
Volume 8, No. 4, May 2017 (Special Issue)

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 199

The Survey of Enhanced Min-Max Approach For Resource Aware Job Scheduling In
Cloud Computing

Harpreet Kaur Sachdeva
Computer Science Department

Chandigarh Engineering College, Landran
Punjab, India

cse11309.sbit@gmail.com

Anurag Jain
Computer Science Department

Chandigarh Engineering College, Landran
Punjab ,India

er.anuragjain@gmail.com

Abstract:The idea of cloud computing encourages the working of a simple computer to work together and form super computer. The
scheduling of jobs in cloud environment is done by choosing the finest and most appropriate resource available for completion of jobs or to
distribute computer equipments to jobs in such a manner that the achievement time is reduced as possible. Job scheduling has become an
active research area. A set of priority of different jobs, based on various parameters is formed. Jobs are then decided ranked and allocated to
available processors and computer machines which satisfy a predefined objective function. This paper includes the study of different job
scheduling algorithms in cloud environment. The main is to reduce the turnaround time and to improve the resource utilization.

Keywords:cloud computing, job scheduling, Heterogeneous Earliest Finish Time, Enhanced Min-Max Algorithm

I. INTRODUCTION

Cloud computing could be an innovation that uses the web
and local remote [1] servers to keep data and perform various
functions. Distributed, cluster and grid computing are the
foundation stones of this evolving technology called cloud
computing. Cloud computing licenses buyers and in addition,
organizations to utilize functions while not establishment and
contact their own documents at any PC by web contact. This
innovation licenses for a lot of capable [2] computing by
integrative data stockpiling, procedure and measure data.

Figure 1. Cloud Computing Environment.

The most apt example of cloud computing is Yahoo email,
Gmail, or Hotmail and so on. All is necessary to have
essentially a web alliance and having the capacity to start
sending electronic mail. The principle server and in addition,
electronic mail administration, programming, framework is all
in the cloud (web) and is totally overseen by the cloud
administration dealer Yahoo, Google and the purchaser gets
the chance to utilize the bundle alone and delight in the
preferences.

Cloud computing could be a general term at any cost that
includes delivering hosted services over the web.
Administrations are extensively talking separated into three
classes:

• Infrastructure-as-a-Service (IaaS),
• Platform-as-a-Service (PaaS) and
• Software-as-a-Service (SaaS).

II. JOB SCHEDULING

Job scheduling algorithm is a method by which jobs are
matched, or allocated to data center resources. Due to
contradictory scheduling objectives normally no absolutely
perfect scheduling algorithm exists. A good scheduler
implements a suitable compromise or applies a combination of
scheduling algorithms according to different functions. A
problem can be solved in seconds, hours or even years,
depending on the algorithm applied. The efficiency of an
algorithm is evaluated by the amount of time necessary to
execute it. The execution time of an algorithm is stated as a
time complexity function related to the input. There are several
kinds of time complexity algorithms that appear in the
literature. If 20 problems have a polynomial time algorithm,
the problem is tractable, feasible, efficient or fast enough to be
executed on a computational machine. In computational
complexity theory, the set of problems can be treated as
complexity class based on a certain resource.

In job scheduling many advantages like Current use of all AIS
resources, Increased Throughput or Accuracy, Less
improvement period, customer limits meet, consumer made
answerable for provided that input on agenda, superior
infrastructures with customer, Prevention of congestion and
underuse of capitals, work setback more willingly clear,
Reduced misunderstanding within the AIS facility, Better use
of multi-programming competences [3], Predictability of the
effects of an increased assignment Some drawback of Job
scheduling likework Quality, Reduced Absenteeism and
turnover, Inequity, Less Teamwork.

