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Abstract: For advancing software maintenance process, attempts are necessitated at developers end. One such endeavour is applying refactoring 
to eliminate code smells from the software. The aim of refactoring process is to identify the smelly areas known as Code Smells. It makes the 
code livelier, easier to read and hence understanding of code increases.  The aim of the paper is to perform an empirical analysis on the code 
smells and metrics. A set of object oriented metrics are selected for the study. Hence the study introduces a metric based prediction model of 
code smells. The paper initially introduces the statistical relationship between code smells and metrics. Based on the results neural network 
model development is made possible. The accuracy of the developed model is validated on machine learning algorithms. Four versions of 
Apache Tomcat (6.0, 7.0, 8.0, 8.5.11) are selected for the work.  Successive versions of Tomcat source code are applied for validation of study. 
The results from the study revealed that metrics can predict smelly classes effectively 
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I. INTRODUCTION  

For achieving good quality of software product regular 
maintenance is necessary. Maintenance is performed in 
various forms like software testing, code inspections, 
walkthroughs and refactoring. Despite of these efforts faults 
still remain in the software. So the target of the developers 
should be at the root cause of faults. The cause for faults 
could be identified easily if the location where fault exists is 
examined. M. Fowler [1] had introduced a book on 
refactoring which revealed the problematic area in the code 
commonly known as “Code Smell”. The main objective of 
the paper is to identify such areas in the code and then apply 
metrics based heuristics to aid the maintenance process.  
As object oriented metrics express internal quality attributes 
of software very effectively hence we consider them along 
with code smells. Software metrics are a great support to 
perform such type of empirical studies.  
Object-oriented metrics [2] are used for the development of 
prediction model. We have used various object oriented 
metrics at package level; class level and method level which 
covers almost all concepts of object oriented programming 
such as encapsulation, inheritance, coupling, complexity and 
cohesion. The selected metrics are widely accepted in the 
literature by the researchers [3].  
In this paper we have performed an empirical analysis on 
Apache Tomcat source code. It is a java based open source 
project. Tomcat is also called “Tomcat Server” which is a 
product of Apache Software Foundation (ASF) [4]. Tomcat 
is an implementation of Java Servlet and Java Server Pages 
(JSP) technologies. Four versions of Apache Tomcat (6.0, 
7.0, 8.0, 8.5.11) are selected for the work.   
We have performed the statistical analysis for developing 
the metrics based prediction model of code smells. Based on 
the results neural network model development is made 
possible. The accuracy of the developed model is validated  
 
 

on machine learning algorithms. Successive versions of 
Tomcat source code are applied for validation of study. The 
results from the study revealed that metrics can predict 
smelly classes effectively. 

