
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1535

ISSN No. 0976-5697

Comparison of Maintenance Activity for Effort Estimation in Open Source Software Projects

Avneet Kaur
Centre for Computer Science and Technology

Central University of Punjab
Bathinda, India

Dr. Satwinder Singh
Centre for Computer Science and Technology

Central University of Punjab
Bathinda, India

Abstract:Software estimation accuracy is amongst the biggest challenges for software developers. The most significant activity in software
project management is Software development effort prediction. Many modelshave been proposed to make software effort estimations, but still
no single model can predict the effort accurately. Thedemand for accurate effort estimation in the software industry is still a challenge. Accurate,
precise and reliable estimates of effort at early stages of project development hold great importance for the management to meet the competitive
demands of today's world. Software cost estimation is one of the most crucial tasks and predicts the effort and development time needed to
develop a software system. It helps the software industries to manage their software development process efficiently. In this paper, we introduce
an approach to building an effort estimation model for Open Source Software. Forthis purpose, effort data is mined from the developer's bug fix
activities history. Ourapproach determines the actual time spend to fix a bug and considers it as an estimated effort. We propose an artificial
neural-network-based approach to predict the amount of effort and development time of developers required for bug resolution. This paper
investigates the use of Back-Propagation Neural networks for software effort estimation. The primary purpose of this paper is to estimate the
software development effort using Artificial Neural-Network based techniques to improve accuracy of developers for bug resolution.

Keywords: Software effort estimation, Artificial neural networks, Back-propagation neural networks, Accuracy, Prediction.

I.INTRODUCTION

In software engineering, Effort estimation is one of the
essential activities in the development of the software.
Estimation of software is a difficult task in project planning
and management process. [2]Software effort estimation one
of the most long-term problems in software engineering.
The software is the most expensive component in many
computer-based systems. A huge quantity of bugs produces
a vast difference between gain and loss during the
estimation of effort. [3] Software effort estimation is the
process of evaluating effort needed to produce or maintain
software based on insufficient, unpredictable input. An
effort is used to the total time that takes developers of a
software development team to perform a given task. It is
usually expressed regarding person-day, person-month, and
person-year. This value is important as it helps in estimating
other values, like cost or total time required to produce a
software product appropriate for software projects. In Open
Source Software projects development there is a mutual
understanding among open source developers, reporters, and
users that capably improves the product quality. However
quality and efficiency of Open Source Software depend
upon the bugs present in the software, so tracking of bug is
important. Bug tracking system plays a significant role in
the tracking of bug.
The importance of effort estimation becomes critical during
the early stage of the software lifecycle when the software
details have not been reported. The effort required in
developing a software product plays a significant role in
determining the success or failure. Software bugs commonly
arise during software development process. Unfound bugs
can lead to the loss of billions of dollars. The aim of
software maintenance is to not only improve the
performance but also fix bugs and enhance features of the
software, which lead to better quality software [1]. In recent
years, software maintenance has become more challenging
due to the increasing number of bugs in large-scale and

complex software programs. The earlier studies [2] showed
that a significant amount of software development cost is
spent on maintenance and development activities. To
regulate and avoid overlapping efforts, in large-scale open
source software projects, project teams commonly use the
bug tracking systems such as Bugzilla to keep track of
reported software bugs. An essential component is the bug
repository that stores the bug reports, source code and
changes history i.e. when a bug is reported and assigned
which is produced by users and developers. A bug tracking
system is a place that keeps track of software project bugs in
the database. The bug report is stored in bug tracking system
where assignee of the bug fixes that bug. In open source
software environment, the user of open source software
often writes a "bug report" when they find a bug or come
across a slight mistake. The developers in project teams
depend on them to manage and fix the reported bugs. In the
software maintenance process for large-scale software
programs, especially bug reports, become an important
source to help developers to resolve those bugs.
Specifically, a user or developer can report the software bug
in a specified format (i.e., bug report) and upload it to a bug
tracking system such as Bugzilla. Then, a senior developer
is assigned to fix the reported bug according to developer
specialization and the information shown in the submitted
report.

