
Volume 8, No. 5, May – June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 2263

ISSN No. 0976-5697

Performance Optimizing Factor Analysis of Virtual Machine Live Migration in Cloud
Data-centers

Anu V.R.,

Research scholar
School of Computer Science

Mahatma Gandhi University, Kottayam, India

Dr.Elizabeth Sherly,
Professor

Indian Institute of Information Technology and
Management-Kerala Trivandrum, India

Abstract: Cloud computing holds its importance in almost every field of technology. It makes provisioning, scaling, and maintenance of
applications and services with sophisticated deployment and management of resources. Currently, many clouds, such as Amazon’s EC2,
Google’s AppEngine, IBM’s Blue- Cloud, and Microsoft’s Azure are providing various cloud services.VM migration is a widely used cloud
feature for better performance and efficiency. Allocation of jobs in an intelligent manner is essential for the efficient VM migration in any cloud
environment. This paper analyses different factors which has direct impact on VM migration and thus on cloud performance. With the extensive
simulations in cloudsim environment, we found that memory dirtying rate has a vital role in determining the performance of live migration in
cloud data centres. We used different techniques to vary the memory dirtying rate and studied its impact on down time, total migration time and
thus scope of performance improvement. Along with the dynamic parameters, static parameters are also contributed to performance
improvement of live migration characteristics.

Keywords: cloud computing, virtualization, virtual machine, live migration

I. INTRODUCTION

Currently many cloud venders like Google compute,
VMware, HP and IBM are providing various online services
based on VM (Virtual Machine) migration. The inevitable
demand of scalable resources in cloud applications make
virtual machine migration a mandatory procedure between
the servers in a data center. The fundamental infrastructural
operations in a data center like load balancing, server
maintenance, fault tolerance etc. are successfully executed
with VM migration.
One of the major challenge faced by current data centres are
the rate of power dissipation while running. The main cause
of power dissipation in data centres are due to power
consumption by cooling mechanisms adopted and secondly
due to the power consumed for routine data centre
operations. Power dissipation increases drastically because
of inefficient utilization of resources which escalates
operational cost and carbon emission rate. Rapidly growing
energy demand of ICT (Information and communication
technology) is a major cause of global warming due to the
exponential CO2 emissions [1]. Virtualization is a key
solution to utilize the resources in a distributed environment
effectively. It helps to run numerous VMs on a single
hardware resource while respecting the application's privacy
by implementing strict isolation policies (server
virtualization) based on the performance requirements of
VM-hosted workloads [2].Through virtualization, VM
migration performs a lot of benefits like balancing the load
in servers and consolidating the server by migrating virtual
machines between under loaded or overloaded physical
hosts [3], [6]. Thus, it will reduce the number of servers
which are active in datacenters.VM migration helps to
consolidate VMs from under loaded servers to a destination
server and keep all these servers in inactive mode. This will

reduce the power consumption of servers and ultimately
improve the power efficiency. Also if a server requires a
hardware maintenance or software updation, the services
running in the physical host can be migrated into another.

Migrating an entire operating system along with its
running application is a strong management tool in multiple
VM based environment [5], [6]. It helps us to overcome
many difficulties with process level migration, which
always cause a residual dependency, in which the original
host has to remain available and network accessible for
completing certain services particularly some system calls.
But in the case of VM migration, the original host can be
moved from the scenario, once VM migration has
completed. OS migration allows separation of hardware or
software consideration and consolidating server hardware
into a single management domain. Mainly two methods of
migration are adopted. In offline migration or cold the
currently running services will be terminated first and then
VM is transferred to new physical host. But in live
migration all services will be alive while migration taking
place between the servers. Whether it is cold or live
migration, the migrations are not equal in terms of factors
affected. When one gives emphasis to reduce the down time,
another could seek to minimize the end to end migration
time or the bandwidth consumed by the migration.

Technologies used in live migration may different from
vendor to vendor. But generally two methods adopted in live
migration are pre-copy and post-copy [2], [18], [21]. In
post-copy migration method, initially the VM is suspended
at source, then copies processor state to the destination.
After that operation, VM resumes at destination and begins
fetching modified memory pages over the network from the
source server. But in pre-copy method, the modified pages
are transferred to the destination iteratively till it reaches
into a threshold convergence point. At this point VM
suspended at source machine, then transferred to the

Anu V.R et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2263-2270

© 2015-19, IJARCS All Rights Reserved 2264

destination and this period is called Down Time. After that
period, the VM restarted at Destination. With bounded
iterative push step and final stop & copy step, pre- copy
migration tries to overcome the problems associated with
earlier designs. Such a design minimizes both TMT and
down time.