II. RELATED WORK  

Some of the studies have been found in the literature aimed 
at performing refactoring which are given below. 
Tom Mens et al. [5] revealed that refactoring could be 
possible at five different types. Five classes of source code 
i.e. Document, ASCIIDoc, PSDoc, PDFDoc, Printer, and 
Previewer are used to apply refactoring process. S. Counsell 
et al. [6] performed an empirical analysis to remove code 
smells from the source code of java source software. At least 
21 code smells were being removed from the code.  
Raed Shatnawi [6] tried to improve the quality of two open 
source projects - Eclipse & Struts using refactoring. 
Hierarchal approach had been used for quality management. 
Seema Kansal [8] introduced new type of refactoring in 
order to remove code smells. Macro definitions had been put 
into the code where refactoring is demanded. Miryung Kim 
et al. [9] introduced pros and corns of refactoring at 
Microsoft. Three methods had been performed which 
involved a detailed investigation, structure consultations 
with software experts along with analysis of historical data. 
The study concluded that refactoring leads to minimizing 
risks and costs if faults are identified with time.  
Davide Arcelli et al. [10] divulged that code performance 
could be achieved using Queuing Network Model of code 
smells and anti-patterns. Anshu Rani and Harpreet Kaur [11] 
performed an empirical investigation Intellij idea And 
Eclipse by comparing their results. Various refactoring 
characteristics have been studied along with refactoring 
tools.  
Seyyed Ehsan Salamati Taba et al. [12] justified that 
relationship exists between faults and code smells. A fault 
prediction model has been proposed by considering the 
source code of open source projects- ArgoUML and Eclipse. 
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The study finalized that classes containing code smells are 
more prone to faults. Mesfin Abebe and Cheol-Jung Yoo 
[13] collected a huge data for performing refactoring from 
1999 for applying refactoring.  
M. Lakshmanan and S.Manikandan [14] revealed that 
identifying code smells in the source code is still a difficult 
task for developers. Although a wide range of detection 
tools are available. Yann-Gael Gueheneuc et al. [15] 
introduced a novel tool PTIDEJ for the detection of code 
smells, metrics and micro architectures. C++, Java code 
could be located easily for the design anomalies.  
Sharanpreet Kaur and Satwinder Singh [16] performed a 
detailed systematic literature survey for detecting the 
categories of code smell detection. These techniques range 
from traditional to visualization based, semi automatic and 
automatic approach. Satwinder Singh and K.S .Kahlon [17] 
introduced a refactoring model which identifies code smells 
and its types in open source project Firefox. Relationship 
between OO metrics and code smells is justified based on 
results obtained. Two new types of metrics- PuF and EncF 
have been proposed. Satwinder Singh and Puneet Mittal [18] 
developed a model that discloses flaws in Firefox Mozilla 
based on metric value. High, Medium and Low category 
bugs are highlighted based on the approach. For generating 
the results from object oriented metrics tool named 
Columbus Wrapper Framework has been used. 

III. DATA COLLECTION 

The study involves the collection of four rereleases of 
Apache Tomcat version 6.0, 7.0, 8.0, 8.5.11. Only those 

releases of tomcat are shortlisted I which at least 5-7 % 
classes contains code smells. We have gathered information 
about code smells form Iplasma tool [19, 20, and 21] which 
is s a famous reverse engineering tool.  
The metrics and code smells data is collected from tool. 
Selected metrics for the work empirical study are – ATFD, 
CBO, FDP, FANOUT, CC, CM, WOC, WMC, AMW, 
NOA, LOCC, DIT, HIT, NOD, NOAM, NOPA and TCC. 
Table I to IV represents the summarized metrics statistics 
results for Tomcat versions 6.0, 7.0, 8.0 and 8.5.11. 
Code smells selected are- God Class, Data Class, 
Schizophrenic Class and Refused Parent Bequest. The 
metrics results are consolidated at class level. A short 
description about every code smell is given below. 

a. God Class – It is a class which is enormously 
larger in size as compare to other classes in the 
system.  

b. Data Class - The data class code smells reefers to a 
class which contains large amount of data while it 
is lacking in complex details. 

c. Schizophrenic Class - It refers to a class in which 
many modifications are made for different reasons. 
It is also known as Divergent Change. 

d. Refused Parent Bequest – This code smell is 
found where inheritance is applied in the source 
code. Such classes do not use the functionalities of 
the parent class. 

.  

Table I.  Summarized Metrics Statistics of Tomcat Version 6.0 

                                            Tomcat 6.0 Percentile 
Quality 

Dimension 
 

Metric Mean Std 
Dev 

Min Max 25 50 75 90 

Coupling ATFD 2.51 7.093 0 81 0.00 0.00 2.00 7.00 
CBO 3.32 6.109 0 53 0.00 1.00 4.00 10.00 
FDP 0.92 2.095 0 21 0.00 0.00 1.00 3.00 

FANOUT 9.82 21.627 0 206 0.00 1.00 9.00 29.00 
CC 2.35 10.763 0 286 0.00 0.00 1.00 5.00 
CM 6.77 40.990 0 1139 0.00 0.00 2.00 11.00 

Complexity WOC 0.6672 0.36377 0 1.00 0.3600 0.7800 1.0000 1.0000 
WMC 29.29 56.034 0 691 2.00 9.00 31.00 79.00 
AMW 1.9862 2.14934 0 29.00 1.0000 1.5000 2.5925 4.4970 
NOA 5.98 10.846 0 126 0.00 2.00 7.00 16.00 

LOCC 255.32 434.288 2 5962 40.00 109.50 286.25 649.70 
Encapsulation NOAM 3.02 8.034 0 102 0.00 0.00 3.00 8.00 

NOPA 0.40 1.892 0 36 0.00 0.00 0.00 1.00 
Inheritance DIT 0.63 0.929 0 5 0.00 0.00 1.00 2.00 

NOD 1.10 4.242 0 56 0.00 0.00 0.00 2.00 
HIT 0.31 0.688 0 4 0.00 0.00 0.00 1.00 

Cohesion TCC 0.3521 0.39162 0 1.00 0.0000 0.1900 0.6700 1.0000 

 

Table II.  Summarized Metrics Statistics of Tomcat Version 7.0 
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                                            Tomcat 7.0 Percentile 
Quality 

Dimension 
 

Metric Mean Std 
Dev 

Min Max 25 50 75 90 

Coupling ATFD 2.25 8.268 0 192 0.00 0.00 1.00 6.00 
CBO 3.28 6.394 0 63 0.00 1.00 4.00 9.00 
FDP 0.87 2.384 0 33 0.00 0.00 1.00 2.00 

FANOUT 8.82 20.645 0 251 0.00 1.00 8.00 25.00 
CC 2.25 11.327 0 289 0.00 0.00 1.00 4.00 
CM 6.08 42.458 0 1041 0.00 0.00 2.00 9.00 

Complexity WOC 0.6599 0.38552 0 1.00 0.3300 0.8300 1.0000 1.0000 
WMC 25.89 54.169 0 759 1.00 7.00 26.00 70.00 
AMW 1.9205 2.20182 0 36.00 0.8600 1.4000 2.5800 4.1760 
NOA 5.19 10.030 0 140 0.00 2.00 6.00 13.00 

LOCC 232.58 436.128 2 7099 31.00 93.00 235.00 576.00 
Encapsulation NOAM 2.47 7.820 0 136 0.00 0.00 2.00 6.00 

NOPA 0.21 1.432 0 36 0.00 0.00 0.00 0.00 
Inheritance DIT 0.71 1.070 0 5 0.00 0.00 1.00 2.00 

NOD 1.15 5.083 0 86 0.00 0.00 0.00 2.00 
HIT 0.33 0.703 0 5 0.00 0.00 0.00 1.00 

Cohesion TCC 0.3522 0.40163 0 1.00 0.0000 0.1700 0.7100 1.0000 

Table III.  Summarized Metrics Statistics of Tomcat Version 8.0 

                                             Tomcat 8.0 Percentile 
Quality 

Dimension 
 

Metric Mean Std 
Dev 

Min Max 25 50 75 90 

Coupling ATFD 0.82 3.444 0 67 0.00 0.00 0.00 2.00 
CBO 1.12 2.699 0 44 0.00 0.00 1.00 3.00 
FDP 0.38 1.272 0 19 0.00 0.00 0.00 1.00 

FANOUT 2.51 6.744 0 72 0.00 0.00 2.00 7.00 
CC 0.69 4.320 0 128 0.00 0.00 0.00 1.00 
CM 1.37 9.383 0 272 0.00 0.00 0.00 2.00 

Complexity WOC 0.6533 0.41224 0 1.00 0.2200 0.9300 1.0000 1.0000 
WMC 15.67 42.819 0 827 0.00 4.00 14.00 37.00 
AMW 1.5658 1.87144 0 15.50 0.0000 1.0000 2.0000 3.7710 
NOA 3.43 7.398 0 126 0.00 1.00 4.00 8.00 