Figure 1: Bug Lifecycle

Avneet Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1535-1539

© 2015-19, IJARCS All Rights Reserved 1536

During the development of any large software system,
developers are frequently changing the source code lines of
program files. The changes in source code are presented to
improve the product quality, i.e., to introduce new features,
or to fix detected faults in the software. Version control
systems contain source code changes from which effort
estimation systems get the data that allows for resolving
product costs issues and release management issues.
Besides, effort estimation also provides knowledge about
the complexity of the product. An additional important
feature of actual effort estimation systems is the consistent
and exact schedule of release dates for the product. Accurate
scheduling of release dates of product always increase the
demand of the product and reduce the costs of the project.
In this paper, a method is present to build an effort
estimation model for OSS projects. For this purpose, make a
developer activity log-book to manage the development
activities of developers and other contributors who are
involved in the overall process. To mine effort data we have
to answer questions:
1) How is effort data mined from the history of developer's
bug-fix-activity?
2) How is effort estimation model build using mined effort
data?
3) How bug-fix-activity data is use to construct the
developer's activity log-book?
4) How bug-fix-activity data is used to estimate developer's
contribution and visualize collaborations?
To tackle questions our paper helps in:
1) Develop a novel approach to mine the effort done by
developers from software bug repository.
2) Building a developer’s log-book that helps in maintains
the developer’s bug fix activity records.
3) The log-book is maintained to get the actual time given
by each developer f
or bug fixing.
Moreover, we introduce a way of visualizing the different
aspects of the collaboration among the developers.

4) We present empirical results obtained when applying the
method for effort estimation on the Eclipse project. To
perform, we downloaded program file bug-fix-activity data
of developers from Eclipse’s Bugzilla repository. Bugzilla is
a bug tracking system and very commonly used in OSS
development.
So far, the method which is use in the neural network for
predicting software effort estimation is back propagation
trained multilayered feed-forward networks amidst
sigmoidal activation function. Artificial Neural Network
(ANN) uses machine learning and pattern recognition
methodology [23] to find accurate estimates for software
development effort. It is found that ANN improves the
performance of effort estimation by mean absolute error
[24]. ANN (Artificial Neural Network) can discover
relationships between the dependent and independent
variables. There are some flaws that restrict it from being
accepted as the standard manner in effort estimation. Slow
convergence is the major drawbacks of the back propagation
learning algorithm. The sigmoid activation function used in
its hidden and output layer units is the foremost reason for
slow convergence.

II. PREDICTION MODELS USED

1. Neural Networks: A great challenge for project managers
and developers is predicting software development effort
with higher accuracy. A large number of different prediction
models (estimation models) have been proposed in past
years. Many issues are there that should be covered in the
choice of a prediction model, and it is likely that there is a
need to made trade-offs in the process. The most common
objective is to maximize the prediction accuracy. ANNs are
massively parallel systems encouraged by the architecture of
biological neural networks, which comprised of simple
interconnected units. These interconnected units are known
as artificial neurons. The neuron computes a weighted sum
of its inputs and produces an output if the sum exceeds a
certain threshold. This output then becomes a positive or
negative input to other neurons in the network which are
connected. The process lasts until one or more outputs are
generated. The ANN is modified with random weights and
learns the relationships contained in a training data set by
adjusting its weights when performed with these data.
Among the number of available training algorithms, the
error back propagation is the most used by software metrics
researchers. In general, the use of ANNs is to predict
software development effort have focused mostly on the
accuracy comparison.
Back-propagation trained feed-forward neural networks are
developed by first selecting an appropriate design of
neurons. This includes how many layers of neurons will be
used, the number of neurons in each layer, and how the
neurons will be interconnected to each other and the precise
nature of neurons, such as their transfer function and
parameters for training the algorithm. Once the architecture
has been formed, the network is trained by giving it with a
series of inputs and the correct output from the training data.
As with all empirically based modeling techniques, data
should be withheld for verification and validation purposes.
The network learns by adjusting its weights to decrease the
error between its predicted output and actual output. This
process of training continues until the network's ability to
generalize as measured by its predictive performance on
new data is ideal.