In this work we study and analyze the live migration
strategies in detail. Live migration is done by sending
snapshots of OS instances with all its currently running
applications between the servers [1], [19]. In all forms of
migration the VM snapshots containing I/O configurations,
saved segment definitions, spool files, user directory entries,
SFS file pool servers, application programs so on. VM
snapshots can be generally categorized in terms of the status
they transferred, such as CPU state, memory state and
storage content. As compared with the other elements, CPU
state is the least weight content which can be transferred
between the physical servers without taking much time.
Second type of transfer is the memory state, which includes
the memory state of both the guest OS running on VM and
all running processes within the VM. Like normal physical
machines, VM may be configured with more memory than
in active use. If the hypervisors can effectively identify the
unused memory, then transfer of this memory from source t
destination can be avoided [2], [16]. This will strongly
improve the performance of migration. The third category is
storage transfer, as compared with the first two categories
storage is too huge, and most datacenters follows a
centralized storage area like NAS (Network Attached
Storage) or SAN (Storage Attached Network). So instead of
transferring VM snapshots between the servers, the shared
storage can be accessed equally by the virtual machine
through physical machines.The following are the general
steps for live migration.
1) Initially, both source and destination hosts are prepared

for migration process. A TCP connection has to be
established between source and destination. Memory is
allotted in the destination host for the coming VM and
skeleton of VM is also set up.

2) In this step, the memory state and CPU status of VM
from source host will be transferred to destination host.
For the migration process, either post-copy or pre-copy
strategies are adopted.

3) Here, a mass storage transfer from source host to
destination will be taking place. Normally a common
storage systems like NAS or SAN is used, so source
host or destination host can access it equally. At the
end of this stage an up-to-date virtual machine is ready
to use at destination host.

4) For a transparent migration process, all network
connections that were open before the migration, must
also keep open after migration process completes. Since
each VM will have Virtual Network Interface Card
identified by a MAC address, the VM required to
update the switches in the network so that the virtual
machine traffic will be forwarded through the
corresponding switch port after migration.

Fig.1 shows the general steps in pre-copy
algorithm.The target server selection and resource

reservation steps are common to pre-copy and post-
copy algorithm.

Fig 1. Pre copy algorithm

Post-copy migration strategy works as an incremental
model. Initially the minimum status of VM will be
transferred from source to destination server [4]. After that
if any updation happened, that will be transferred to
destination.

Fig 2. Post-copy algorithm

The rest of this paper is organized as follows. Section 2
presents a concise view of a detailed literature survey and a
brief narration to the related research works. Section 3 deals
with the motivations behind this work. Section 4 includes
factor analysis. Section 5 comes with the conclusion and
future work.

