend database or

Daljit Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2658-2664

© 2015-19, IJARCS All Rights Reserved 2661

consuming precious CPU time by sending database into time
consuming loops over lots of data. DoS is most likely the well-
known of all application attacks.
For the Giftshop application, Denial of Service attack was
performed using two methods: Firstly by shutting down all the
applications running on the remote system. The was done by
executing shutdown/f command in the shell uploaded with the
help of SQL map. Secondly by renaming the directory
containing giftshop application files. This was again the
execution of command on the shell as Shell on remote
operating system is the complete takeover of the
system/server revealed in figure 3. Thus, in result of both
methods, Giftshop application was unavailable.

Fig.3. Shell Uploading with SQL map

This attack is also possible with XSS vulnerability as
malicious javascript may deny the user to access the particular
pages of the applications. The script visible in figure 4 reloads
the page again and again, thus finally not let the users to
access their pages.

Fig. 4: DoS with XSS

F. Defacement: In this attack, an attacker alters the content of
web site with offensive or erroneous graphics and/or text. An
attacker can also change the appearance of the page or silently
redirect a client to malware hosting server.
In the Giftshop, changing the content of web page was also
possible through shell as done for previsously for DoS. But
here manually a file was created and uploaded to the server
with SQLI vulnerable URL (Uniform Resource Locator) as
clear from figure 4.

Fig.5. Writing File through URL

Further, another way of performing Defacement is with Input
based stored XSS vulnerability, the attacker is allowed to store
the malicious script at the server which gets executed every
time a user visits that page. But here, the script is such that
which redirects the user to another page, and displays the page
of another web site instead of the original page. Figure 6
depicts the javascript, which is to be stored at the server and
figure 7 displays the result after the malicious script gets
executed.

Fig. 6:Defacement script

Fig.7: Defacement

G. Cookie Stealing: Cross Site Scripting vulnerability can be

further exploited to steal the values stored in the cookies. It
can be session ID of the user which in turn helps to hijack the
user session.

Daljit Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2658-2664

© 2015-19, IJARCS All Rights Reserved 2662

Fig. 8:getcookies with XSS

Figure 8 shows the redirection of the victim’s cookie to the
malicious attacker’s server or site without his knowledge. As
the server has this stored XSS vulnerability and whenever any
user visits its page, its cookies are transferred to the attacker’s
server. Attacker is continuously listening on the malicious
server and gets the cookies value of each connected session as
shown in figure 9.

Figure 9: Attacker Listening

By this way attacker can easily steal the cookies of the users
and which in turn may be used by attackers to perform other
harmful activities.
H. Session Hijacking: This is again a popular attack on the
web and possible to perform with XSS vulnerability. In this
attack, attacker uses the session ID received from the Cookies
of the user to login without the requirement of the user account
and password. Attacker changes the session ID using browser
functionalities as shown in figure 10, and replaces it with the
one received as discussed before to login as that victim. By
that way, attacker may easily make some changes to the data
and even password of the user, which can further deny the
victim to login.

Fig. 10: Replacing Session ID

This activity allows the attacker to login as the user and access
his/her account information as figure 11 depicts the same.

Fig. 11: A/c login

V. RESULT AND DISCUSSION
Giftshop application has been edited and implemented using
the above specified countermeasures in SDLC.
Firstly the Login page related database, table name and
privileges has been changed as per design phase
countermeasures. Then in the coding phase, input has been
properly sanitized and validated at both client and server side.
Also parameterized queries and prepared statement has been
used as:

$dbh->prepare("select * from usertable where email=? and
pass1=?")
Error messages has been handled with proper care and all the
inputs and output to the web application has been properly
validated and escaped. After these changes in design and
coding of web pages and related database, again Giftshop
application has been tested against SQLI attacks manually and
with the help of vulnerability scanners. Result of scanning of
web application with OWASP-ZAP (before and after the
countermeasures implementation) are shown in figure 12 and
13, which depicts the elimination of the vulnerabilities.

Fig 5. OWASP -ZAP Scan Result(Before)

Fig.6. Scan Result with OWASP-ZAP(after)

Daljit Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2658-2664

© 2015-19, IJARCS All Rights Reserved 2663

Also the web application was tested manually against the
various attacks like Database fingerprinting, Defacement,
Account Hijacking, XSS and UNION query but it showed no
response to them. Thus web application is now safe from
attacks like Database fingerprinting, Session hijacking, Cookie
Stealing, Account Hijacking, Defacement, Injection with
UNION query and DoS due to input based vulnerability: SQLi
and XSS.