Figure 2: Structure of Multilayer ANN feed forward

network

2.Logistic Regression: Logistic regression follows a
statistical approach for examining a dataset. The result is
determined by one or more independent variables. The
outcome measure with a dichotomous variable (two
desirable results). The dependent variable is dichotomous or

Avneet Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1535-1539

© 2015-19, IJARCS All Rights Reserved 1537

in binary form, i.e. it only contains data coded as 1 (TRUE,
success) or 0 (FALSE, failure) in logistic regression.
Logistic regression is an alteration of simple regression.
Logistic regression is used when the dependent or response
variable is a dichotomous variable, and the independent or
input variables are continuous, categorical, or both (Hair et.
al. 1998). Logistic regression in software cost estimation
provides realistic interval predictions where the cost will lie.
Log-likelihood function is more convenient to work with as
it is a monotonically increasing function, and the logarithm
of function reaches its maximum value at the same points as
the function itself. The statistical techniques like decision
tree and logistic regression are much similar in their process
to analyze the dataset. The Logistic Regression Equation is

Log(p/1-p) = β0 + β1X1 + β2X2……………….. βkX
In this model, p is the probability that the dependent variable
Y=1 and X1,X2,.. ., Xk are the independent variables
(predictors). β0 is a constant and β1,β2,.... βk are known as
the regression coefficients, which have to estimate from the
data. Logistic regression calculates the probability of a
specific event occurring. Logistic regression thus forms a
predictor variable (log (p/(1-p)) which is a linear
combination of the explanatory variables. The values of this
predictor variable transform into probabilities by a logistic
function. Such a function has the shape of an S.

III.LITERATURE REVIEW

k

Software effort estimation is a fundamental component to
software cost estimation. Software effort estimation methods
divided into four categories—empirical, regression, theory-
based, and machine learning techniques. Empirical
techniques comprise of analogy, function points (FP), and
rules of thumb [7]. Regression techniques use parametric
and nonparametric models [6]. The theory-based methods
use the underlying theoretical considerations characterizing
some aspects of software development processes [4].
COCOMO and the SLIM model are the examples of theory-
based techniques. Machine Learning (ML) techniques for
predicting software effort involve Artificial Neural
Networks (ANNs), Classification and Regression Tree,
Case-based Reasoning, Genetic Algorithm (GA), Genetic
Programming (GP), and Rule Induction (RI) [5]. Jorgensen
[8] presents a comprehensive study on the software
development effort. Many software cost estimation models
have been evolved over the years. The advantage of Neural
networks have its ability of learning and are good for
modeling complicated nonlinear relationships; delivers more
flexibility to corporate expert knowledge into the model.
Neural networks technique is applied by many researchers
to measure software development effort [9, 10, 13,14 17,
and 18]. Many models of NN have been introduced
[11,15,18]. Models may be grouped into two broad
categories. First one is feed-forward neural networks where
there is no loops in the network path take place. Another one
is feedback neural networks that have recursive loops in the
network path. The most common method used in the area of
effort estimation is the feed-forward multilayer perceptron
with back propagation learning algorithm. An investigation
by Samson et al. [14] practices an Albus multilayer
perceptron to predict software effort. They work on Boehm's
COCOMO dataset. Srinivasan and Fisher [17] consider the