Running VM

Resume VM

Transfer VM state

Capture VM
minimum state

T
i
m
e

Sender server
 Receiver
server

No
Yes

Iterative Pre-copy
Rounds

Stop&Co
py

Commit

Resume & Commit

Migration End Resource Reservation

Target Server
Selection

Migration
Start

No
Yes

Iterative Pre-copy
Rounds

Stop&Co
py

Commit

Resume & Commit

Migration End Resource Reservation

Target Server
Selection

Migration
Start

No
Yes

Iterative Pre-copy
Rounds

Stop&Co
py

Commit

Resume & Commit

Migration End Resource Reservation

Target Server
Selection

Migration
Start

No
Yes

Iterative Pre-copy
Rounds

Stop&Co
py

Commit

Resume & Commit

Migration End Resource Reservation

Target Server Selection

Migration
Start

No
Yes

Iterative Pre-copy
Rounds

Stop&Co
py

Commit

Resume & Commit

Migration End Resource Reservation

Target Server Selection

Migration
Start

Anu V.R et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2263-2270

© 2015-19, IJARCS All Rights Reserved 2265

II. LITERATURE REVIEW

Even though dynamic resource management is a
fundamental asset of cloud computing, it is far from
optimization because of being an NP – complete problem.
So scope of optimization is always relevant in resource
management of data centers. Migration plays a major role
in managing these resources effectively in a cloud
computing scenario [4]. It is an effective tool to manage
resources which are still over- or underutilized, code and
data which are not properly distributed. Even the potential
benefits for energy efficient computing are not exploited to
their best yet – in fact, there is hardly any quantifiable data
that allows for measuring energy efficiency aspects to their
minute details.
Cloud computing are often considered as high performance
computing systems because of their high availability of
resources. The effective performance depends highly on the
degree of scalability, the utilization of resources and the
communication strength. In the past few years, researchers
have undergone studies and formulated various algorithms
and techniques in order to undergo more optimized and
efficient algorithms for virtual machine migration, where
VM can be migrated with minimum downtime. In this
section, we have presented some of the research works
related to live migration.
Some of the optimizations methods proposed by Raja
Wasim Ahmad and Abdullah Gani [4] for pre-copy live
migration are delta compression, page skip, de-duplication
ballooning and data compression. Another method
introduced by Senthil Nathan and Umesh Bellur [5]
combines check pointing, logging, and roll-forward
recovery with CPU scheduling which can reduce migration
overheads compared with pre-copy algorithm. VM to be
migrated on the source host generates log files continuously,
these log files are transferred to the target host in sequence
while the target host replays with the received log files. A
log file will be generated every time unit. After consumption
of the received log files in each round, the time units used
for replaying are estimated as value K. Then a request is sent
for K log files to the source host which will be transferred in
the next round.
During live migration, the complete contents of VMs’ RAM
are transferred from source to the destination host. Since the
RAM sizes of several gigabytes, live migration often
involves transferring large data volumes. Besides that, if any
pages are updated at source side, then that has to be resend
to destination. Both these processes lead to long total
migration time. Even though compression techniques reduce
the amount of data transferred, they do not necessarily
reduce the number of page re-sends. To manage this issue,
P. Sv¨ard, J. Tordsson, B. Hudzia and E. Elmroth.[8]
proposed and evaluated a page reordering technique that
reduces the amount of transmitted data by sending the
memory pages in reverse order of usage frequency to avoid
re-transfers.
Jing et al. [7] proposes an optimization migration algorithm
to reduce the migration downtime, which deals with analysis
of the memory transfer in the real-time migration of current
Xen virtual machine. This algorithm uses layered copy
algorithm and memory compression algorithm, and it
optimizes the time and space complexity of real time

migration and reduces the migration downtime which
improves the migration performance.

Akoush S, Sohan R, Rice A, Moore A.W and Hopper A
[1] experimented that the link speed and page dirty rate are
the major factors impacting migration behaviour. These
factors have a non-linear effect on migration performance.
Migration time can be accurately predicted by enabling
more dynamic and intelligent placements of VMs without
degrading performance.

III. MOTIVATION

Virtualization technology allows multiple operating systems
run concurrently on the same physical machine. Migration
feature of virtualization provides facility to migrate virtual
machines from one host (source) to another physical host
(destination). If VM can migrate between servers without
degrading currently running services, then it will improve
the overall performance of the system. Live migration will
keep the services live without interrupting its execution,
handling the background issues like server consolidation,
fault tolerance, load balancing between servers etc. at
background with transparency.

Since it is a real time process, there exist different
challenges based on the cloud infrastructure, selection of
network, selection of host or even selection of VMs. There
are some fundamental properties desired for live migration.
The migration down time need to be ideally minimum, to
offer continuous application services without any
interruption by VMs. Particularly for interactive services,
the migration process should not cause any sort of
disconnection or performance degradation or delay for the
users.

Most of the live migration data centers assumed to be
happened in LAN. In that case VM disk image can be stored
in a network storage device, which can be accessed by both
source and destination. This helps to reduce the amount of
memory state transfer between the servers. The other
resources are CPU state and VM’s memory state. The
amount of data transferred for these resources are very small
as compared with VM disk image. If the migration
consumes huge amount of resources it leads to overall
performance degradation and delay. So bottleneck occurs
when simultaneous migration requires various resource
allocation. Due to mismatch between the memory and the
network in two strategies of live migration (pre-copy, post-
copy) the down time increases thus increase the total
migration time [5], [22]. If the migration time and down
time can be predicted in advance, the optimum usage of
resources and transfer rate can be selected, and this in turn
improves the performance. It is actually a two-way solution,
if there is no bottleneck in fixing the transfer rate and
resources then the down time also get reduced.

In the above mentioned properties the uninterrupted
service property keeps the migration ‘live’. However, the
other criteria are more flexible and can be compromised at
smaller levels.

A. Challenges for keeping migration ‘live’
Major issues which are challenges to keep migration alive
are described as follows. If the selected migration process is
pre-copy migration then three steps are performed to
complete the migration process namely iterative copy, stop
& copy and activation. In iterative stage while running the