VI. CONCLUSION
In this paper, we have studied and implemented the various
attacks in web applications possible with input based
vulnerability: SQLi and XSS. Thus the known
countermeasures of this vulnerability are classified in the
SDLC fashion and their effectiveness is checked with
vulnerability scanner. Result of vulnerability scanner before
and after the implementation of respective countermeasures
reveal that if applications are developed with security in mind
from the beginning of SDLC, then many attacks on web
applications can be avoided almost without any extra effort
and time. Moreover, it also shows the major cause of the
insecurity is the improper handling of the input and output
through the web applications which can be improved if the
given mitigation activities are taken care of.

REFERENCES
[1] SQL Inject Prevention cheat sheet. Retrieved on 12-12-2015

from
:

[2] Protecting Websites from advanced and automated SQL
injection. Retriened on 21-December-2016
from

https://www.owasp.org/index.php/SQL_Injection_Prevention_
Cheat_Sheet

http://www.imperva.com/docs/WP_SQL_Injection20.pdf
[3] W.K. Torgby, N.Y.Asabere.”Structured Query Language

Injection (SQLI) Attacks: Detection and Prevention Techniques
in Web Application Technologies”. International Journal of
Computer applications Vol. 71-No.11 (May 2013). 29-40.ISSN:
0975-8887

[4] The Ten Most critical Web Application Security Risks, 2010.
Open Web Application Security Project Top 10. Retrieved from
http://www.owasp.org/

[5] The Ten Most critical Web Application Security Risks, 2013.
Open Web Application Security Project Top 10. Retrieved from
http://www.owasp.org/

[6] The Ten Most critical Web Application Security Risks,2017.
Open Web Application Security Project Top 10. Retrieved from
http://www.owasp.org/

[7] Joel Weinberger, Prateek Saxena, Devdatta Akhawe. A
Systematic Analysis of XSS Sanitization in Web Application
FrameWlrks. Springer-Verlag Berlin, Heidelberg. 2011. pp. 150-
171,

[8] Lan,D., Ting,W.S.,Xing,Y. and Wei,Z.

[9] Kali Linux Documentation. Retrieved on 20 March,2016
from

Analysis and prevention
for cross-site scripting attack based on encoding,,IEEE
Explore,2013.

http://www.kali.org/
[10] Juillerat,N., Enforcing Code Security in Database Web

Applications using Libraries and Object Models, LCSD
2007,Canada, ACM 1-58113-000-0/00/004.

[11] Lomte, R.M and Bhura, S.A., Survey of different Web
Application Attacks & Its Preventive Measures, IOSR Journal of
Computer Engineering (IOSR-JCE), Volume 14, Issue 5. ISSN:
2278-8727

[12] Chavan, S.B and Meshram,B.B., Classification of Web
Application Vulnerabilities, International Journal of Engineering
Science and Innovative Technology (IJESIT),Volume 2, issue 2,
2013.

[13] Garg, A. and Singh, S., A Review on Web application Security
Vulnerabilities, International Journal oF Advance Research in

Computer Science and Software Engineering, Volume 3, Issue1,
2013.

[14] K.X.Zhang, C.J. Lin, S. Chen, Y. Hwang. 2011. TransSQL:A
translation and Validation based solution for SQL Injection
attacks . In first international conference on Robot, Vision and
Signal Processing (November 2011). 248-251.

[15] A.Sadeghian,Zamani, Manaf.2013. A Taxonomy of SQL
Injection Detectionand Prevention Techniques. In International
Conference on Informatics and Creative Multimedia (September
2013). 53-56.

[16] M. Shema. “Seven Deadliest Web Application Attacks”.
Elsevier Inc.,2010,47-69. ISBN-9781597495431

[17] The Open Web application security Project, OWASP TOP 10
Projects. Retrieved on 15 December, 2015 from
http://www.owasp.org/

[18] Web Hacking Incident Database Project. Retrieved on 15
December,2015 from http://projects.webappsec.org/

[19] D. Kaur, P. Kaur. “Empirical Analysis of Web Attacks”. In
Procedia of Computer Science. Elsevier
Publications.DOI:10.1016/j.procs.2016.02.057

[20] S. Junaid. “Analytical Study of Common Web Application
Attacks”. International Journal of Advanced Research in
computer engineering & Technology (IJARCET)”, Vol.3,
Issue3, 611-617.

[21] G. Parmar, K.Mathur. Proposed Preventive measures and
strategies Against SQL injection Attacks”. Indian Journal of
Applied Research, Vol.5, Issue 5(May 2015). 664-671. ISSN-
2249555X

[22] SQL Injection.Retrieved on 21 December, 2015
from https://www.us-
cert.gov/sites/default/files/publications/sql200901.pdf

[23] S. Madan, S. Madan. “Bulwark Against SQL Injection attack –
An Unified Approach”. International Journal of Computer
Science and Network Security(IJCSNS), Vol. 10 No.5(May
2010). 305-313.

[24] 10 Steps to Protect your Websites from SQL Injection attacks.
WhiteHat Security WhitePaper, Feb 2010. Retrieved
from https://www.whitehatsec.com/resource/whitepapers/SQL.ht
ml on 20 january, 2016.

[25] Mahapatra and S. Khan. “ A Survey of SQL Injection
Countermeasures”, International Journal of Computer science
&engineering(IJCSES) Vol.3, No.3, June 2012.55-74. DOI :
10.5121/ijcses.2012.3305 55

[26] William, Jeremy and Alessandro. “Comparing SQL Injection
Detection Tools Using Attack Injection: An Experimental study”
in IEEE 21st

[27] S. Kalaria and M.Vivekanandan. “Dark Side of SQL Injection”.
In the proceedings of ASAR International Conference, Banglore,
(April 2013). 67-72. ISBN: 978-81-927147-0-7

 International Symposium on Software Reliabiliry
Engineering(ISSRE). 289-298 (November 2010).

[28] D.Gollmann. “Securing Web
Applications”.Article in ELSEVIERInformation Security
Technical Report Volume 13 Issue1. Elsevier Advanced
Technology Publications Oxford, UK. 1-9.DOI:
10.1016/j.istr.2008.02.002

[29] U.Aggarwal, M.Saxena,K.S. Rana.” A Survey of SQL Injection
Attacks”. International Journal of Advanced Research in
Computer Science and Software Engineering (IJARCSSE),
vol.5, Issue 3 (March 2015). 286-289. ISSN:2277128X.

[30] M. Gandhi. and J. Baria. SQL Injection Attacks in Web
Application. International Journal of Soft computing and
Engineering (IJSCE), Vol2, Issue 6 (Jan 2013). 189-191.
ISSN:2231-2307. 2013.

[31] Web Based Attacks. Retrieved on 10 march
from http://sans.org.reading-room/whitepapers/application/web-
based-attacks-2053

[32] S.M. Kerner. 2013.How was SQL Injection Discovered.
Retrieved on 10-12-2015
from

[33] M.Kaushik and G. Ojha.2014. SQL Injection Attack Detection
and Prevention Methods :A Critical Review, International
Journal of Innovative Research in Science, engineering and
Technology (IJIRSET), Vol3, Issue 4 (April 2014). 11370-
11377. ISSN: 2319-8753

http://www.esecurityplanet.com/network-security/how-
was-sql-injection-discovered.html

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet�
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet�
http://www.imperva.com/docs/WP_SQL_Injection20.pdf�
http://www.kali.org/�
https://www.us-cert.gov/sites/default/files/publications/sql200901.pdf�
https://www.us-cert.gov/sites/default/files/publications/sql200901.pdf�
https://www.whitehatsec.com/resource/whitepapers/SQL.html�
https://www.whitehatsec.com/resource/whitepapers/SQL.html�
https://www.researchgate.net/journal/1363-4127_Information_Security_Technical_Report�
https://www.researchgate.net/journal/1363-4127_Information_Security_Technical_Report�
https://www.researchgate.net/journal/1363-4127_Information_Security_Technical_Report�
http://sans.org.reading-room/whitepapers/application/web-based-attacks-2053�
http://sans.org.reading-room/whitepapers/application/web-based-attacks-2053�
http://www.esecurityplanet.com/network-security/how-was-sql-injection-discovered.html�
http://www.esecurityplanet.com/network-security/how-was-sql-injection-discovered.html�

Daljit Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2658-2664

© 2015-19, IJARCS All Rights Reserved 2664

[34] K.Wei, M.Muthuprasanna and S.Kothari.2006.Preventing SQL
injection Attacks in stored Procedures. In Software Engineering
Conference (April 2006). Australia.

[35] M.Kiani,Clark,Mohay.2008. Evaluation of Anomaly Based
Character Distribution Models in Detection of SQL Injection
attacks. In 3rd

[36] I.A.Elia, Fonseca,Vieira.2010.Comparing SQL Injection
Detection Tools Using Attack Injection: An Experimental study
in IEEE 21

 International conference on Availability,Reliabilty
and Security (March 2008), 47-55.

st

[37] R.Dharm, Shiva.2012. Runtime monitors for tautology based
SQL injection attacks. In international conference on cyberSec
(June 2012). 253-258.

 International Symposium on Software Reliabiliry
Engineering(ISSRE). 289-298 (November 2010).

[38] T. Wei,Y.J.Feng,X.Jing. 2012. Attack Model Based Penetration
Test for SQL Injection Vulnerability. In IEEE 36th

[39] Aldar C.F.Chan. 2011. A Security Framework for Privacy
Preserving data aggregation in wireless sensor networks. ACM
Transactions on sensor networks. Vol 7, Issue 4, 29-40.
DOI: 10.1145/1921621.1921623

 annual
Computer Software and Applications Conference Workshops
(July 2012), 589-594.

	Introduction
	Literature Review
	Input based Vulnerability and its Mitigation
	Threats Due to input Vulnerability
	Result and Discussion
	Conclusion
	References