use of a neural network with a back propagation learning
algorithm. They observed that the neural network overtook
other techniques. Karunanithi et al. [12] work in the use of
the neural network in estimating software effort produced
very precise results, but the drawback is due to resultant
accuracy massively depends on the size of the training set.In
[19], Gavin R. Finnie and Gerhard E. Witting proposed
models for predicting effort using neural networks and
Case-Based Reasoning (CBR) by comparing with various
versions of FP-based Regression Models and Neural
Networks(NN). The data used comprised of 299 projects
from 17 different organizations and concluded that NN is
done better than analogy followed by regression models.
Their performance to a great extent dependent on the dataset
on which they are trained. According to Gray and McDonell
[20], NNs are the most common software effort estimation
model-building practice used as an alternative to mean least
squares regression. These are estimation models that can be
"trained" using historical data to produce positive outcomes
by automatically modifying their algorithmic parameter
values to reduce the error between known actual and model
predictions results. Anita Lee et. al [21] combined NN with
cluster analysis for software development cost estimation
and determined that it proved to be a capable approach to
providing more accurate results on the forecasting of
software development costs or effort. Additionally, it shows
that the combination of NNs with cluster analysis increases
the training efficiency and performance of the network,
which in turn results in more accurate cost estimation than
using just NNs. K.K. Shukla[22] presented a genetically
trained NN on historical data. It established significant
development in prediction accuracy as compared to both a
regression-tree-based approach, as well as back propagation
trained NN technique.

IV.RESULTS AND DISCUSSION

Effort Estimation is a complex activity that requires
knowledge of many key attributes. At the beginning of a
project, there is risk about these project attributes. The NNs
have been used in various phases of software development
right from planning phase for effort estimation to software
testing, software quality assurance as well as reliability
prediction. This paper presented background information on
software project models and software metrics to be used for
effort and cost estimation. We have predicted the software
project effort to solve bug using Multilayer Perceptron using
Backpropagation Algorithm and logistics regression. The
aim is to construct a prediction model with the estimation
accuracy of both the prediction model so that the estimated
effort and the actual effort nearly equal. Implementation is
done using WEKA tool. The results obtained from the
trained neural network are compared with that of the
Logistic Regression model. The obtained results suggest that
the recommended architecture of Neural Network can
precisely forecast the software development effort. The
evaluation criteria are used to assess and compare the
performance of the neural network model, and logistic
regression is the magnitude of relative error (MRE). Results
obtained are given below.

Avneet Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1535-1539

© 2015-19, IJARCS All Rights Reserved 1538

Figure 3: Accuracy Graphs for Eclipse Version 2.0 applied on Eclipse Version 2.1 and 3.0

Figure 4: Accuracy Graphs for Eclipse Version 2.1 applied on Eclipse Version 2.0 and 3.0

Figure 5: Accuracy Graphs for Eclipse Version 3.0 applied on Eclipse Version 2.0 and 2.1

V. CONCLUSION

From the obtained results it is concluded that Neural
Networks results in higher accuracy than logistics regression
for effort made by developers for bug resolution.

VI.REFERENCES

[1] R. Charette, "Why Software fails [software failure]," in

IEEESpectrum, 42(9), 2005, pp. 42–49.

[2] J. Lee, W. Lee, J-Y Kuo, “Fuzzy Logic as a Basic for Use
Case Point Estimation,” in IEEE International Conference on
Fuzzy Systems, Taipei, Taiwan, June 27-30, 2011, pp.
2707-2707.

[3] K. Hamdan, M. Madi, "Software Project Effort: Different
Methods of Estimation," in International Conference on
Communications and Information Technology (ICCIT),
Aqaba., 2011, pp. 15-18.

[4] R.E. Fairley, “Recent Advances in Software Estimation
Techniques,” in Proceedings of the 14th International
Conference on Software Engineering., ACM, 1992, pp. 382-
391.

0

20

40

60

80

100

Model 1 (MLP) Model 2 (Logistics) Model 1 (MLP) Model 2 (Logistics)

Ac
cu

ra
cy

Eclipse version 2.1 Eclipse version 3.0

Developer A Developer B Developer C Developer D

0

20

40

60

80

100

Model 1 (MLP) Model 2 (Logistics) Model 1 (MLP) Model 2 (Logistics)

Ac
cu

ra
cy

Eclipse version 2.0 Eclipse version 3.0

Developer A Developer B Developer C Developer D

0

20

40

60

80

100

Model 1 (MLP) Model 2 (Logistics) Model 1 (MLP) Model 2 (Logistics)

Ac
cu

ra
cy

Eclipse version 2.0 Eclipse version 2.1

Developer A Developer B Developer C Developer D

Avneet Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1535-1539

© 2015-19, IJARCS All Rights Reserved 1539

[5] C.J. Burgess and L. Lefley, “Can Genetic Programming
Improve Software Effort Estimation? A Comparative
Evaluation,” Information and Software Technology, vol. 43,
no. 14, 2001, pp. 863-873.

[6] A.R. Gray, S.G. MacDonnel, and M.J. Shepperd, “Factors
Systematically Associated with Errors in Subjective
Estimates of Software Development Effort: the Stability of
Expert Judgment,” in Proceedings of Sixth International
Software Metrics Symposium, IEEE, 1999, pp. 216-227.

[7] C. Jones, "By Popular Demand: Software Estimating Rules
of Thumb," Computer, vol. 29, no. 3, March 1996, p. 116.

[8] M. Jørgensen, “A Review of Studies on Expert Estimation
of Software Development Effort,” in Journal of Systems and
Software, Volume 70 (1), 2004, pp. 37-60.

[9] A. Heiat, “Comparison of artificial neural network and
regression models for estimating software development
effort,” in Journal of Information and Software Technology,
Volume 44 (15), 2002, pp. 911–922.

[10] R.T. Hughes, “An evaluation of machine learning techniques
for software effort estimation,” University of Brighton, 1996.

[11] M. Jorgerson, “Experience with accuracy of software
maintenance task effort prediction models,” IEEE
Transactions on Software Engineering, Volume 21 (8), 1995,
pp. 674–681.

[12] N. Karunanithi, D. Whitley, Y.K. Malaiya, "Using neural
networks in reliability prediction," IEEE Software, Volume 9
(4), 1992, pp. 53-59.

[13] C.F. Kemerer, “An empirical validation of software cost
estimation models,” Communications of the ACM, Volume
30 (5), 1987, pp. 416–429.

[14] B. Samson, D. Ellison, P. Dugard, “Software cost estimation
using an Albus perceptron (CMAC),” in Journal of
Information and Software Technology, Volume 39 (1), 1997,
pp. 55–60.

[15] C. Schofield, “Non-algorithmic effort estimation
techniques,” Technical Report TR98-01, 1998.

[16] C. Seluca, “An investigation into software effort estimation
using a back propagation neural network,” M.Sc.Thesis,
Bournemouth University, UK, 1995.

[17] K. Srinivasan, D. Fisher, “Machine learning approaches to
estimating software development effort,” IEEE Transactions
on Software Engineering, Volume 21 (2), 1995, pp. 126–
137.

[18] G. Wittig, G. Finnie, “Estimating software development
effort with connectionist models,” in Journal of Information
and Software Technology, Volume 39 (7), 1997, pp. 469–
476.

[19] G.R. Finnie, G.E. Wittig, “AI tools for software development
effort estimation,” in Proceedings of Conference on Software
Engineering and Education and Practice, IEEE Computer
Society Press, Los Alamitos, 1996, pp. 346–353.

[20] A.R. Gray, S.G. MacDonnell, “A Comparison of Techniques
for Developing Predictive Models of Software Metrics,”
Information and Software Technology, Volume 39(6), 1997,
pp. 425–437.

[21] A. Lee, C.H. Cheng, J. Balakrishan, “Software Development
Cost Estimation: Integrating Neural Network with Cluster
Analysis,” Information and Management Volume 34(1),
1998, pp. 1–9.

[22] K.K. Shukla, “Neuro-Genetic prediction of software
development effort,” in International Journal of Information
a3nd Software Technology, Volume 42(10), 2000, pp. 701–
703.

[23] G. Wittig and G. Finnie, “Estimating software development
effort with connectionist models,” Information and Software
Technology, Volume 39(7), 1997, pp. 469-476.

[24] M. Sharif, M. Yasmin, S. Mohsin, “Neural Networks in
Medical Imaging Applications: A Survey,” World Applied
Sciences Journal, Volume 22(1), 2013, pp. 85-96

