
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1527

ISSN No. 0976-5697

Functional Test Case Generation based on Model Driven Testing using FSM and UML
Activity Diagram

Supriya S. Patil
Research Scholar

Bharati Vidyapeeth Deemed University
College of Engineering,

Pune, India

Prof. Pramod A Jadhav
Information Technology

Bharati Vidyapeeth Deemed University
College of Engineering,

Pune, India

Prof. Dr. S D Joshi

Computer Dept.
Bharati Vidyapeeth Deemed University College of Engineering,

 Pune, India

Abstract: Model Based Testing is one of the most critical area to be addressed efficiently to ensure effective testing of the given project. The
system implemented combines UML with FSM to cover all scenarios with all possible paths. As Finite Machine also works on the trigger where
conditions are framed and if these conditions are satisfied then next action is executed; this phenomenon motivates to build a framework for
generating the test cases automatically covering all paths (activity diagram in UML helps to cover all paths) and conditions (Finite State
Machine helps to frame set of conditions). Model Based Testing designed considering all paths and conditions to check all scenarios to generate
detailed test cases for given project or application.

Keywords: Model Based Testing, Extended File System, Finite State Machine,Activity Diagram, Coverage of paths and conditions

1. INTRODUCTION

Software Testing is indivisible phase of life cycle used for
the development of a software. Software Testing field is
advancing day by day. We can see recent frameworks like
TestNG, works for data driven testing where application
processes comparatively large amount of data. Selenium
tool is one of the popular tool now a day; Selenium Web
Driver works for test cases and functionalities of all
browsers, Selenium Grid works on distributed Computing,
Selenium RC works on remote control. QTP is windows
based testing tool used to check applications on Microsoft
OS (windows). Industry standards demand customized agile
approach. All this motivates for the approach where every
unit can be tested for the functionality as per the
specifications. As automation in the field of electronics,
mechanical and civil and bio informatics has increased
enormously. This demands quality check of software in all
these fields mentioned above.
Unit and functionality testing with all scenario is the crux of
software testing phase. The quality of the software depends
upon the rigorous testing and the way adopted for
performing the software testing. This type of quality testing
can be performed in coordination with UML diagram which
may explore different dimensions and functionality of a
software, wise selection and tuning of the test cases with
reference to the inputs collected from these diagrams will
lead to the quality product.

2. LITERATURE SURVEY

Number of research papers analyzed to select the papers
focusing on Model Based Testing. Few important

approaches are discussed here to decide the problem
statement and guideline for the approach to solve the
existing problems.
Andr´e Takeshi Endo et. al. [1] The approach combine
Model Based Testing and structural testing for a web
services. Technique used is based on the events, known as
ESG4WS. Structural testing [10] [11] [12] [14] is used to
meet the quality of software intended in software
requirement document. This helps to stop the process of
testing after getting the satisfactory results. Event Sequence
Graph of the application to be tested is plotted to understand
the functioning of the software in detail, especially coverage
and scope of application becomes clear. Authors have
focused on the data flow and control flow. Control flow [13]
is used analyze coverage of all nodes and edges. Data flow
[7]deals with the use and potential use. Limitation of the
system could be enhancement for the detection of faults in
the system to be tested.
Decision of the condition could be made by using or
analyzing Finite State Machine (FSM) [2]. In this case at
every stage condition is checked and the further path to be
traversed is calculated with this decision. Rules are designed
for the effective functioning of the utility and it is forced on
the traversal to make sure that system will check [6][9] all
possible condition in the form of Boolean values. Limitation
of this system is there are only two options for the condition
because of Boolean values. This may not work, if we want
to process the data where there are more than two
conditions.
 Finite State Machine (FSM) works on multiple conditions
at every node and based on the desired values of the results
of every parameter the further path to be traversed is
decided.