III. RELATED WORK

Kumar et.al, 2016 [4] demonstrated a two-level load balancer
approach by combining join idle queue and join shortest queue

Harpreet Kaur Sachdeva et al, International Journal of Advanced Research in Computer Science, 8 (4), May 2017 (Special Issue),199-202

© 2015-19, IJARCS All Rights Reserved 200

approach. Authors have used cloud analyst stimulant to test
proposed two-level load balancer approaches. The results are
analyzed and compared with the existing algorithms and as
observed, the proposed work is one step ahead of existing
techniques. Hasan Mahmud et.al; 2016 [5] considered a
practical hybrid data center infrastructure (including both self-
managed and colocation data centers) and suggest a novel
resource management algorithm based on alternating direction
method of multipliers, called CAGE (Carbon and Cost-Aware
Geographical Job Scheduling) to decrease carbon footprints.
CAGE dynamically distributes incoming workloads to Geo-
distributed data centers based on local renewable availability,
carbon efficiency, electricity price, and also the energy usage
of other tenants that share the colocation data centers. . Dr.
Rajneesh Ahmad Abba Haunt et.al;2015 [6] describeda
Hybrid Integrated Thermal-Aware Scheduling Algorithms
based on baseline approaches. The aim of this paper is to
minimize cooling energy consumption in data center labs
when assigning jobs for computation. These algorithms avoid
high thermal stress situations such as large hot spots and
thermal violations events. Anurag Jain et.al 2014 [7] defined
“cloud computing”for the beginnersand give the details about
its taxonomy. Also, this paper provides an idea of the design
challenges of cloud computing and helps in identifying
important research directions in this area. In another paper [8],
author does a detailed discussion about a two level load
balancer approach by using join idle queue and join shortest
queue approach together.Hung-Jui Chang et.al; 2009 [8]
proposes scheduling algorithms for assigning jobs with
different release time and execution time, to machines with
heterogeneous processor cardinality. The author shows that
these scheduling problems is NP-complete, and propose a
dynamic programming to find the optimal schedules. Since the
dynamic programming was time-consuming the proposed
techniques that improve the efficiency of the dynamic
programming. And also propose heuristic algorithms for this
scheduling problem. Experimental results suggest that
particular of the heuristics not only compute the answer
efficiently, but also provide a good solution.

Table 1. Technique Used
Author
Name

Year Techniques
used

Parameter

Dr.
Rajneesh
Kumar
et.al

2016

Join the idle
queue, join
the shortest
queue

 Data
Processing
Time,
Response
Time, Cost

Hasan
Mahmud
et.al;

2016 CAGE
(Carbon and
Cost-Aware
Geographical
Job
Scheduling)

Network and
processing
delays,
Reduction
compared to
PerfMax,
Total carbon
Emission,
CostMin,
PerfMax

Ahmad
Abba
Haunt
et.al;

2015 First Come
First Serve
and Round
Robin

Electricity
Consumption
and power
usage
effectiveness

Anurag
Jain et.al

2014 - -

Hung-Jui
Chang
et.al;

2009 Enhanced
Min-Max
algorithm

Resources,
Bandwidth
and
Processing
Speed

IV. VARIOUS ALGORITHM IN JOB SCHEDULING

A. Resource Aware scheduling algorithm

The resource-aware scheduling algorithm called RASA, which
searches and deletes redundant task duplications dynamically
in the process of scheduling. A further optimizing scheme is
designed for the schedules generated by our algorithm, which
can further reduce resource consumption without degrading
the makespan. Experiments are conducted to verify that both
the proposed algorithm and the optimizing scheme can achieve
good performance in terms of makespan and resource
efficiency. The factors affecting the performance of our
algorithm are analyzed. Introduce the resource-aware job
schedulers to the MapReduce framework. However, these
schedulers specify a fixed size for each task in terms of
required resources (e. g. CPU & memory), thus pretentious the
run-time resource consumption of the task is stable over its
lifetime. In particular, it has been reported that the execution
of each MapReduce task can be divided into multiple phases
of data transfer, processing and storage. A task is divided into
small unequal sizes called phases. The phases involved in the
same task can have dissimilar resource demand in terms of
CPU, memory, disk & network usage. Therefore, scheduled
tasks based on fixed resource requirements over their durations
will often cause either excessive resource contention by
scheduling too many simultaneous tasks on a machine.
SaeedParsa and Reza Endear Maleki proposed RASA a new
task scheduling algorithm, it is composed of Max-min and
Min -min the two traditional scheduling algorithms[11]. It
considers the advantages of Max-min and Min-min algorithms
and covers the disadvantages.