Anu V.R et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2263-2270

© 2015-19, IJARCS All Rights Reserved 2266

source, pages are transferred from source to destination and
at this time memory is also updated continuously [3].
However, the rate of updation of memory is higher than the
speed of page transfer through the network. This scenario
creates bottle neck in the network and more pages are
buffered cumulatively and waiting time is prolonged for
transfer. This led to drastic increase in the number of pages
for stop and wait operation which ultimately extend the
downtime and thus total migration time [17], [20].
Downtime extension leads to issues like interruption of
services, disconnection of active users, database
connectivity issues and so on. Major memory access from a
common storage point like SAN or NAS reduces the issues
related to storage transfer. In pre-copy iterative stage, [10]
since source machines are working during transfer, a large
amount of pages are dirtied again and these pages are also
added to the queue for transfer. This issue will reach in its
peak, if already sent pages get dirtied again. Sometimes the
size of dirtied pages to be transferred, are equal to or more
than the size of source VM. This also causes the reason to
shoot up the down time and fails to predict downtime and
thus total migration time.
Post migration algorithms resume the destination VM before
its memory content have been transferred from the source
VM to destination. As compare with the rate of dirtying at
source VM transfer rate through the network is low and this
cause a high risk of missing pages. Due to the same transfer
rate problem if it tries to resend pages which are missing, it
could not be successful and cumulated page fault occurs and
that leads to severe performance degradation.
Thus, in this study we analyze the factors of live VM
migration to retain the desired properties and overcome the
challenges for real live migration.

IV. FACTOR ANALYSIS

The main objective of live migration is no service
interruption would be perceived by the users of applications
on the migrated VM. Performance of live migration
involves several factors such as size of VM to be
transferred, memory dirtying rate, the algorithm used to
implement migration, network transmission rate, down time
and total migration time, low resource consumption and so
on. In the above factors reduced down time keeps migration
as ‘live’ migration. Although, live migration down time is
trivial but the transfer time is still affordable as compared
with cold migration, which leads to the importance of
improving live migration’s performance and understand
how to best utilize the feature in cloud management [2], [9].
In pre-copy strategy migration, it includes six stages such as
initialization, reservation, iterative pre-copy, stop & copy,
commitment and activation. In these steps iterative pre-copy
is a repeated procedure and the selection of stop condition
for that stage is a critical decision parameter in terms of
overall performance of algorithm and may cause non-linear
trends in the total migration time and downtime experienced
by VMs.These stop conditions are highly dependent on the
design of both the hypervisor and the live migration
subsystem. But it is normally defined by the threshold
amount of data copied between physical hosts while
minimising VM downtime. Akoush S et al. [1] describe the
factors affecting live migration and categorized it in to two,
static and dynamic. In the abo.ve mentioned six steps,

compared with other methods iterative copy is dynamic in
nature. The effects of static parameters are considered as
unavoidable migration overheads for applications which do
not have high memory modification rate. But in most of
applications the memory modification rate is high and the
parameters having dynamic effect, which also contribute
equally to the performance improvement of the whole
migration process.

According to P. Sv¨ard, J. Tordsson et al. [8] the factors
which affect the performance of live migration are broadly
classified as page dirty characteristics and page content
characteristics of the application. In the methods like delta
compression and page skipping, the page transfer rate has a
negative relation with the performance of migration. But
false dirty pages don’t affect much in the above mentioned
methods. In strategies like de-duplication both page content
characteristics and page dirtying characteristic has a
negative effect on performance.

If we consider pre copy algorithm it proceeds with ‘n’
rounds. Initially the VM memory is transferred iteratively
and transfers only the dirtied memory during the following
rounds. At some point the number of modified pages will be
small and at that time the source VM will be halted
temporarily, copy the (normally small number) remaining
pages from source to destination, and restart it on the
destination host. That halted period of source VM and
commencement of destination VM measures as down time.
At that time user application in the VM is stopped
temporarily both in source and destination machine. So
down time is crucial for defining the performance of the
services running in virtual machines.

The following model can be considered for analyzing the
factors affecting live migration [10]. We denote the data
volume transmitted at each round as Di (0≤i≤n), and the
elapsed time at each transferring round as Ti (0≤i≤n). D0 is
equivalent to the VM memory size Vm. T0 represents the
time consumed to transfer the data of VM memory image
and Ti is the time to transfer the dirty memory generated
during previous rounds. Let be the current size of
VM, be the total network traffic, K be the memory
dirtying rate and be the migration latency. The data
transmitted in round i can be calculated as:

 (1)

Elapsed time at each round can be calculated as

 (2)

Initially, the scenario we consider is that, the memory
dirtying rate is much smaller than the memory transmission
rate. Let denote the ratio of K to R:

 (3)

Combining equations (1), (2) and (3), we have the network
traffic during the round i.

. = (4)

Anu V.R et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2263-2270

© 2015-19, IJARCS All Rights Reserved 2267

Then the total network traffic during the migration can be
summed up as:

= = (5)

= = (6)

From equation (6) it is clear that the migration time ()
is the cumulative sum of time taken to transfer dirtied pages
in each iterative stage. So in any stage the dirtied rate is high
then Ti for that stage increases thus increases total migration
time (). Due to the mismatch in memory accessing
speed and network transfer rate, some of the pages were
missed.