LOCC 134.83 224.532 2 3139 22.00 62.00 146.00 330.40 
Encapsulation NOAM 1.56 5.794 0 140 0.00 0.00 1.00 4.00 

NOPA 0.15 1.455 0 36 0.00 0.00 0.00 0.00 
Inheritance DIT 0.62 0.950 0 5 0.00 0.00 1.00 2.00 

NOD 0.84 3.409 0 41 0.00 0.00 0.00 2.00 
HIT 0.28 0.658 0 5 0.00 0.00 0.00 1.00 

Cohesion TCC 0.2962 0.41613 0 1.00 0.0000 0.0000 0.6725 1.0000 
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Table IV.  Summarized Metrics Statistics of Tomcat Version 8.5.11 

                                             Tomcat 8.5.11 Percentile 
Quality 

Dimension 
Metric Mean Std 

Dev 
Min Max 25 50 75 90 

 
Coupling 

ATFD 0.88 4.105 0 66 0.00 0.00 0.00 2.00 
CBO 1.09 2.838 0 44 0.00 0.00 1.00 3.00 
FDP 0.39 1.357 0 19 0.00 0.00 0.00 1.00 

FANOUT 2.50 7.853 0 122 0.00 0.00 1.00 7.00 
CC 0.68 4.173 0 122 0.00 0.00 0.00 1.00 
CM 1.43 9.369 0 267 0.00 0.00 0.00 2.00 

Complexity WOC 0.6555 0.41370 0 1.00 0.2175 0.9600 1.0000 1.0000 
WMC 15.21 43.188 0 827 0.00 4.00 12.25 34.90 
AMW 1.5022 1.79991 0 15.50 0.0000 1.0000 2.0000 3.6970 
NOA 3.39 7.653 0 142 0.00 1.00 4.00 8.00 

LOCC 131.73 232.928 2 3139 21.00 58.00 137.00 317.70 
Encapsulation NOAM 1.53 5.756 0 140 0.00 0.00 1.00 4.00 

NOPA 0.15 1.456 0 36 0.00 0.00 0.00 0.00 
Inheritance DIT 0.61 0.960 0 5 0.00 0.00 1.00 2.00 

NOD 0.80 3.051 0 39 0.00 0.00 0.00 2.00 
HIT 0.29 0.638 0 4 0.00 0.00 0.00 1.00 

Cohesion TCC 0.2933 0.41699 0 1.00 0.0000 0.0000 0.6725 1.0000 

Table V.   UMR Analysis of Tomcat Versions 

UMR 
Test 

Tomcat 6.0 Tomcat 7.0 Tomcat 8.0 Tomcat 8.5.11 

B Sig. B Sig. B Sig. B Sig. 

ATFD -.035 .861 .095 .000 .337 .000 .075 .794 

CBO -.073 .000 .031 .740 .334 .000 -.228 .000 

DIT -.852 .000 -1.047 .000 -1.235 .000 -1.537 .000 

HIT -.243 .677 .011 .962 .003 .993 .027 .956 

LOCC -.009 .000 -.003 .000 -.011 .000 -.005 .000 

NOA -.033 .000 .038 .487 .009 .711 .008 .737 

NOD .005 .949 .005 .874 .000 .999 1.211 1.000 

NOM .584 .000 .101 .000 .273 .000 .224 .000 

WMC -.015 .000 -.015 .000 .127 .001 .061 .000 

AMW -.073 .540 -.099 .000 -.368 .007 -.260 .000 

FANOUT .009 .389 -.085 .000 -.159 .000 -.004 .914 

WOC .247 .533 3.980 .000 5.333 .000 4.066 .000 

CC -.834 .000 -.079 .298 -11.35 .995 .861 .000 

CM .202 .000 -.049 .718 -.105 .000 -.122 .000 

NOAM -.807 .000 -.178 .000 -.633 .000 -.462 .000 

NOPA -.660 .000 -.324 .000 -.684 .000 -.518 .000 

 

In the empirical analysis we have used logistic regression for 
code smell prediction based on metrics value. Initially 
Regression Analysis is applied to examine the relationship 
among variables. We have applied Univariate Multinominal 
Regression (UMR) test to evaluate the relationship between 
metrics and code smells based upon the cut off p-value (.05). 
Metrics are selected as independent variables for the study.  