B. Heterogeneous Earliest Finish Time Algorithm

Heterogeneous Earliest Finish Time (or HEFT) is a heuristic
method to schedule a set of dependent tasks onto a network of
heterogeneous workers taking communication time into
account. HEFT takes a set of tasks represented as a directed
acyclic graph, a set of workers, the times to execute each task
on each worker, and the times to communicate the results from
every job to every of its children between every pair of
workers. It descends fromthe list of scheduling
The HEFT algorithm is highly competitive in that it generates
a schedule length compared to the schedule lengths of other
scheduling algorithms with a lower time complexity. The
HEFT algorithm has two phases: a task prioritizing and a
processor selection phase. In the first phase task, priorities are
defined as rank u. rank u represent the length of the longest
path from task ni to the exit node, including the computational
cost of ni , and is given by rank u(ni) =
wi+maxnj∈succ(ni){ci,j +rank u(nj)}. For the exit task, rank
u(nexit) = wexit. The task list is ordered by decreasing value
of rank u. In the processor selection phase, the task on top of
the task list is assigned to the processor pj that allows for the

algorithms.

https://en.wikipedia.org/wiki/Directed_acyclic_graph�
https://en.wikipedia.org/wiki/Directed_acyclic_graph�
https://en.wikipedia.org/wiki/List_scheduling�

Harpreet Kaur Sachdeva et al, International Journal of Advanced Research in Computer Science, 8 (4), May 2017 (Special Issue),199-202

© 2015-19, IJARCS All Rights Reserved 201

EFT (Earliest Finish Time) of task ni . However, the HEFT
algorithm uses an insertion policy that tries to insert a task in
at the earliest idle time between two already scheduled tasks
on a processor, if the slot is large enough to accommodate the
task.
The aim of efficient scheduling is to map the tasks onto
processors and execution order is set onto the processors and
execution order is set so that task precedence requirements are
satisfied and minimum schedule length is given. HEFT
algorithm calculates average execution time first for each task
and average communication time between resources of two
immediate successive tasks. Then tasks in the workflow are
ordered (not - increasing) based on a rank function. Higher
priority is given to the task with higher rank value. The tasks
are executed in the order of their priorities and each task is
mapped to the resource that earns complete the task at the
earliest time in the in the resource selection phase.

C. Enhanced Max-min Algorithm
When a larger job is assigned to the slower resource, it results
in increase in the make span. Sometimes jobs in a meta-task
largest task are too large compared to the other tasks.
Max,Min and RASA algorithm suffer from this limitation.
Here the new approach is used for assigning the task to the
resource and the proposed solution is, first by selecting the job
just greater than the average execution time and mapping to
the slowest resource [9].
Sometimes the largest task is too large compared to other tasks
in Mata-task, in that kind of case overall makespan is
increased because too large task is executed by slowest
resource first while other tasks are executed by quicker
resource OR when there is major variance among slowest and
fastest resource in the context of processing speed or
bandwidth in that case largest task is executed by slowest
resource cause increasing in Makespan and load imbalance
across resources. Therefore, instead of selecting largest task if
the select Average or nearest greater than the average task,
then overall makespan is reduced and also balance load across
resources [10].
Pseudo code Enhanced Max-min Algorithm

1. For all submitted tasks in Meta-task; Ti
 For all resources; RJ

Cij = Eiji + RJ
2. Find task Tk costs Average or nearest Greater than

Average execution time.
3. Assign task Tk to resource R which gives t minimum

completion time (Slowest resource).
4. Remove task Tk from Meta-tasks set.
5. Update RJ to selected RJ.
6. Update Cij for all j.
7. While Meta-task not Empty

a) Find task Tk costs maximum completion time.
b) Assign task Tk to resource R which gives minimum

execution time (Faster Resource).
c) Remove Task Tk form Meta-tasks set.
d) Update rj for Selected Rj .
e) Update Cij for all j.