In majority of systems the vendors always keep a tradeoff
between minimizing total migration time and downtime
[11], [12]. Fast synchronizing of dirty pages minimizes the
downtime, but it will generate more migration data and
prolong the migration time [13]. While Synchronizing lazily
causes more memory dirty memory pages to be migrated
during the migration downtime and will introduce more
downtime. So an optimal approach may be better according
to the current scenario, which would work better than
selecting a plane migration algorithm. Another factor of
migration which affects the performance is Preparation
Time [15]. It is the time to start migration and transferring
the VM’s state to the target node. Ideally preparation time
has to be minimized and it depends the transfer rate and
band width of the network. The VM continues to execute
and dirty its memory at this time. Another criterion is
Resume Time. Since it is the time between resuming the
VM’s execution at the target and the end of migration, all
dependencies on the source are eliminated and does not
show direct relation with bandwidth or other major criteria.
Pages Transferred can also considered as criteria since it is
the total amount of memory pages transferred, including
duplicates, across all of the above time periods. Pages
Transferred rate directly related to network speed,
bandwidth, dirtying rate and so on.

The effect of amount of memory used in the allotted
memory hierarchy by VMsis a key improvising factor for
performance optimization [2], [14]. The amount of memory
allocated by hypervisor to VM is called configured
memory. This configured memory act as the physical
memory for the VM user application. But this memory
cannot be fully allotted to VM due to various issues and the
actual allotted memory is called allocated memory and it is
less than the configured memory. Even this allotted memory
is not completely utilized by VMs in the server. That
memory which is actually used by VMs are called used
memory. When different applications are running on VM,
these applications request memory from VM. So VM
allocate memory for them from this used memory. When
memory migration is performing, the status of this used
memory is transferred from source server to destination
server. If an updation is reported in an already sent page,
then it is required to transfer that change only (delta) to the
destination, instead of the whole page. As compared with
used memory this delta is very small. This method will

reduce the size of data transferred from source to
destination, thus the migration time also get reduced.

V. EXPERIMENTAL SET UP

Factors we analyzed in the previous section were
evaluated through the event driven simulator called cloudsim
simulator. The simulations were done to evaluate the effect
of each factor in the performance of migration process. To
evaluate the performance of Cloud, the virtual migration
scenario were simulated through cloudsim in a Window 7
OS basic (64-bit), i3 Processor, 370 M Processor, 2.40 GHz
of speed with memory of 3 GB and the language used is
Java. Clark’s [3] Pre-copy method is implemented as the
migration algorithm here. The simulation model involves 40
VMs with cloudlets in it. It includes one data center and 20
numbers of hosts in it. Bandwidth assigned is 2 GB/s and
VMM selected is Xen server.

VI. RESULT ANALYSIS

In migration, mainly CPU status, Memory status and
storage status are transferred from source to destination. In
this study we consider storage as common central store such
as SAN or NAS. So the effect of storage migration is not
included here. From literature survey and our study, it is
observed that the amount of CPU status information needed
to be transferred is very small as compared with other
parameters. Even if the CPU is loaded with CPU intensive
jobs then also there is no much change in migration data or
time. It is because in CPU intensive jobs also the status
information required to be transferred is same. So we can
consider that live migration is independent of CPU loads.

While in memory migration both memory pages and the
dirty bits (will set if there is a modification in already
transferred pages) are to be transferred. Since continuous
updation is taking place, this is a huge amount of
information as compared with other fields. To study the
effect of stress on memory migration, we have dirtied
almost all memory pages, which leads to the drastic growth
of dirty memory size and it prolongs the migration time,
down time and migration data.

When we perform live migration in cloudsim using Xen
server, it took around 35.38 seconds as total migration time
(TMT) and down time is 5.07 seconds and transfers an
amount of 2048 MB of data.

The fig. 3 show the relation between migration-time
versus dirty memory size (in MB). Dirty memory size
represents the change or updation happened to the page
whose copy is already transferred to the destination. Here
instead of transferring the entire page again, a bit which
maps the change is only transmitted (dirty bit). As the time
progresses some pages are missed because of speed
mismatch between the networks and due to reasons like
network congestion. This lead to dirtying of more bits and
thus total dirty page size increases. As the graph progresses,
the size of dirtying memory rate doubles according to the
migration time and reaches a maximum value and then start
decreasing. The reason for increase in the size of dirtying
memory is because, while migration process progresses the
amount of data resends increases and thus increases

Anu V.R et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2263-2270

© 2015-19, IJARCS All Rights Reserved 2268

migration time. After reaching a peak value it starts
decreasing. This indicates the starting of down time where
the source VM stops its working at source machine and
sends all the pages of data to destination. At this time, VM
being migrated is unresponsive to ping requests. So the
amount of dirtying start decreasing, thus the graph bends
downward. Again, in this graph the relation between dirty
memory size and total migration data can also be shown.
Initially the data required updation in the source machine is
small and thus the size of dirtying memory is also small.
Thus in migration, amount of data transferred is also small.
So initially the graph doesn’t show any clear linear
progression. But when the dirty memory size increases into
a reasonably big value (around 50 MB) the migration data
also increases and shows a linear change.

