
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1741

ISSN No. 0976-5697

A Novel Automatic Source Code Defects Detection Framework and Evaluation on
Popular Java Open Source APIs

K Venkata Ramana
Assistant Professor

Department of Computer Science & Engineering
VNR Vignana Jyothi Institute of Engineering and

Technology
Hyderabad, Telangana, India.

Dr K Venugopala Rao
Professor

Department of Computer Science & Engineering
G.Narayanamma Institute of Technology and

Science
Hyderabad, Telangana, India.

Abstract: The unmatched growth in the automation and application of software code segments for automation is the main reactive reason for
improvements in industrial, education, and healthcare and security sectors. The deployed code segments or the complete application used for the
purpose is developed extensively with ample amount of features. The number of lines of code and number of man-hours deployed to build the
applications are gigantic. In addition to that, the testing of the applications is the added cost for the development cycle. However, in spite of the
best practice efforts, the applications can fail in real-time due to undetected errors resulting in fault and failure. Hence, the demand of the modern
code development industry to the current research trend is to automate the testing process and derive a framework for enhanced defects
detection. This work proposes a novel code defect detection technique to deep scan the code and report all possible bugs and defects and errors.
To justify the thoughts, the framework tests the most popular java open source APIs and demonstrates the results. Another novel outcome of this
work is to build a generic defect metric for all classes of source code.

Keywords: Coding Standards, Bad Practices, Null Path, Locale Errors, Reference Errors, Parallelism Error, Performance, Security, Suspected
Error

I. INTRODUCTION

The ease of static software code mining techniques and tools
for detection of defects are useful and productive in the
current age of research and studies. The frameworks and
tools are effective in order to improve the automatic defect
detections by integrating into development environment for
building high quality and highly reliable codes.
Nevertheless, the mining tools and frameworks are often
reported for highlighting overly huge amount of errors and
warnings including the false positive errors and detects.
Henceforth the developers need to indulge a massive
amount of time in solving and reporting the false positive
and true positive errors apart from the code development life
cycle time frame. This makes the development life cycle to
be tedious and large in terms of time frame and completion
time efficiency resulting into poor development practice and
defeating the complete purpose of the automatic detection of
defects.
The tools and the frameworks are expected to involve deep
scan for the code defect detection considering the ignorance
factors for false positive alerts. Henceforth, multiple
research attempts are been made to incorporate priority
based defect detection. Those attempts made a significant
reduction in the number of alerts generated by the tools and
frameworks, nevertheless the effectiveness of the priority
rules are debatable.
Significantly, the source code development industry has
progress into multiple vertical of automation and resulting
into various coding standards. The coding standards and
made to
ensure the reliability of those applications complying the
requirements of the specified domains. Henceforth, a
standard priority based defect detection technique is always
debatable.

Thus, the need for a novel metric for minimized and robust
fault detection is the demand from the current research.
Likewise, the metric should result into an automated
framework for detection of detects.
This work proposes and validates a novel metric for
detection of defects and evaluates the performance by
producing a novel automation framework.
The rest of the paper is organized as, in Section II the
current state of art is been demonstrated, in Section III the
proposed defect metric is formulated, in Section IV the
framework for the automation is demonstrated, in Section V
the results are been discussed and in Section VI the work
concludes.

II. OUTCOMES FROM THE PARALLEL

RESEARCHES

Software inspection tools have been studied widely. Zitser et
al. evaluated several open source static analysers with
respect to their ability to find known exploitable buffer over-
flows in open source code [1] [2]. Engler et al. evaluate the
warnings of their defect detection technique [3].
It was examined the results of applying five tools [4],
specifically Bandera, ESC/Java 2, FindBugs, JLint and PMT,
to a variety of Java programs over different checking tasks.
Thereby it was possible to crosscheck their bug reports and
warnings. In experimental results it was showed that none of
the tools can fully replace one-another, and indeed the tools
often find non-overlapping bugs (mostly warnings are
distinct). There is also no correlation of warning counts
between pairs of tools. Therefore, it was proposed a meta-
tool, which combines the output of the tools together,
looking for particular lines of code, methods, and classes
that many tools warn about. Thus it enables to precisely
identify false positives and false negatives. Summarizing,

K Venkata Ramana et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1741-1746