So in Enhanced Max-min, task selection scenario is changed,
it is stated as "Select task with Average or nearest greater than
average execution time (Average or Nearest greater than
average task) then assign to be executed by a resource with
minimum completion time (Slowest resource)".

4.4 Min-Max Algorithm

The Max-min Algorithm is based on "select a task with
maximum execution time and assign to the resource with
minimum execution time"Minimax (sometimes Min
Max or MM) is a decision rule used in decision theory, game
theory, statistics and philosophy for minimizing the
possible loss for a worst case (maximum loss) scenario.
Originally formulated for two-player zero-sum game theory,
covering together the cases where players take alternate moves
and those where they make simultaneous moves, it has also
been extended to more complex games and to general
decision-making in the presence of uncertainty.
Max-min algorithm allocates task Ti on the resource Rj Where
large tasks have the highest priority rather than smaller tasks.
For example, if one long task, the Max-min could execute
many short tasks concurrently while executing large one. The
total makes span, in this case, is determined by the execution
of the long task. But if meta-tasks comprises tasks have
relatively dissimilar completion time and execution time, the
makespan is not determined by one of the submitted tasks. It
would be similar to the Min-min makespan. For these cases,
original Max-min algorithm losses some of its major
advantages as load balance between available resources in
small distributed system configuration and small total
completion time for all submitted tasks in large-scale
distributed environment. Author can't use the Max-min and
wait submitted tasks to decide what would be the allocation
map, make span, load balance, etc. Author try to minimize
waiting time of short jobs through assigning large tasks to be
executed by slower resources. On the other hand, execute
small tasks concurrently on a fastest resource to finish a large
number of tasks during finalizing at least one large task on a
slower resource. Based on these cases, where meta-tasks
contain homogeneous tasks of their completion and execution
time, a substantial improvement of the Max-min algorithm that
leads to increasing of Max-min efficiency. Proposed
improvement increases the opportunity of concurrent
execution of tasks on resources. Author focus on the Max-min
to derive improved Max-min because of its advantages as load
balance that is desired in small distributed system rather than
larger and small make span in large distributed system rather
than small. True, load balance enhances performance in
distributed systems but doesn't necessarily result in shorting
makespan. The algorithm calculates the probable completion
time of the submitted tasks on every resource. Then the task
with the overall maximum expected execution time is assigned
to a resource that has the smallest overall completion time.
Lastly, this scheduled tasks removed from meta-tasks and all
calculated times are updated and the processing is repeated
until all submitted tasks are executed. The algorithm focuses
on minimizing the total makespan which is the total complete
time in large distributed environment, for example, cloud
computing environment also, and executing tasks concurrently
on available resources achieving load balance in small
distributed system. The proposed algorithm produces mapping
schema similar to RASA in such concurrency executing tasks
and minimization of total completion time required to finish
all tasks. Selecting task with maximum execution time leads to
choosing largest task should be executed. While selecting
resource overwhelming minimum completion time means
choosing slowest resource in the obtainable resources. So

https://en.wikipedia.org/wiki/Decision_theory�
https://en.wikipedia.org/wiki/Statistics�
https://en.wikipedia.org/wiki/Philosophy�
https://en.wikipedia.org/wiki/Loss_function�
https://en.wikipedia.org/wiki/Zero-sum�
https://en.wikipedia.org/wiki/Game_theory�

Harpreet Kaur Sachdeva et al, International Journal of Advanced Research in Computer Science, 8 (4), May 2017 (Special Issue),199-202

© 2015-19, IJARCS All Rights Reserved 202

allocation of the slowest resource to longest task allows
availability of high-speed resources for finishing other small
tasks concurrently. Also, achieve the shortest make span of
submitted tasks on available resources besides concurrently.
Not as original Max-min which recommended to be used if
and only if submitted tasks are heterogeneous in their
completion time and execution time, by means, there are
clearly large tasks and small tasks.
Pseudo code of Min-Max Algorithm