29 30 31 32 33 34 35 36 37 38
0

500

1000

1500

2000

2500

Migration Time(s)

D
ir

ty
 M

e
m

o
ry

 S
iz

e
(M

B
)

Fig. 3 Effect of dirty memory size on migration time

Total Migration time is composed of transfer time and
down time. The transfer time is the time when the pages
were transferred from source to destination when both the
machines are alive. Initially, as the size of dirty memory
increases there is no much change in migration time. It is
because the dirty rate is low at initial stage and amount of
data transferred is also low. As the migration data size
increases, migration time also get increased.

100 200 300 400 500 600 700 800 900 1000 1100
1

1.5

2

2.5

3

3.5

4

Migration Time(s)

To
ta

l M
ig

ra
tio

n
da

ta
(G

B
)

Fig. 4 Effect of migration data on migration time

Fig: 4 show the relation between migration time and total
migration data. This is an extension to relation between page

dirty rate and migration time. If the page dirty rate increases,
amount of data migrated also increases. It is clear from fig. 4
that there is no major drift at initial points, but gradually a
predominant change occurs due to heavy page dirtying rate.
Selection of down time initiation in VMs and duration of
down time has to be managed carefully. If it took more time
to synchronize dirty pages, then down time prolongs in a
negative way. So in most of the hypervisors considered a
time out option for this situation. Sometimes here after, a
cold migration is initiated. Fast synchronization of dirty
pages reduces the down time, but it increases the migration
data and thus migration time. If a slow synchronization is
applied, it create more dirty pages thus prolongs the down
time. So a tradeoff has to be adopted while selecting the
dirty page synchronization.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

D
ir

ty
 m

e
m

o
ry

 P
a

g
e

(M
B

)

Down time (s)

Fig. 5 Effect of dirty memory rate on down time

Fig. 5 indicate the relation between dirty memory page and
down time. At down time, the source is temporarily stopped
the VM execution and transfers the pages from source to
destination and ideally down time has to be very small. The
size of dirty memory increases means there are more
number of changes in the already transferred pages from
source to destination through migration. So that changes
have to be reflected into the corresponding pages. This
prolongs the down time. So the graph shows a linear drift as
the size of dirty page increases. Reaching into a maximum
point the graph moves downwards. It is due to the time out
option.

Table I. Memory Migration Comparison

Hypervisor Performance matrices
Down Time(s) Migration Time(s) Migration

Data(MB)
KVM

Hyper-V

VMware

Xen

0.18

0.59

1.01

5.07

12.45

24.01

18.05

35.38

250

2255

2050

2048

In Table 1, we compare the migration time and down time
of Xen hypervisor in virtual machine memory migration
with other available hypervisors. The migration scenario and
system specification considered for these hypervisors are

Anu V.R et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2263-2270

© 2015-19, IJARCS All Rights Reserved 2269

Table II. Effect of dirty page rate on migration time, down time & migration data

also the same as in the case of the experimental setup .The
results for downtime and migration time for other
hypervisors are collected from other researchers’
experiments [15], [23], [24] ,[25]. The result shown that
network throughput of Hyper V is the maximum, even
though the migration time is not as good as other
hypervisors values. A common observation is that when the
amount of data increases migration time required is also
increases. It is due to network congestion and more
bandwidth utilization for transferring more amounts of
pages. Another observation from the table is that the
variation between downtime with migration data and
migration time with migration data are not proportional
especially in the case of KVM hypervisor for large values of
data. The reason for same may be the change of methods
adopted for migration in each hypervisor. Normally if a
migration does not finish in a fixed time, cloud
administrators initiate a time out option and complete it with
cold migration.

The effect of dirty page rate on migration time, down time
and migration data can be clearly identified from Table 2.
Observation from Table 2 is that, the influence of dirty page
rate is negligible up to a value of 128MB in most of the
hypervisors.

When the dirty page rate is 1024MB and above, bandwidth
utilization is huge for total data transfer. Thus migration
time and down time substantially increases. Here only in
VMware, the total migration data increases proportionally as
the dirty page rate increases. In Xen and Hyper-V instead of
continuous increase, the migration data decreases after a
certain point (2048 MB).

This is be due to some of the dirty pages will be swapped
into the storage disk, which saves the synchronization time
for the memory. When the pages are in the storage disk, it is
shared rather than transferred through memory migration. In
Table 2, KVM is not observed because, for large values of
page dirty rate, this could not complete the live migration
process. So for large values of dirty page rate, a time out
option is initiated and completes the migration process
through cold migration. The dirty memory size becomes a
crucial factor in Xen’s downtime. For large values of dirty
memory rate the downtime goes up to or over 20 seconds
and which is not favorable for most of the web services.

The impact of CPU activity is trivial on live migration.
Our simulation results show that even though CPU intensive
workloads are allocated to migrating virtual machines,
which will not affect the speed of migration process. But
Memory write operation impacts more on memory
migration because of increase in the dirty page rate. The
dirty page rate increases the amount of total migration data
and thus migration time.

Dirty
Memory Size

(MB)

Total Migration data(GB) Migration Time(s) Downtime (s)

H
yp

er
-V

V
M

w

ar
e

X
en

H
yp

er
-V

V
M

w

ar
e

X
en

H
yp

er
-V

V
M

w

ar
e

X
en

2 2.01 0.68 2.01 21.3 6.5 30.6 0.52 0.5 4.1

4 2.05 0.68 2.01 20.05 6.2 30.5 0.55 0.51 4.01

8 1.95 0.65 2.05 20.0 7.02 31.5 0.51 0.6 4.44

16 2.05 0.62 2.25 22.2 6.00 32.4 0.55 0.55 4.02

32 2.25 1.12 2.2 19.08 5.0 30.7 0.51 0.52 4.05

64 2.2 1.45 2.7 24.01 5.7 30.5 0.59 0.51 4.9

128 2.7 1.23 2.45 25.5 6.6 33.3 0.6 1.0 5.01

256 2.75 1.55 2.25 28.8 8.1 33.2 0.66 2.0 5.5

512 3.00 1.9 3.00 30.1 16.05 35 0.61 1.02 7.01

1024 4.09 2.01 4.6 35.1 18.05 36.05 0.60 1.01 14.25

2048 2.69 3.27 2.45 27.5 25.6 35.3 0.65 1.02 5.07

Anu V.R et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2263-2270

© 2015-19, IJARCS All Rights Reserved 2270

VII. CONCLUSION

Live migration is an important feature of VM
management in data centers. In this paper different factors
affecting the live VM migration are discussed. Different
challenges to keep the live VM migration also analyzed. By
reducing the downtime into a negligible value keep the
migration process as live migration. By analyzing migration
characteristics, it found to be clear that the factors such as
total migration time and down time are not linearly related
to the page dirtying rate and link bandwidth rate. So a
tradeoff has to be maintained between these parameters to
get optimum performance. As compared with CPU status
migration, memory migration is more affected by the page
dirty rate thus migration speed gets reduced. Like dynamic
parameters, the effects of static parameters are also equally
important especially for applications which do not have high
memory modification rate.
We plan to analyze the effect of static parameters in live
migration along with dynamic parameters. Currently, the
effects of dynamic parameters are only considered to
analyze the live migration characteristics. In future, we plan
to analyze and improvise the static parameters, so that it will
improve performance of live migration.

VIII. REFERENCE

[1] Akoush S, Sohan R, Rice A, Moore A.W & Hopper A.,
Predicting the performance of virtual machine migration. In
IEEE International Symposium on Modelling, Analysis &
Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 33-46, 2010.

[2] Wenjin Hu and Andrew Hicks, A Quantitative Study of
Virtual Machine Live Migration,InProceedings of the ACM
Cloud and Autonomic Computing Conference, pp. 11-15
,2013.

[3] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm
Hansen, EricJul, Christian Limpach, Ian Pratt, and Andrew
Warfield, Live migration of virtual machines. In NSDI ’05:
2nd Symposium on Networked Systems Design and
Implementation, USENIX Association, Vol.2, pp. 273-286,
2005.

[4] Raja Wasim Ahmad& Abdullah Gani,A survey on virtual
machine migration and server consolidation frameworks for
cloud data centers.In Journal of Network and Computer
Applications, Vol.52, pp. 11-25, 2015.

[5] Senthil Nathan, UmeshBellur, On Selecting the Right
Optimizations for Virtual Machine Migration,InInternational
Conference on Virtual Execution Environments on 12th ACM
SIGPLAN/SIGOPS ,pp. 37-49,2016.

[6] Robert Jay Creasy. The origin of the VM/370 time-sharing
system.In IBM Journal of Research &Development, Vol.25,
pp. 483–490, 1981.