© 2015-19, IJARCS All Rights Reserved 1742

this meta-tool automatically combine and correlate their
output. It was concluded that the main difficulty in using the
tools is simply the quantity of output (mostly because of
false positives). Wagner et al. compared results of defect
detection tools with those of code reviews and software
testing [5]. Their main finding was that bug detection tools
mostly find different types defects than testing, but find a
subset of the types found by code reviews [6]. Warning
types detected by a tool are analysed more thoroughly than
in code reviews [7].
Heckman et al. proposed a benchmark and procedures for
the evaluation of software inspection prioritization and
classification techniques, focused at Java programs [8].
In recent years, many solutions have been proposed to
reduce the number of inspected violations and, instead,
emphasis on the most relevant ones, according to some
criterion [9] [10].
The classical approach most automated inspection tools use
for prioritizing and filtering results is to classify the results
based on several levels (statically). Such levels are
associated with the type of defects detected; they are
obvious of the actual code that is being analysed and of the
location or frequency of a given defect. Therefore, the

ordering and filtering that can be achieved while using this
technique is rather crude.
Kremenek and Engler [11], proposed Z-ranking, a statistical
approach to reduce the number of false positives due to
inaccurate static analysis [12]. With that technique it is
possible to rank the output of static analyses tools so that
more important warnings will tend to be ranked more highly.
Z Ranking is intended to rank the output of a particular bug
checker. They prioritize checks (warning categories) using
the frequency of check results [13] [14].

III. A NOVEL DEFECT DETECTION METRIC

The generic metric for defect detection for all category of
source codes are subjected to debate as the majority of the
best practices are generated and recommended based on the
domain to which the source code to be administrated. Thus
the need for the novel multi domain applicable metric is the
need for the recent research.
This work formulates a novel metric for defect detection and
considers the best practices from majority of the domains
[Table – I].

TABLE I: NOVEL DEFECT DETECTION METRIC
Serial

Numbe
r

Parameter Name Parameter Description Severity Measure
Informational Moderate Severe

1 Domain Specific
Coding Standards
(CS)

Coding mistakes, which violate the
organization standards for internal
quality.

Violation of
language or
application
preferences

Violation of
source code
naming
conventions

Violation of
financial or class
hierarchy

2 Bad Practices
(BPAS)

Logical mistakes in the source code
analysed to be identified as defect
during production

Logical /
Programming
symbolic
mistakes

Assignment or
allocation errors

Serializability
problem

3 Suspected Errors
(SE)

The mistakes in source code, that
leads to the ambiguity in the source
code and the coding branching
during the execution may lead to
defects

Unassigned
value errors

Un-reachable
code errors

Faulty exception
handling

4 Locale Errors
(LE)

Generic mistakes of loading the
library for location language pack
in order to manipulate the UI and
units

Misplaced or
misspelled
language pack
location or file
name

- -

5 Reference Errors
(RefE)

The errors in the source code,
which leads to the exposure of the
class members to other class
members

Object
reference errors

Parent class
reference error

Visibility
parameter errors

6 Parallelism Error
(PE)

Generally and popularly known as
the thread error due to the ill coding
of the source code and unable to
handle the mutating semaphore

Thread unlock
errors

Repeatable read
errors

Information
unreachable
errors

7 Performance Errors
(PerE)

In spite of the highest graded
hardware resources, the source code
fails to utilize the available
resources due to inappropriate use
of variables classes and storage
class or programming framework

Parallel
technique
errors

Storage class
errors

Algorithm
technique errors

8 Security Errors
(SeqE)

Errors and mistakes causing the
leak of information due to
mishandling or misuse of the

- - Pointers or
access modifiers
errors

K Venkata Ramana et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1741-1746

© 2015-19, IJARCS All Rights Reserved 1743

appropriate data structures
9 Null Path Errors

(NPLE)
The logical errors caused in the
code to have some branches which
are basically considered as always
false conditions or sometimes the
branches considered as un
reachable code

- - -

Based on the proposed metric a framework for automatic

detection of code defects is also been build. This work
explains the novel framework in the next section.

IV. A NOVEL AUTOMATED FRAMEWORK FOR

DEFECT DETECTION

The need for the automated application to evaluates the
sources codes and generates the compliance record or score
based on the proposed metric is the highest recommendation
in order to prove the benefits and applicability of the metric.
Hence, this work proposes a Java based application
framework for evaluating the performance of the sources
codes based on the proposed metric. The architecture of the
application framework is discussed in this work as well [Fig
– 1].

Figure – 1: Architecture of the Proposed Automated

Defect Detection Framework

Domain Specific Coding Standards (CS): Coding mistakes,
which violate the organization standards for internal quality.
Bad Practices (BPAS): Logical mistakes in the source code
analysed to be identified as defect during production.
Suspected Errors (SE): The mistakes in source code, that
leads to the ambiguity in the source code and the coding
branching during the execution may lead to defects.
Locale Errors (LE): Generic mistakes of loading the library
for location language pack in order to manipulate the UI and
units.
Reference Errors (RefE): The errors in the source code,
which leads to the exposure of the class members to other
class members.
Parallelism Error (PE): Generally and popularly known as
the thread error due to the ill coding of the source code and
unable to handle the mutating semaphore.
Performance Errors (PerE): In spite of the highest graded
hardware resources, the source code fails to utilize the

available resources due to inappropriate use of variables
classes and storage class or programming framework.
Security Errors (SeqE): Errors and mistakes causing the leak
of information due to mishandling or misuse of the
appropriate data structures.

Null Path Errors (NPLE): The logical errors caused in the
code to have some branches that are basically considered as
always-false conditions or sometimes the branches
considered as un-reachable code.
In the next section the work evaluates all the proposed
claims and establishes all improvements, validating the
points over popular open source Java APIs.

V. RESULTS AND DISCUSSIONS

The standard applications are built up on the standard

java open source code APIs. The proposed application is
tasted on the same API in order to validate the applicability
of the metric parameters and applicability of the developed
framework by this application.

The descriptions of the tested APIs are mentioned here:
• ant.jar: Apache Ant is a software tool for automating

software build processes, which originated from the
Apache Tomcat project in early 2000. It was a
replacement for the Unix make build tool, and was
created due to a number of problems with the unix
make. It is similar to Make but is implemented using
the Java language, requires the Java platform, and is
best suited to building Java projects. [15]

• AppleJavaExtensions.jar: AppleJavaExtensions.jar is
a type of JAR file associated with Developer DVD
Series developed by Apple Computer Inc. for the
Windows Operating System [16].

• ASM-DEBUG-ALL-5.0.2.JAR: ASM is an all-
purpose Java bytecode manipulation and analysis
framework. It can be used to modify existing classes or
dynamically generate classes, directly in binary form.
Provided common transformations and analysis
algorithms allow easily assemble custom complex
transformations and code analysis tools [17].

• BCEL-6.0-SNAPSHOT.JAR: The BCEL API
abstracts from the concrete circumstances of the Java
Virtual Machine and how to read and write binary Java
class files. The API mainly consists of three parts.
Firstly, A package that contains classes that describe
"static" constraints of class files, i.e., reflects the class
file format and is not intended for byte code
modifications. The classes may be used to read and
write class files from or to a file. This is useful
especially for analysing Java classes without having the
source files at hand. Secondly, a package to
dynamically generate or modify JavaClass or Method
objects. It may be used to insert analysis code, to strip
unnecessary information from class files, or to

K Venkata Ramana et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1741-1746

© 2015-19, IJARCS All Rights Reserved 1744

implement the code generator back-end of a Java
compiler. Lastly, various code examples and utilities
like a class file viewer, a tool to convert class files into
HTML, and a converter from class files to the Jasmin
assembly language [18].

• COMMONS-LANG-2.6.JAR: The standard Java
libraries fail to provide enough methods for
manipulation of its core classes. Apache Commons
Lang provides these extra methods. Lang provides a
host of helper utilities for the java.lang API, notably
String manipulation methods, basic numerical methods,
object reflection, concurrency, creation and serialization
and System properties. Additionally it contains basic

enhancements to java.util.Date and a series of utilities
dedicated to help with building methods, such as
hashCode, toString and equals [19].

• DOM4J-1.6.1.JAR: dom4j is an open source Java
library for working with XML, XPath and XSLT. It is
compatible with DOM, SAX and JAXPstandards.The
library is distributed under a BSD-style license [20].

The results produced by this work are been analysed
[Table– II].
The results are also visually analysed [Figure–2] and
observed that the every category of the applications are
detectable through the proposed framework.

TABLE II: DETECTION OF DEFECTS IN THE SOURCE CODE

Java Source Code
Name

Metric Parameters
Numb
er of
Classe
s

Coding
Standar
ds

Bad
Practic
es

Nul
l
Pat
h

Loca
le
Erro
rs

Refere
nce
Errors

Paralleli
sm
Error

Performa
nce

Securi
ty

Suspect
ed
Error

ant.jar 1528 13 167 7 128 55 60 112 2 252
AppleJavaExtensions
.jar 174 0 1 0 0 0 0 0 0 0
asm-debug-all-
5.0.2.jar 321 0 26 0 8 6 0 37 0 74
bcel-6.0-
SNAPSHOT.jar 904 1 28 0 8 93 0 16 0 65
commons-lang-
2.6.jar 1300 4 35 0 4 10 0 2 0 72
dom4j-1.6.1.jar 420 4 68 3 10 10 3 8 0 119

Figure – 2: Graphical Analysis of the Source Code Errors

VI. CONCLUSION

The continuous demand for domain specific defect

detection framework and denied by the research groups

K Venkata Ramana et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1741-1746

© 2015-19, IJARCS All Rights Reserved 1745

considering the ambiguity of possibilities by introducing
multiple frameworks. Henceforth the needs for a novel
metric for inter domain application source code evaluation
and to automate the process for the same metric could not be
ignored. Hence, this work establishes the toughs for the
novel metric empowered by the standards for each domain
and establish the automated tool for defect detection. This
work also results into a novel technique of domain specific
source code defect technique which will lay down the path
for further enhancement in this new dimension of source
code mining.

REFERENCES

[1] Tim A. Wagner, Vance Maverick, Susan L. Graham, and

Michael A. Har- rison. Accurate static estimators for
program optimization. In PLDI ’94: Proceedings of the ACM
SIGPLAN 1994 conference on Programming lan- guage
design and implementation, pages 85–96, New York, NY,
USA, 1994. ACM.

[2] Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and
Andreas Zeller. How long will it take to fix this bug? In
MSR ’07: Proceedings of the Fourth International Workshop
on Mining Software Repositories, page 1, Washington, DC,
USA, 2007. IEEE Computer Society.

[3] MishaZitser, Richard Lippmann, and Tim Leek. Testing
static analysis tools using exploitable buffer overflows from
open source code. In SIGSOFT ’04/FSE-12: Proceedings of
the 12th ACM SIGSOFT twelfth international symposium on
Foundations of software engineering, pages 97–106, New
York, NY, USA, 2004. ACM.

[4] Dawson R. Engler, David Yu Chen, and Andy Chou. Bugs as
inconsistent behavior: A general approach to inferring errors
in systems code. In SOSP, pages 57–72, 2001

[5] Nick Rutar, Christian B. Almazan, and Jeffrey S. Foster. A
comparison of bug finding tools for java. In ISSRE ’04:
Proceedings of the 15th Inter- national Symposium on
Software Reliability Engineering, pages 245–256,
Washington, DC, USA, 2004. IEEE Computer Society.

[6] Stefan Wagner , Jan Ju ̈ rjens , Claudia Koller , Peter
Trischberger, and Tech - nischeUniversitä tMünchen.
Comparing bug finding tools with reviews and tests. In In
Proc. 17th International Conference on Testing of
Communicat- ing Systems (TestCom’05), volume 3502 of
LNCS, pages 40–55. Springer, 2005.

[7] Youfeng Wu and James R. Larus. Static branch frequency
and program profile analysis. In MICRO 27: Proceedings of
the 27th annual international symposium on
Microarchitecture, pages 1–11, New York, NY, USA, 1994.
ACM.

[8] Tim A. Wagner, Vance Maverick, Susan L. Graham, and
Michael A. Har- rison. Accurate static estimators for
program optimization. In PLDI ’94: Proceedings of the ACM
SIGPLAN 1994 conference on Programming lan- guage
design and implementation, pages 85–96, New York, NY,
USA, 1994. ACM.

[9] Sarah Heckman and Laurie Williams. On establishing a
benchmark for eval- uating static analysis alert prioritization
and classification techniques. In ESEM ’08: Proceedings of
the Second ACM-IEEE international symposium on
Empirical software engineering and measurement, pages 41–
50, New York, NY, USA, 2008. ACM.

[10] Ted Kremenek, Ken Ashcraft, Junfeng Yang, and Dawson
Engler. Correla- tion exploitation in error ranking. In
SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM
SIGSOFT twelfth international symposium on Foundations
of software engineering, pages 83–93, New York, NY, USA,
2004. ACM.

[11] Ted Kremenek and Dawson Engler. Z-ranking: using
statistical analysis to counter the impact of static analysis
approximations. In SAS’03: Proceed- ings of the 10th
international conference on Static analysis, pages 295–315,
Berlin, Heidelberg, 2003. Springer-Verlag.

[12] Ted Kremenek and Dawson Engler. Z-ranking: using
statistical analysis to counter the impact of static analysis
approximations. In SAS’03: Proceed- ings of the 10th
international conference on Static analysis, pages 295–315,
Berlin, Heidelberg, 2003. Springer-Verlag.

[13] Sunghun Kim, Kai Pan, and E. E. James Whitehead, Jr.
Memories of bug fixes. In SIGSOFT ’06/FSE-14:
Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering, pages
35– 45, New York, NY, USA, 2006. ACM.

[14] Sunghun Kim, Thomas Zimmermann, Kai Pan, and E. James
Jr. White- head. Automatic identification of bug-introducing
changes. In ASE ’06: Proceedings of the 21st IEEE/ACM
International Conference on Automated Software
Engineering, pages 81–90, Washington, DC, USA, 2006.
IEEE Computer Society.

[15] Suereth, Joshua; Farwell, Matthew (2015). SBT in Action:
The simple Scala build tool. Manning Publications. ISBN
9781617291272.

[16] https://developer.apple.com/programs
[17] Eric Bruneton, ASM 4.0: A Java bytecode engineering

library, 2011
[18] https://commons.apache.org/
[19] http://commons.apache.org/proper/commons-lang/
[20] Generated by Apache Maven Doxia (2010-04-05). "dom4j -

Introduction". Retrieved 2012-08-29.

About the Authors:

K Venkata Ramana was born in Guntur, Andhra Pradesh, in
1978. He received MTech in Computer Science &
Engineering from Jawaharlal Nehru Technological
University, Hyderabad in 2010 and currently pursuing Ph.D
in Computer Science & Engineering from Jawaharlal Nehru
Technological University Hyderabad, with 15 years of
teaching experience.
He is working as an Assistant Professor in the Department
of Computer Science & Engineering, VNR Vignana Jyothi
Institute of Engineering and Technology, Hyderabad, India.
Earlier, he worked as an Associate Professor in the
department of CSE, Bhoj Reddy Engineering College for
Women, Hyderabad, India, from 2006-2016. He started his
profession in 2001 as an Assistant Professor in the
Department of Computer Applications, St.Johns Institute of
Science & Technology, Hyderabad, India.
His research areas are Data Mining, Machine Learning,
Software Engineering, with an emphasis on mining software
engineering data and software verification.

K Venkata Ramana et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1741-1746

© 2015-19, IJARCS All Rights Reserved 1746

K Venugopala Rao was born in Vijayawada, Andhra
Pradesh, in 1963. He received the B.Tech degree in
Electronics and Communication Engineering from
Jawaharlal Nehru Technological University, Hyderabad in
1985, the M.Tech degree in Computer Science and
Engineering from the Jawaharlal Nehru Technological
University, Hyderabad in 1997 and Ph.D degree in the area
of Computer Science & Engineering from Osmania
University, Hyderabad in 2008.
From 2006, he is working as a Professor, Department of
Computer Science and Engineering at G.Narayanamma
institute of technology and science (GNITS) Shaikpet,

Hyderabad. From 2002 to 2006, he was an Associate
Professor, in the Department of Computer Science and
Engineering at G.Narayanamma Institute of Technology &
Science Shaikpet, Hyderabad. From 1999t to 2002, he was
an Associate Professor in the Department of Computer
Science and Engineering at Koneru Lakshmaiah College of
Engineering, Greenfields, Vadeesvaram, Guntur. From 1997
to 99, he was an Assistant Professor in the Department of
Computer Science and Engineering at VR Siddhartha
Engineering College, Vijayawada. From 1992 to 1995, he
was an Assistant Professor, Department of Computer
Science & Engineering at JNTUCE, Hyderabad (1992-
1995). From 1989 to 1992, he was a Technical Officer in
CSG Group at ECIL Hyderabad. From 1988 to 1989 he was
a Quality control engineer at Ashok Leyland, Hyderabad
(1988-1989). From 1985 to 1988, he started working as an
Engineer (Maintenance) at Radiant Cables Ltd, Hyderabad
(1985-1988).
His research interests include Network Security, data
mining, statistical methods and their applications to software
engineering.