Supriya S. Patil et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1527-1530

© 2015-19, IJARCS All Rights Reserved 1528

The process of FSM could be categorized in three parts
as

• E-block- To evaluate trigger for all conditions.
• FSM-block – To compute state next to current

state &a signals, which controls A-block.
• A-block - To perform the required data

operations and movements of a data.[5]

There is scope for the improvement as system is based on
the web services and it supports only the utilities designed
using java[3].
Metamodel Transformation [4] proposed there are five
transformations are mentioned about five different
metamodels. Metamodel gives information about the
functionality, especially first two metamodels describe
functional requirement and the third one specifies the test
scenarios to be tested and fourth deals with the values
associated. Fifth metamodel combines,[7][8] all inputs into
segregated test cases format.
After analyzing all these approaches a system with coverage
of all paths and capable to check all conditions at every node
rigorously can be a challenge to be addressed.
3. MATHEMATICAL MODELLING

Input: FSM, Activity diagram in the form of XML
Process FSM⊕ ACTIVITY
Output : test cases with all path, prioritization and removal
of redundancy
 Data Structure:
Serial Number Variable Meaning

1. F Functionalities
2. S States
3. C Conditions
4. E Edges
5. N Nodes
6. T test cases
7. S serial number
8. Se Sender
9. Re Receiver

SN- 0
For (i=0; i<=#F;i++)
{
 For (j=0; j<=#C;j++)

{
 For (k=0; k<=#E;k<=#N;k++)

{
 T – (SN, condition, Cs, Se, Re)
 SN++; T++;
 Display T;

}

}

}

4 . SYSTEM ARCHITECTURE

4.1 Modules

1.Input Activity Diagram:
The proposed work accepts activity diagram as input.

Every activity diagram are familiar for creating its ADT

technically, that means to have all required details which
will modify the model to look at capabilities and
functionalities of all activity diagrams. The ADT can then
create the ADG technically. ADG are access by using DFS
for all necessary available test methods. Thus, the entire
main points are added in every checked path using the ADT
to have the ultimate test cases. Every activity diagram
should be go through each of the four modules for making
top collection of extremely economical test cases.

Figure 1: System Architecture of MBT using ADT and
FSM

2. ADT Generation
ADT (Activity Dependency Table) and loops,

synchronization and methods showing the activities of the
task are created technically utilizing each activity diagram.
This plan to indicating the activities will move to different
entities which may be supportive for system, integration and
regression testing. In addition, it contains the input with the
desired value of output for every activity of the system.
Activity Dependency Table shows every activity
dependency on each other very clearly. Every activity has its
special symbol for easily referencing it within determinant
dependencies also using it within various concerned units of
the system. To reduce the searches of the created ADG (that
are going to be explain afterward during this section),
activity which are permanent are distributed within one
image exclusively rather than having many symbols for a
related activity

3. DFSM Graph Generator
DFSM generator deals with the phenomenon where one
single output is produced, this module elaborates the details
of criteria used for controlling the criterion that are used to
control generation of test cases

4. Test Suit Generation
Test suit generation covers various path to be
evaluated under testing, it comprises following types
of testing the coverage

• Round Trip – Total round trips in the path are
covered and reported

• Sequence – Total number of sequences of inputs are
covered in this sequence.

• Action – All actions are to be visited at least once in
the path.

Supriya S. Patil et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1527-1530

© 2015-19, IJARCS All Rights Reserved 1529

• Event – All events are to be visited in the path of the
test cases.

• State – All states should be dealt at least once in a
life cycle.

• Transition- This deals with the total number of
transitions present in the coverage.

5. IMPLEMENTATION AND RESULT

Experiment is performed by considering the example of PIN
change functionality of ATM. Experiment is performed by

using individual approach where path is calculated using
Activity diagram and FSM separately (Figure 2: Individual
Approach); in combined approach (Figure 3: Combined
Approach) results are combined then redundancy is removed
before generating the test case. The generated test cases are
again checked for duplication. Final outcome of the MBT
using combined approach is to generate test cases with more
test cases as we can see that number is 83 and removal of
unnecessary, redundant test cases.