[7] Zhao,Jia,LiangHu,GaochaoXu,DechengChang,Yan Ding
&XiaodongFu,A Fast Live Migration Algorithm of Virtual
Machine with CPU Scheduling.In Proceedings of the
Internatonal Conference on Grid Computing and
applications(GCA),In Proceedings of the International
Conference on Grid computing and Applications(GCA),pp.
115-120,2013.

[8] P. Sv¨ard, J. Tordsson, B. Hudzia, and E. Elmroth,High
Performance Live Migration through Dynamic Page Transfer
Reordering and Compression, In CloudCom ’11: 3rd IEEE

International Conference on Cloud Computing Technology
and Science, pp. 542–548, 2011.

[9] J. Yang, Key technologies and optimization for dynamic
migration of virtual machines in cloud computing, In
International Conference on Intelligent Systems Design and
Engineering Applications, pp.643-64, 2012.

[10] Liu,Haikun,HaiJin,Cheng-ZhongXu&Xiaofei Liao
,Performance and Energy modelling for live migration of
virtual machines. In the Journal of Cluster Computing 16,
Vol.2, pp.249-264, 2013.

[11] Maziku,Hellen&SachinShetty,Towards a network aware
vmmigration:Evaluating the cost of vm migration in cloud
data ceters,In IEEE 3rd

[12] Chen J,QinY,Ye y & Tang Z,A Live Migration Algorithm for
Virtual Machinein a Cloud computing
Environment.InUbiquitious Intelligence and Computing and
IEEE 12

 International Conference on Cloud
Networking(CloudNet),pp.114-119,2014.

th

[13] Forsman,Mattias,AndreasGlad,Lars Lundberg
&DragosIlie,Algorithms for Automated Live Migration of
Virtual Machines,In Journal of systems iand software ,Vol.
101,pp.110-126,2015.

 International Conference on automatic and Trusted
computing,pp.1319-1326,2015

[14] Thaman J & Singh M, Improving Performance of Cloud
Datacenters Using Heuristic Drive VM Migration. In
International Conference on Next Generation Computing
Technologies (NGCT), pp.41-45, 2015.

[15] Salfner,Felix,PeterTroger&andreasPolze,downtime Analysis
of Virtual Machine Live Migration.In fourth International
Conference on Dependabilty ,IARIA,pp.100-105,2011.

[16] KivityAvi,YanivKamay, dorLaor,Uri Lublin & Anthony
Liguori,kvm: the Linux Virtual Machine Monitor,In
Proceedings of the Linux Symposium,Vol.1,pp.225-230,2007.

[17] M. R. Hines and K. Gopalan.Post-copy Live
VirtualMachineMigrationUsing AdaptivePre-paging and
DynamicSelf-ballooning, In VEE, 2009.

[18] Shirinbab,Sogand,Lars Lundberg &DragosIllie,Performance
Comparison of kvm, vmware and xenserver using a large
telecommincation application, In cloud Computing IARIA
XPS Press,2014.

[19] Song X, Shi J, Liu R,Jian Yang &Haibo Chen ,Parallelizing
Live Migration of Virtual Machines,In ACM Sigplan
Notices,Vol.48,pp.85-96,2013.

[20] Svard,PetterB,Hudzia S Walsh,JohanTordsson& Erik
Elmroth. The Noble Art of Live VM Migration-Principles and
Performance of Pre copy, Post copy and Hybrid Migration of
Demanding Workloads, Techncal Report UMINF, Vol.
14.10,2014.

[21] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim
Harris, AlexHo, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield, Xen and the art of virtualization. In SOSP ’03:
Proceedings of the nineteenth ACMsymposium on Operating
systems principles, Vol.37, pp.164–177, 2003.

[22] Eric Harney, SebastienGoasguen, Jim Martin, Mike Murphy,
and MikeWestall, The efficacy of live virtual machine
migrations over the internet, In VTDC ’07: 2nd International
Workshop on Virtualization Technologies in Distributed
Computing, pp 1-7. ACM, 2007.

[23] www.Linux-kvm .org
[24] Why Hyper-V? Competitive-advantages-of-windows-server-

hyper-v-over-vmware-vsphere.pdf, October 2013
Vo1.0.White Paper.

[25] Virtual Machine Migration Comparison: VMware vSphere vs
Microsoft Hyper-V.A principled technologies test report,
commissioned by VMware Inc.Whitepaper, 2011.

	Performance Optimizing Factor Analysis of Virtual Machine Live Migration in Cloud Data-centers
	Introduction
	Literature Review
	MOTIVATION
	Challenges for keeping migration ‘live’

	FACTOR ANALYSIS
	EXPERIMENTAL SET UP
	RESULT ANALYSIS
	CONCLUSION
	REFERENCE