The independent variables are removed from the analysis 
using PCA (Principle Component Analysis). For the 
development of prediction model Neural Network MLP is 
applied which is a powerful tool support for prediction. The 
accuracy of predicted model is confirmed by testing model 
successive versions. The area under Receivable Operating 
Characteristics (ROC) Curve is used to evaluate the accuracy 
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of the model. Testing of model is verified with machine 
learning algorithms. 

IV. RESULTS 

In this section we present the results obtained from the 
mentioned datasets and their concluded outputs obtained.  
 

IV a. UNIVARIATE MULTINOMINAL REGRESSION 
 
We have performed Univariate Multinominal Regression 
(UMR) upon the code smells and the metrics results obtained. 
Table V depicts the results after UMR Test.  P-value is 
examined and metrics values less than .05 are omitted from the 
study. All the selected metrics p-value is less than .05 except 
few metrics like HIT, NOA and NOD. So we are omitting 
HIT, NOA and NOD metrics.  
Similarly CC and CM metrics are fulfilling the p value for 
only two versions of Tomcat. So these are also omitted. TCC 
metric is excluded from the study after PCA. Hence the final 
set of metrics is - ATFD, CBO, FDP, FANOUT, WOC, 
WMC, AMW, LOCC, DIT, NOAM, and NOPA which is used 
for prediction model development.  
 

IV b. NEURAL NETWORK  
 

Neural Network Model MLP (Multi Layer Perception) is used 
for the development of prediction model. Hyperbolic Tangent 
Function and Softmax Activation Function are applied for 
Hidden Layer and Output Layer respectively. We have 
calculated the area under ROC curve for the evaluation of 
model. The ROC curve plots the probability between true 
positives and false positives for the curve range between 0 and 
1. The range of the discrimination is as follows: 

 
• 0.5 <= ROC < 0.6 It means no discrimination 
• 0.6 <= ROC < 0.7 It means poor discrimination 
• 0.7 <= ROC < 0.8 It means good discrimination 
• 0.8 <= ROC < 0.9 It means excellent discrimination 
• 0.9 <= ROC < 1 It means outstanding discrimination  

 
The NN MLP area under ROC curve is represented in Table 
VI which is given below. The model generates an excellent 
discrimination for the results 

                 Table VI. Area under ROC curve for NN model 

Tomcat Versions Class Level 

Tomcat 6.0 .871 

Tomcat 7.0 .852 

Tomcat 8.0 .853 

Tomcat 8.5.11 .861 

 
IV c. EVALUATING MODELS ON NEXT RELEASES 

 
The aim of the paper is to develop the model to predict code 
smells based on metrics value. For the validation of work 
successive models are applied on the releases of Tomcat. We 
have applied Tomcat 6.0 on Tomcat 7.0, 8.0 and 8.5.11 and so 
on. Table VII reveals the results.   

            Table VII. Testing of Code smells prediction model  

Applications of 
Model 

Applying Tomcat 6.0 

Tomcat 
7.0 

Tomcat 
8.0 

Tomcat 
8.5.11 

0.981 0.921 0.947 

Applying Tomcat 7.0 - 0.972 0.965 

Applying Tomcat 8.0 - - 0.987 

V. CONCLUSION  

We have tried to develop the metric based code smells 
prediction model. Although from the set of selected metrics all 
are not fulfilling the p-value in the UMR Analysis. So we have 
used the metrics accomplishing the task of model 
development. A good accuracy has been shown by the ROC 
curve. So we conclude that the predicted model can work 
satisfactory in general.  
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