1. for all submitted tasks in meta-task; Ti
 2. for all resources; RJ
3. Cij = Eiji + RJ
4. While meta-task is not empty
5. Find task Tk costs maximum execution time.
6. Assign Tk to the resource RJ which gives minimum
completion time.
 7. Remove Tk from meta-tasks set
 8. Update for selected RJ
 9. Update Cij for all j

Figure2. Improved Min-Max Algorithm

V. CONCLUSION

In Max-min Algorithm the largest task is assigned to the best
available resource (fastest). One of the limitations of this
algorithm is when the larger job assigned to the slower
resource results with the increase in the Make span. In the
proposed algorithm the probability of assigning the larger jobs
to the slower resource is minimized. Here the resources are
divided into two sets, first set with slow resources and the
second set of fast resources. Based on the available fast
resource task has been selected. If the selected resource
belongs to the first set then the task with a length just greater

than the average is selected else task with maximum length is
selected.

REFERENCES

[1] VasiliosAndrikopoulos, Zhe Song, Frank Leymann, "Supporting the
Migration of functions to the Cloud through a Decision Support System",
Institute of Architecture of function Systems, IEEE, pp. 565-672, 2013.
[2] Haitao Li, LiliZhong, Jiangchuan Li, Bo Li, KeXu, “ Cost-effective Partial
Migration of VoD Services toContentClouds”, 2011 IEEE 4th International
Conference on Cloud Computing, pp. 203-110, 2011.
[3] Monjur Ahmed and Mohammad Ashraf Hossain, “CLOUD COMPUTING
and SECURITY ISSUES IN THE CLOUD” International Journal of Network
Security and Its functions (IJNSA), Vol.6, No.1, January 2014.
[4] Jain, Anurag, and Rajneesh Kumar. "A multi-stage load balancing
technique for a cloud environment." In

[5] Mahmud, A. Hasan, and S. S. Iyengar. "A Distributed Framework for
Carbon and Cost-Aware Geographical Job Scheduling in a Hybrid Data
Center Infrastructure." In

Information Communication and
Embedded Systems (ICICLES), 2016 International Conference on, pp. 1-7.
IEEE, 2016.

[6]Haruna, Ahmad Abba, Low T. Jung, and NordinZakaria. "Design and
Development of Hybrid Integrated Thermal-Aware Job Scheduling on
Computational Grid Environment.",2014

Autonomic Computing (ICAC), 2016 IEEE
International Conference on, pp. 75-84. IEEE, 2016.

[7] Jain, Anurag, and Rajneesh Kumar. "A Taxonomy of Cloud
Computing." International Journal of Scientific and Research Publications

 [8] Chang, Hung-Jui, Jan-Jan Wu, and Pangfeng Liu. "Job scheduling
techniques for distributed systems with heterogeneous processor cardinality."
In

4,
no. 7 (2014): 1-5.

[10] Bhoi, Upendra, and Purvi N. Ramanuj. "Enhanced max-min task
scheduling algorithm in cloud computing."

2009 10th International Symposium on Pervasive Systems, Algorithms, and
Networks, pp. 57-62. IEEE, 2009.

 International Journal of
Application or Innovation in Engineering and Management

[11] Parsa, Saeed, and Reza Entezari-Maleki. "RASA: A new task scheduling
algorithm in the grid environment."

2, no. 4 (2013):
259-64.

 World Applied sciences journal

7 (2009):
152-160.

Start

End

Update ready time of resource
Then Update Expected completed time

Delete select task from Meta-Task

Select task with max execution time
Then

Assign to be executed by resource with min completion
time

Meta task notempty

Compute expected execution time and
completion time of each task resources

No

Step 1

Step 2

Step 3

	Introduction
	JOB SCHEDULING
	RELATED WORK
	VARIOUS ALGORITHM IN JOB SCHEDULING
	CONCLUSION