Figure 2: Individual Approach

Figure 3: Combined Approach

Figure 4: MBT for ATM PIN change

Supriya S. Patil et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1527-1530

© 2015-19, IJARCS All Rights Reserved 1530

6. CONCLUSION

The system is capable to deliver the satisfactory result as we
can see number of steps needed to check all conditions and
cover all path are reduced considerably from 83 to 63,
because of removing the redundancy; Because of it time
complexity is improved significantly.
Another important contribution in the system is to improve
the number of test cases to test each and every minute
functionality; while doing so redundancy in test cases is
removed to remove unnecessary functionality testing.

5. REFERENCES

[1] Aritra Bandyopadhyay, Sudipto Ghosh, “Test Input

Generation using UML Sequence and State Machines
Models”

[2] Vikas Panthi, Durga Prasad Mohapatra, “Automatic Test
Case Generation using Sequence Diagram”, International
Journal of Applied Information Systems (IJAIS) – ISSN :
2249-0868 Foundation of Computer Science FCS, New
York, USA Volume 2– No.4, May 2012 – www.ijais.org

[3] Md Azaharuddin Ali et.al. “Test Case Generation using
UML State Diagram and OCL Expression”, International
Journal of Computer Applications (0975 – 8887) Volume
95– No. 12, June 2014

[4] S. ShanmugaPriya et.al, “ Test Path Generation Using UML
Sequence Diagram”, Volume 3, Issue 4, April 2013 ISSN:
2277 128X International Journal of Advanced Research in
Computer Science and Software Engineering

[5] Ching-Seh Wu , Chi-Hsin Huang," The Web Services
Composition Testing Based onExtended Finite State
Machine and UML Model", 2013 Fifth International
Conference on service Science and Innovation

[6] M. Benjamin, D. Geist, A. Hartman, Y. Wolfsthal, G. Mas
and R. Smeets, "A study in coverage-driven test generation",
In Proc. of the 36 th Conference on Design Automation
Conference, pp. 970-975, 1999.

[7] M. Born, I. Schieferdecker, H.-G. Gross, and P. Santos.
“Model-Driven Development and Testing – A Case Study”.
In Proc. of the 1st European Workshop on Model Driven
Architecture with Emphasis on Industrial Application, pp.
97-104, 2004

[8] F. Bouquet, C. Grandpierre, B. Legeard, and F. Peureux, ”A
Test Generation Solution to Automate Software Testing”, In
Proc. of the 3rd international workshop on Automation of
software test, pp. 45-48, 2008.

[9] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N.
Vacelet, and M. Utting, “A subset of precise UML for
Model-based Testing”, In Proc. of the 3rd International
Workshop Advances in Model Based Testing (AMOST), pp.
95-104, 2007.

[10] Q. Farooq, M. Z. Z. Iqbal, Z. I. Malik and A. Nadeem, "An
approach for selective state machine based regression
testing", In Proc. of 3rd International Workshop Advances in
Model Based Testing (AMOST), pp. 44-52, 2007.

[11] C. Crichton, A. Cavarra, and J. Davies, “Using UML for
Automatic Test Generation”, In Proc. of the Automation of
Software Testing, 2007.

[12] S. R. Ganov, C. Killmar, S. Khurshid, and D. E. Perry. “Test
Generation for Graphical User Interfaces Based on Symbolic
Execution”. In Proc. Proc. of the 3rd International Workshop
on Automation of Software Test, pp. 33-40, 2008.

[13] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, "CADP
2006: A Toolbox for the Construction and Analysis of
Distributed Processes", In Proc. of the 19th International
Conference on Computer Aided Verification, pp. 158-163,
2007.

[14] J. R. Calame, “Specification-based Test Generation with
TGV”, Technical Report SEN-R0508, Centrum voor
WiskundeenInformatica, 2005.

http://www.ijais.org/�

